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PREFACE

The National Telecommunications and Information Administration

(NTIA) has funded the Institute for Tel ecommunication Sciences (ITS) to

develop technology independent measures of video quality performance for

application to modern transmission systems.  Such modern transmission

systems include video teleconferencing/video telephony (VTC/VT), di gital

television, wideband integrated services digital networks (ISDN), high

resolution graphics transmission, and high definition television (H DTV).

This report summarizes several of the technology independent

measures of video quality that have been developed for the ongoing ITS

video quality performance assessment project.

The views, opinions, and findings contained in this report are those

of the author only.  The report does not reflect NTIA, ITS, or any other

agency position, policy, or decision unless so designated by other

official documentation.
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FEATURES FOR AUTOMATED QUALITY ASSESSMENT
OF DIGITALLY TRANSMITTED VIDEO

Stephen Wolf *

ABSTRACT

This report describes an automated method of video quality
assessment based on extraction and classification of features from
sampled input and output video.  The first subsystem of the
automated video quality measurement system is the feature extraction
subsystem.  Features are extracted from the sampled video that
quantify many of the distortions present in modern digital
compression and transmission systems.  The feature measurements may
then be injected into a quality classification subsystem which will
determ ine the overall quality rating of the video.  This report
discusses the first subsystem of the automated video quality
assessment system, namely the feature extraction subsystem.  The
measurement techniques used to extract a number of useful features
are discussed in detail.  Results are presented using sampled video
teleconferencing data that contained common video compression
artifacts.

Key words: A merican Nati onal Standards; ANSI; feature extraction;
image processing; video quality; video te leconferencing

1.  INTRODUCTION

As the world prepares to enter the age of digitally transmitted

video services such as video teleconfer encing/video telephony (VTC/VT),

digital television, wideband integrated services digital networks (ISDN),

high resolution graphics transmission, and high definition television

(HDTV), new quality assessment techniques are needed.  Traditional

techniques for estimating video quality degradation during transmission

have been based on analog measures of the transmission signal.  These

parameters are not adequate for assessing video quality when images are

impaired by the many new types of distortions introduced by the modern

digi tal transmission systems given above.  In such cases, the video

transmi ssion quality is often a function of the type of imagery being

transmitted (line drawings, natural scenes, etc.).  Since the information

normally has been compressed, small transmission errors due to channel

impairments can have significant effects on the received video quality.

As a result, viewing panels have been used to evaluate these modern
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distortion effects on video quality.  Unfortunately, this approach is

time consuming, expensive, and requires special care to prevent wide

variations between tests.  CCIR Recommendation 500-3 (1986) and Report

405-5 (1986) discuss in detail the methodology for conducting subje ctive

assessment of the quality of television pictures.

New, objective measures of video transmission quality are needed by

standards organizations, end users, and providers of advanced video

services.  Benefits would include impartial, reliable, repeatable, and

cost e ffective measures of video and image transmission system

performance and increased competition among providers as well as a better

capabi lity of procurers and standards organizations to specify and

evaluate new systems.

1.1  Background

Exte nsive studies have been performed in recent years regarding

quality ass essment of video pictures.  Most of the work falls into one

of the following three groups:

1.  Subjective quality assessment of still pictures or motion video.

2.  Objective quality assessment of video components or systems

based on output respo nses to injected test waveforms or patterns.

The objective measurements are sometimes modified to account for

characteristics of the human visual system.

3.  Objective quality assessment of still pictures or motion video

based on extraction of features directly from the video picture.

The original (undistorted) picture is usually available for

comparison.  Since digital sampling of the video is performed, the

objective measurements are sometimes modified to account for the

effects of the video display device.  In addition, characteristics

of the human visual s ystem are sometimes incorporated so that the

objective measurements correspond more closely to the subjective

rating.

CCIR Report 313-6 (1986) provides an extensive bibliography regarding

assessment of the quality of television pictures.  Nearly all of



3

publications listed in the report deal with the subjective quality

assessment described in group (1) above.  CCIR Recommendation 567-2

(1986) desc ribes a set of objective measures which fall into group (2)

above.  CCIR Recommendation 654 (1986) defines relationships between the

objective measurements and subjective  picture quality, assuming that

only one distortion type is present.  The works of Biberman (1973),

Higgins (1977), Task (1978, 1979), Carl son and Cohen (1980), and Barten

(1987, 1988) also fall into group (2) a bove, since the quality measures

are a function of the frequency responses (test waveforms are sinus oids)

of the video and human vision systems.  Meiseles (1988) has proposed a

measurement of dynamic resolution based on rotating test patterns.  Group

(3) above includes the work of Mannos and Sakrison (1974), Sakrison

(1977), Limb (1979), Pearson (1980), Toit and Lourens (1988), Ohtsuka et

al. (19 88), Miyahara (1988), and Tomich et al. (1989).  Here, quality

measures are normally developed as a weighted error of the distorted

image relative to the original image. 

The objective techniques of group (3) above are m ost applicable to

video scenes which have undergone digital compression and transmission.

Performance of image compression algorithms are a function of the type

of imagery which is being compressed.  A compression algorithm designed

to perform well on one type of imagery, say natural scenes, may perform

poorly on another type of imagery, like line drawings.  In addition, the

effects of transmission channel impairments (such as bit errors) must be

determ ined by examining the resultant decoded or uncompressed image.

Thus, video quality measurements based upon injected test signals, such

as the t echniques in group (2), could yield objective quality ratings

that differ substantially from the subjective quality ratings.  For an

overview of image data compression, the reader is referred to Nesen bergs

(1989).

Very little work in group (3) has been performed on video scenes

that c ontain motion.  Even recent papers which propose techniques in

group (3) for motion video (Miyahara, 1988, Ohtsuka et al., 1988) do not

evaluate their techniques using motion video.  In practice, alignment of

undistorted video and distorted video (from a wide class of video

compression systems) requires careful consideration.  Automated

techniques for performing proper alignm ent of undistorted and distorted

video will be discussed in detail later in this report.
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1.2  Automated Video Quality Measurement System Overview

This report discusses a method for objectively measuring video

quality based on feature extraction from digitized video imagery and

classification techniques.  Figure 1 gi ves an overview of the automated

video quality measurement system.  The computer-based approach extracts

objective video quality features directly from captured video images.

Video quality features extracted from the sampled imagery are chosen to

be sensitive to user applications, video compression artifacts, and the

effects of modern transmission channel impairments.  In this report, a

candidate set of features that quantify the presence of video compression

artifacts has been developed by the aut hor and his associates.  Certain

desirable properties of features, to be covered later in this report,

guided this initial feature development and selection process.  The

objectively measured features are interpreted by a quality classification

system to produce an overall quality ra ting comparable to that provided

subjectively by a panel of viewers.  Subjectively rated video data and

psychological results from studies on h uman perception of video quality

are used to assist in the design of the feature extraction and quality

classification subsystems.  In addition, not shown in Figure 1, certain

a priori knowledge may be input to the feature extraction and quality

classificat ion subsystems to improve their performance.  Examples of a

priori control parameters include characterization of the display d evice

which will be used to view the video, the viewing distance, or the type

of video service.

The pr imary goal of the approach is to obtain an objective

assessment of video quality that emulates the subjective rating.  The

goal is accomplished by selecting a set of features measured from the

video imagery which correlates well with artifacts noticeable to the

view er, and by incorporating statistical and psychological results

obtained from subjective evaluation of video imagery.  The candidate set

of features will be extracted from subjectively rated video imagery that

exhi bits a wide range of distortions.  Then pattern recognition and

classification techniques will be applied to determine the mapping of

these objectively measured features into subjective quality space (as in

Figure 1).  Through application of pattern recognition and classification

techni ques, some of the features in the candidate set may prove to be

redundant or ineffective in determining video quality.  Hence, these
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redundant or ineffective features may be discarded.  Since subjectively

rated video imagery was unavailable at the time of writing this report,

emphasis has been placed on development of a candidate set of features

for automated quality assessment of digitally transmitted video.

2.  DESCRIPTION OF FEATURES

The most difficult process in virtually all pattern recognition and

classification systems is feature extraction.  A general theory of

feature extraction is unavailable and most feature extraction methods are

ad hoc and highly application dependent.  The performance of a classifier

is determined primarily by the features that are injected into the

classifier.  For this reason, the bulk of the development work for a

classificat ion system is to develop methods that extract sensitive and

relevant feature values.  This section describes the development of a set

of features for automatically assessing the quality of digitally

transmitted video.  Emphasis has been placed on automated techniques for

cost effective monitoring, and repeatability.

To understand the features that have been developed, background

information is first presented on common video artifacts, desirable

properties of features, and proper alignment of original and distorted

video imagery.  Techniques for video scene alignment, very rarely covered

in the literature, are discussed in section 2.3.  Calculation of some

features requires proper temporal alignment of original and distorted

video imagery.  

Rationale for preconditioning the sampled video before feature

extraction is discussed.  The technique for extracting each feature from

the sampled video is described in detail.  The features objectively

quantify the presence of common video artifacts.  Of critical concern

here is the computational time of a particular feature.  Alternate

algo rithms are presented that reduce this cost of computation.  For

illustrative purposes, each feature extraction technique is demonst rated

using VTC/VT data.

2.1  Common Video Compression Artifacts

The American National Standards Institute, Accredited Standards

Commit tee T1, Working Group T1Q1.5 is drafting interface performance

specifications for digital VTC/VT and digital television.  The VTC/VT
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sub-work ing group of T1Q1.5 is developing a catalogue of video motion

artifacts associated with video compression and the resultant effects on

video quality.  The motion artifacts that are most noticeable to the

viewer and that show the most potential for being measured are reproduced

in Table 1.  The artifact, definition of the artifact, and examples of

the artifact are listed in the table.  Artifacts are most apparent when

video motion is present.  The information content of a video signal that

contains moving and/or changing scenes may simply be too great for a

fixed transmission data rate.  In such cases, image pixel values may not

be updated rapidly enough, resulting in noticeable artifacts.  Additional

video coding artifacts can be found in Murakami et al. (1988).

Prob ably the most noticeable and objectional motion artifact is

resolu tion degradation.  Normally, stationary objects are coded with

rela tively high spatial resolution.  However, as soon as the object

moves, blurring and/or jerky motion of the object is noticed.  In cases

of excessive motion such as during camera pans and zooms, very

object ionable blocking artifacts may appear.  Other image coding

artifacts seen upon close inspection include edge busyness and image

persistence.
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Table 1.  Common Video Compression Artifacts

Motion Artifact Definition

1.  Resolution Degradation The deterioration of motion video

Examples: imagery has suffered a loss of

Blocking The received video imagery

Blurring/smearing The received video imagery has

Jerkiness The original smooth and continuous

2.  Edge Busyness The deterioration of motion video

Example: objects are displayed with

Mosquito noise The quantizing noise gene rated by

3.  Image persistence The appearance of earlier faded

Example: changing object within the current

Erasure An object that was erased

such that the received video

spatio-temporal resolution.
 

posses ses rectangular or
checkerboard patterns not present
in the original.

lost edges and detail present in
the original.

motion is perceived as a series of
distinct snapshots.

such that the outlines of moving

randomly varying activity.

the block processing of moving
objects that gives the ap pearance
of false small moving objects
(e.g. a mosquito flying around a
person's head and shoulders).

video frames of a moving and/or

video frame.

continues to appear in the
received video imagery.
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2.2  Desirable Properties of Features

For the video quality measurement system shown in Figure 1,

develo ping a set of sensitive and relevant features can be very

difficult.  Often, intuition and ad hoc procedures must be used to obtain

a set of features which are meaningful and easily computed.  The

following list details some desirable properties of objectively mea sured

features.  These properties were used to steer the development of a set

of features for measuring the quality of digitally transmitted video.

1.  Correlation with subjective quality

Perhaps the most critical attribute of a meaningful feature is

strong correlation of the measured feature value with the

subjec tive rating.  If overall subjective ratings are not

available, features should at least be sensitive to the amount

of subjectively noticed video artifacts.  The feature value

should change monotonically when  the amount of the artifact

or distortion is increased.

2.  Automation

Feature extraction should be performable by an autonomous

measurement system.  Advantages include automatic detection of

transmission line impairments, cost effective monitoring, and

repeatability.

3.  Application to many types of scenes

Since the performance of the digital compression and

trans mission algorithm normally depends upon the type of

imagery which is being compressed, the feature extraction

proce dure should be applicable to arbitrary video scenes.

Thus, to test the video quality performance for a specific

user application, one must use the appropriate type of video

scenes.  

4.  Application as a local estimate

There is evidence that the human viewer may determine the

quality of a video scene by rating the quality of local

details within the video scene (Westernik and Roufs, 1988).
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Thus, the human viewer will often look at high contrast edges

and cont ours to perform quality judgments.  To account for

this phenomena, feature extraction methods should take into

account local or sub-regional properties (in space and/or

time) of the video.  Local estimates of quality may also be

utili zed by video compression algorithms to allocate bits

dynamically to each sub-region of the video image.

5.  Computational efficiency

Features that are rapidly computed from the image are

prefer able from a cost and implementation standpoint.  At

best, the feature should be computable in real time, given

reasonable hardware.  Computati onally efficient features may

also be required for large, higher resolution imagery, such as

HDTV.

6.  Stability

The feature should not be sensi tive to distortions which the

human viewer does not notice.  For example, the feature should

not be sen sitive to small shifts in the mean of the video

imagery nor other image distortions which fall below the

threshold of visibility.

7.  Functional independence

When choosing a feature set, every feature within the set

should convey different information.  If a particular feature

can be obtained as a function of other features within the

feature set, that feature does not convey any additional

information and can be disregarded.

8.  Technology independence

The feature is useful for a wide range of technologies.  For

insta nce, a feature developed for measuring digital image

compression artifacts should also be useful in measuring video

quality of an analog transmission channel.
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2.3  Alignment Of Original And Distorted Video Imagery

Video imagery consists of a series of frames that are transmitted

and di splayed in sequence on a video display device.  The most common

video fo rmat in use in the United States is the National Television

Systems Committee (NTSC) broadcast standard.  With NTSC format, one frame

consists of two sequential interlaced fields (Fink, 1975).  The field

scanning se quence is horizontally left to right, and vertically top to

bottom.  The first field scans the even numbered lines (2, 4, 6, etc.)

and then the second field scans the odd numbered lines (1, 3, 5, etc.).

To be able to time align input and distorted output video, the video

digitizing system must capture each NTSC field (which occur at the rate

of 59.94 fields per second).  Some feature extraction techniques re quire

that the input and distorted output video have been aligned beforehand.

Alignment or matching of input and distorted output video frames is

complicated by the wide range of video coding schemes that are in use,

and by the presence of an unknown video delay within the system under

test.  One common video compression scheme omits fields and/or frames

before transmission, and then uses field and/or frame repetition on the

receiving end to fill in the missing fields and/or frames.  Thus, one is

not guaranteed that an aligned output frame exists for each input f rame.

Sections 2.3.1 and 2.3.2 describe two methods for automatically ali gning

video scenes.  Each method has been found to be useful, depending upon

which f eatures one desires to extract from the digitized video.  Both

alignment methods assume that some motion or changing scenery is pr esent

in the video.  For completely static video scenes, alignment is not an

issue.

2.3.1  Single-frame Temporal Alignment

Alignment of input and distorted output video scenes based on one

output video frame is computationally f ast and particularly useful when

one wishes to preserve the temporal nature of the video.  As was

previously mentioned, because of the possibility of frame omission and

repeti tion, there is no guarantee that an aligned output video frame

exists for each input video frame.  The refore, it is necessary to align

the input to the output, and not visa-versa.  In other words, given an

output frame, find the input frame which best matches that output f rame.

For single-frame temporal alignment, the alignment is only performed for
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one output frame in the video sequence.  The rest of the input and output

video frames are temporally paired one for one, based upon the alig nment

found for the chosen output video frame.  In practice, to assure that a

causal alignment between the output and input video is obtained, the

alignment for each of several consecutive output frames should be f ound.

Then, the output frame which yields the smallest positive shift in time

of the input video sequence produces the correct causal alignment.

The best matching input frame (for the chosen output frame) is found

by computing the error difference images between the selected output

frame and all reasonable input frames.  When selecting the set of

reason able input frames, one must account for video delay within the

system and the uncertainty of that video delay.  Assuming the video scene

contains some motion, the standard deviation of the error (accumulated

over all pi xels in the error image) goes to a minimum for the best

aligned input image.  The reader is referred to equation 1 of Appendix

A for a mathematical definition of single-frame temporal alignment.  The

mean of the error image, being sensitive to small low frequency spe ctral

components near DC, should not be used to perform time alignment.  The

standard deviation is not sensitive to small changes in the average gray

level of the sampled images, but may be sensitive to changes in video

gain.  Thus, for this alignment technique (as well as for other feature

extraction techniques proposed in this report), the gain of the video

system should be stable over time.

A priori knowledge of the video delay for the system under test can

ease the computational burden of the alignment process by minimizing the

number of error difference images that must be examined.  For each error

differ ence image, computation of the standard deviation requires the

accumulation of the image pixel values and the squares of the image pixel

values.  A computationally faster alignment could be obtained if the

standard deviation calculation were replaced with a pixel counting scheme

where one simply counted the number of error image pixel values that were

less than a lower threshold or greater than an upper threshold.  Here,

care must be taken to make sure that any shifts in the mean of the error

image are contained between the lower and upper thresholds.

Single-frame temporal alignment can be assisted if one is able to

superimpose a time code or other timing data onto the input video frames.

Then, align ment can be determined by processing a much smaller portion

of the video image (just the part which contains the time code).
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However, with this technique some accuracy may be lost since the video

device under test might behave differen tly for the sub-regional part of

the image that contains the changing time code.

In summary, single-frame temporal alignment prese rves the temporal

characteristics of the input and output video.  The two contiguous

sequences of input and output video fra mes are time aligned.  All input

and output video frames are preserved in the aligned sequences.  Later

in this report, single-frame alignment will be required before extracting

temporal features of motion video like jerkiness (see Table 1).

2.3.2  Multi-frame Temporal Alignment

There are cases when the single-frame alignment technique is not

adequate to perform the desired feature extraction.  Such a case occurs

when the user desires to measure the "snapshot" quality of the video

imagery.  For example, the user may require very high spatial resol ution

of the presented picture to troubleshoot circuit diagrams, but frequent

updating of the video image may not be required.  For a fixed

transmission bit rate, the user may prefer one new high resolution video

frame per second rather than thirty low resolution video frames per

seco nd.  Another alignment technique, called multi-frame temporal

alignment, is useful for features designed to measure the "snapshot"

quality of the video system.

Multi-frame alignment differs from single-frame alignment in that

the best matching input frame is found for every  output frame.  The

techniques discussed for single-frame alignment are simply applied to

each output frame.  Since frames may have been omitted in the output

video, multi-frame alignment will skip the video input frames that have

no correspo nding output frames.  The computational task of multi-frame

alignment may be eased considerably by intelligently choosing the set of

input frames that must be examined for each output frame.  In particular,

the correct input frame alignment found for the previous output frames

can be used to guess the input frame alignment for the current output

frame.

A side benefit of multi-frame alignment is the detection of missing

fields and/or frames in the output video.  Multi-frame alignment may be

used to compute the missing frame ratio (MFR), a useful measure of motion

jerkiness.  The MFR feature is computed as the number of missing frames
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in the out put video scene divided by the total number of frames (see

equation 2 of Appendix A for a mathematical definition of MFR).

Figures 2 and 3 illus trate single-frame and multi-frame alignment

applied to a video scene that contained motion.  The top row of Figure

2 shows four consecutive frames that were captured every 1/30 sec, left

to right, from the original NTSC video scene.  This original NTSC video

scene was injected into a VTC/VT coder/decoder (codec) running at 1/4 the

digital signal one (DS1) rate of 1.544 Mbps.  The codec output is shown

in the bottom row of Figure 2.  The solid lines in Figure 2 show the

ordering of the input and output video frames when single-frame alignment

was applied using the first codec output frame.  The dashed lines show

the ordering of the input and output video frames when multi-frame

alignment was used.  Figure 3 shows the error difference images (input

frame minus output frame) that were used to determine the single-frame

and multi-frame alignment of Figure 2.  In Figure 3, white and black are

positive and negative error, respectively, while the gray background

represents no error.  The top row in Figure 3 shows the error diffe rence

images between the four input frames (top row of Figure 2) and the first

codec output frame (bottom, left image in Figure 2).  Of the four error

images in the top row of Figure 3, the first one (leftmost) contains the

smallest error (least amount of black and white).  Thus, when single-

frame alignment was applied using the first codec output frame, the solid

lines in Figure 2 give the pairing of the input and output video fr ames.

Rows two, three, and four of Figure 3 give the corresponding error

difference images for the second, third, and fourth codec output frames

in Figure 2.  Clearly, the particular codec tested discarded every other

NTSC input video frame and performed frame repetition on the output to

fill in for the missing video frames.  The missing frame ratio (MFR) for

the example in Figures 2 and 3 is calcu lated as two divided by four (or

.5), since two of the four input video frames were missing in the output.

In summary, multi-frame temporal alignment may destroy the original

ordering of the input video sequence.  Since the closest matching input

video frame is found for each output video frame, some input video frames

may be discarded.  Multi-frame alignment is useful for developing quality

measures that are independent of the output video frame rate.  Such

measures are useful for application groups that require high quality

"snapshot" video at low frame rates (for instance, medical imaging).

Later in this report, multi-frame alignment will be required before





Figure 3. Error difference images (input-output) of Figure 2. Top row - NTSC 
input (top row in Figure 2) minus codec output image 1 (bottom row, 
leftmost frame in Figure 2). Second, third, and fourth rows are 

NTSC input minus codec output images 2, 3, and 4, respectively. 

16 



17

extracting spatial blurring, blocking, and edge busyness (see Table 1)

features that accurately measure the "snapshot" video quality.

2.4  Preconditioning Of The Sampled Video

Certain spatial-temporal properties of the video display and/or

human visual system may be taken into a ccount by proper preconditioning

of the samp led video before feature extraction.  Image preconditioning

normally involves application of some form of non-linear amplitude and/or

frequency d omain weighting functions.  Historically, the goal of image

preconditioning has been to enable distortion measures (such as the error

difference) to correlate accurately with the subjective quality rating.

Mannos and Sakrison (1974), Sakrison (1977), Limb (1979), Carlson and

Cohen (1980), Barten (1987, 1988), Miyahara (1988), and Ohtsuka et al.

(1988) have suggested possible amplitude and frequency domain weighting

functions for black and white pictures and/or video displays.  Ampl itude

domain tran sformations have also been suggested for color images.  The

red, green, and blue color system typically employed in video displays

does not yield a perceptually uniform color space.  Ideally, in a

perceptually uniform color space, each color axis is perceptually

independent of the others and psychometrically uniform.  The Munsell

color space (Newhall, 1943), the CIE color space (CIE Supplement No. 2

to CIE Publication No. 15, 1978),  and transformations proposed by

Miyahara and Yoshida (1988), and Taylor et al. (1989) are such uniform

color spaces.  Frequency domain transformations for color images have not

been addressed and are currently a research topic.

A subjectively judged video library that contains the wide range of

impairments found in digitally transmit ted video systems is required to

eval uate the usefulness of the various weighting functions.

Impl ementation of amplitude domain weighting functions is normally

computationally efficient.  Implementation of frequency domain weig hting

functions is computationally expensive as two fast Fourier transforms

(FFT) per image are required (one forward and one inverse).  For this

report, no preconditioning (other than that described for the extra ction

of each individual feature) has been performed.



18

2.5  Spatial Blurring Features

Spatial resolution degradation is an artifact that normally occurs

when a video camera is imperfectly focu sed or when motion is present in

a video scene.  Camera defocusing reduces spatial resolution by spreading

incident light over a larger surface ar ea.  Thus, a defocused camera is

unable to pass the high spatial frequency information present in im agery

containing sharply defined edges and fine detail.  Under conditions of

video motion, the bandwidth compression techniques typically employed in

digital video systems are unable to ret ain enough of the high frequency

information to avoid blurring of the edges.  Investigators in the f ields

of human vision and human object recognition have recognized the

importance of sharp edges for correct v isual perception and recognition

of objects (Shapley and Tolhurst, 1973, Held et al., 1978, Geuen and

Preuth, 1982, Beiderman, 1985, Owens et al., 1989).  The importance of

sharp edges for moving objects is currently a research topic and ap pears

to depend on whether or not the eye can track the object.  Several

methods have been proposed to detect automatically the sharpness of image

edges.  In section 2.5.1, the procedure of Toit and Lourens (1988) for

estimating the edge sharpness of arbitrary video imagery has been adapted

to measuring the spatial resolution degradation present in digitally

transmitted video systems.

2.5.1  Feature Extraction Technique

A method for estimating the sharpness of edges in sampled video

imagery can be obtained using very simple image processing techniques.

The pr ocedure relies on being able to sample the input (undistorted)

video imagery as well as the output (distorted) video imagery.  The input

video imagery is required as a reference so that the amount of spatial

resolution degradation present in the output imagery can be estimated.

The edge sh arpness feature can be extracted by computing the amount of

energy present in the edge extracted vi deo imagery.  The theory is that

sharper edges will contribute more high intensity pixel values than

blurred edges.  Several steps are required to apply the technique:

1.  Video alignment

If one desires to observe the instantaneous value of the

feature (frame-by-frame), then single-frame temporal alignment

of the input and output video is recommended.  Strictly
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speaking, time alignment of the input and output video is not

required to extract this feature, provided one only requires

the average value of the feature (over all frames in the video

sequence).

 

2.  Video preconditioning

The sampled video imagery is preconditioned to remove edge

energy contributions resulting from camera interlace effects

and noise spikes.  Because edge extraction filters (to be

applied in step 3 below) involve taking the difference of

neighboring image pixel values, they will enhance noise in the

imagery as well as edges.  Therefore, some preconditioning of

the imagery is strongly desired before application of the edge

extraction filter.  

If noise spikes are present, they can be removed by use of a

small median filter that does not significantly blur the edges

(Tzafestas, 1986, Gonzalez and Wintz, 1987, Jain, 1989).  Fine

detail, such as object corners, will be blurred by the median

filter.  For the imagery to be presented later in this report,

median filtering was performed (see Appendix B for a

description of the median filter that was used).

Camera interlace effects may be present in an NTSC video

system when the video scene con tains objects that are moving

horizontally.  In Figure 4, vertical edges are seen to form

many alternate horizontal edges that have a length

propor tional to the velocity of horizontal motion.  The

horizontal edges caused by camera interlace will contribute a

large amount of erroneous edge energy.  Here, the interlace

effects could be removed by sub-sampling the image by a factor

of 2 in both horizontal and ver tical directions (every other

row and column in the image being discarded).  A more

desirable method of reducing the erroneous edge energy due to

interlace would be to select an edge extraction filter which

is insensitive to interlace.  T his is the recommended method

and the one which is used here in step 3 below.  The Sobel

edge extraction filter (Tzafestas,
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4.  Feature computation

Several features can be computed from the edge extracted or

Sobel filtered imagery.  Four are suggested here:

a.  The mean of the Sobel image (M-SI)

M-SI is computed as the summation of the image pixel

values divided by the total number of pixels.  Here, the

summation can be performed over any sub-regional area of

the ima ge.  See Appendix A, equation 3 for a

mathematical definition of M-SI.

b.  The standard deviation of the Sobel image (SD-SI)

SD-SI is comp uted as the square root of (the summation

of the squares of the image pixel values divided by the

total number of pixels, minus the square of M-SI).  This

estimate of the standard deviation is asymptotically

unbiased for a large number of image pixels, which is

typica lly the case.  See Appendix A, equation 4 for a

mathematical definition of SD-SI.

c.  The root mean square of the Sobel image (RMS-SI)

RMS-SI is computed as the square root of (the summation

of the squares of the image pixel values divided by the

total number of pixels).  See Appendix A, equation 5 for

a mathematical definition of RMS-SI.

d.  The number of pixels greater than a threshold of the Sobel

image (NPGT-SI)

NPGT-SI is computed as the total number of pixels within

any sub-regional area that exceed a fixed threshold.

Advantages of this feature include the ability to detect

the blur ring of just the sharpest edges, and ease of

computation.  There is some indication that humans may

perform quality assessment by examining the sharpest

high contrast edges (Westernik and Roufs, 1988).  The

higher the threshold for NPGT-SI, the sha rper the edges

must be before being included in the summation.

Subjectively judged video data could be used to
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determine the threshold setting that gives the best

correspondence with subjective quality.  Since

subjective data was unavailable at the time of this

report, a somewhat arbitrary threshold was selected that

included the predominate edges of the image.  See

Appendix A, equation 6 for a mathematical definition of

NPGT-SI.

The decrease in the a mount of edge energy that the output imagery

has with respect to the input imagery can be used to estimate the a mount

of spatial resolution degradation present in the output imagery with

resp ect to the input imagery.  Alternately, since the input imagery

contains sh arper edges (and hence higher pixel values) than the output

imagery, the decrease in the number of pixel values that exceed the

threshold can be used to estimate the spatial resolution degradation.

In either case, by normalizing with the reference imagery, a feature can

be formed t hat varies between 1 (no edge blurring) to 0 (complete edge

blurring).

The features described above exhibit many of the desirable

properties of features mentioned earlier.  In particular, the features

are applicable to arbitrary video scenes and may be applied to any sub-

region of the image, making them useful for local estimates of image

quality.  In addition, the feature extraction process is computatio nally

efficient and stable.  The features are insensitive to noise spikes (due

to median filtering) and small gray level shifts in the image (since

edges are computed from the differences of neighboring image pixel values

and thus, the background gray level subtracts off).  

2.5.2  Sample VTC/VT Results

For illustrative purposes, the method for extracting the spatial

blurring features was applied to several VTC/VT video frames sampled by

an 8 bit video frame grabber.  Figure 5 shows the sampled imagery after

median filt ering.  The top left image was captured from an NTSC camera

with no m otion present in the video scene.  The top right image was

captured from an NTSC camera when rotational motion was present in the

video scene.  The bottom right image was captured from the output of a

VTC/VT codec running at the digital signal 1 (DS1) rate of 1.544 Mbps,

where the i nput imagery to the codec was the same as that shown in the



Figure 5. VTC/VT imagery containing rotational motion. Top left - camera with 
no motion. Top right - camera with rotational motion. Bottom right 
- camera with motion and DSl data compression. Bottom left - camera 
with motion and l/4 DSl data compression. 
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top right image of Figure 5.  The bottom left image was captured from the

output of a VTC/VT codec running at rate 1/4 DS1.  In Figure 5, one can

clea rly see the effects of camera distortion, and subsequent data

compression by the VTC/VT codec. 

Figure 6 shows the sampled imagery after edge extraction.  Note the

well defined edges for the image captured from the NTSC camera with no

motion ( top left) and the successive worsening of the edge blur for

camera with motion (top right), camera with motion and DS1 compression

(bottom rig ht), and camera with motion and 1/4 DS1 compression (bottom

left).

Table 2 shows the unnormalized edge sharpness feature values for the

images in Figure 6.  To eliminate the erroneous edge energy at the image

boundaries (due to median and Sobel filtering), the feature values in

Table 2 were computed over a sub-rectangular region (size 504 horiz ontal

pixels by 464 vertical pixels) centered on the main image.  Note the

decrease in edge energy as the image quality degrades.  Also note the

decreasing number of image pixels that exceed a chosen threshold value

of 250 (NPGT-SI).  The number of high v alue pixels, which represent the

sharpest edges, decrease faster than the other features as the input

imagery suffers increased spatial resol ution degradation.  Further work

needs to be done to determine which feature in Table 2 most accurately

correlates with subjective judgements of spatial resolution.
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Table 2.  Spatial Blurring Features For VTC/VT Imagery Of Figure 6

Image M-SI SD-SI RMS-SI NPGT-SI

Top Left 59.6 81.2 100.8 9116
(Still)

Top Right 48.2 64.7 80.7 3882
(Camera +
rotation)

B o t t o m 37.3 48.6 61.3 995
Right
(Camera +
rotation +
DS1)

B o t t o m 32.2 36.3 48.6 184
Left
(Camera +
rotation +
1/4 DS1)

The edge sharpness features were also computed for a typical VTC/VT

scene that contained upper body motion.  The video scene in Figure 7

contains motion of the man's head and hands, and the report that the man

is holding.  The top row shows a sample of 4 consecutive images that were

fram e-grabbed from the original NTSC VTC/VT scene.  The images were

grabbed at each field increment of the video recorder.  Thus, the time

difference between consecutive images in a row is approximately 1/60 of

a seco nd.  The second, third, and fourth rows of images were obtained

from the output of a VTC/VT codec that compressed the NTSC video to bit

rates of DS1, 1/2 DS1, and 1/4 DS1, respectively.  The single-frame

temporal alignment method has been used to align the codec output video

shown in Figure 7.  For clarity, the images in the first column

(leftmost) of Figure 7 have been expanded in Figure 8.  In Figure 8, the

top l eft image is the original NTSC, the top right is DS1, the bottom

right is 1/2 DS1, and the bottom left is 1/4 DS1.  Note that most of the

image distortion occurs locally in areas that contain motion (man's right

hand), and that the static background is relatively distortion free.  As

the c odec is forced to operate at lower bit rates, areas of the image

that contain motion become more and more blurred.



Figure 7. VTC/VT imagery containing upper body motion. Top row - NTSC input. 
Second row -codec output at rate DSl. Third row - codec output at 
rate l/2 DSl. Bottom row - codec output at rate l/4 DSl. 
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Figure 8. Leftmost column of Figure 7 expanded. Top left - NTSC input. Top 
right - codec output at rate DSl. Bottom right - codec output at 
rate l/2 DSl. Bottom left - codec output at rate l/4 DSl. 
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Figure 9 shows the video of Figure 7 after median filtering and edge

extraction.  For clarity, Figure 10 shows the expanded video of Figure

8 after median filtering and edge extraction.  Note that edges of m oving

objects app ear less intense as the codec is forced to operate at lower

bit rates.  Thus the edges are most blurred for images in the bottom row

(bit rate of 1/4 DS1).  Table 3 shows the average of the unnormalized

spatial blu rring features for eight consecutive images, the first four

of which are shown in Figure 9.  The sub-rectangular image regions and

thresho lds (for NPGT-SI) that were used to generate Table 2 were also

used to gen erate Table 3.  The features in Table 2 were generated from

video imagery that contained rotational motion which included a large

part of the image.  The features in Table 3 were generated from video

imagery that contained only a small amount of natural motion.  The codec

performs differently for the two types of video scenes, and this is

reflected in the computed features.

Since subjective quality ratings are based on a video scene that is

normally 10 seconds long, a very robust process would be to extract the

features from many frames of video, and even from many sub-regions of

each v ideo frame.  Then, the feature classification system (shown in

Figure 1) could utilize all of the feat ure samples to improve the video

quality classification.
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Table 3.  Spatial Blurring Features For VTC/VT Imagery Of Figure 9

Scene M-SI SD-SI RMS-SI NPGT-SI

Top Row 70.4 103.3 125.1 14388
(NTSC)

Second Row 61.7 90.0 109.1 10247
(DS1)

Third Row 60.9 89.5 108.3 9972
(1/2 DS1)

Bottom Row 59.2 83.8 102.6 8265
(1/4 DS1)

2.6  Blocking, Edge Busyness, and Image Persistence Features

Blocking, defined in Table 1, is a severe form of spatial resolution

degradation that normally occurs at low codec bit rates when there is a

lot of mo tion in some sub-region or all of the video scene (such as

during camera pans or zooms).  Edge busyness and image persistence, also

defined in Table 1, are video coding artifacts that causes false activity

to appear around edges or elsewhere is the video scene.  Blocking, edge

busyness, and image persistence are most noticeable when the motion

involves a high contrast (sharp) edge.   Blocking, edge busyness, and

image persistence cause edge energy to appear in the output video scene

that was not present in the original input video scene.  Human viewers

have semantic knowledge of how certain items should look and they take

objection to the presence of erroneous, out of place artifacts such as

blocking, edge busyness, and image persistence.  In particular, the

appearance of false regular edge energy such as blocking is very

noticeable and objectionable to the human viewer (more so than spatial

blurri ng).  Therefore, it is desirable to have a set of features that

only measures the amount of false edge energy in a video scene.

Section 2.6.1 proposes a technique for extracting a set of features

that quantitatively measures the amount of false edge energy in the

output video scene.  The features may be used to measure blocking, edge

busyness, and image persistence since all contribute false edge energy

to the output video scene.  A by-product of the false edge energy feature

is another set of features for measuring spatial blurring.  The new
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measures for spatial blurring, to be described below, do not contain

false edge energy.  Thus, the new measures for spatial blurring are more

accurate than the measures presented in section 2.5.1 (M-SI, SD-SI, RMS-

SI, NPGT-SI) when there is a large amount of false edge energy present

in the video scene.  The ability to sep arately measure spatial blurring

and false edge energy may be important since each has a unique affect on

perceived video quality.  A video quality assessment system that de tects

the presence of blocking, a very objectionable artifact, could heavily

penalize the overall quality rating.

2.6.1  Feature Extraction Technique

Edges in output video that are less intense than the corresponding

edges in the input video are considered to have been blurred.  False edge

energy, due to the presence of such artifacts as blocking, edge busyness,

or image persistence appears in the distorted output video but not in the

undistorted input video.  Suppose one were to compute an edge error image

by subtracting the edge filtered output image from the corresponding edge

filtered input image.  Then, positive pixel values would be obtained for

blurred output edges since, by definiti on, the edges in the input image

are more intense (higher value) than the corresponding edges in the

output image.  Likewise, negative pixel values would be obtained for

false output edges, since false edges in the output image are more

intense than the corresponding edges in the input image.  Thus, one could

form an edge error image in which positive error represents blurring and

negative error represents false edges.  The exact feature extraction

technique is given below.

1.  Video alignment

Multi-frame temporal alignment of the input and output video

is required since the edges in the input and output images

must be properly aligned.  Thus, the extracted features will

be representative of the "snaps hot" performance of the video

system u nder test since one is always comparing the output

image with the closest matching input image.  The single-frame

temporal alignment method is not used because feature errors

due to alignment could be generated, particularly if fields

and/or frames have been omitted in the output video.
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2.  Video preconditioning

The s ampled video imagery is preconditioned as previously

described in section 2.5.1.

3.  Edge extraction

An edge extraction filter is applied to the preconditioned

video imagery as previously described in section 2.5.1.  Here,

a Sobel edge extraction filter was used (described in Appendix

B).

4.  Difference image

For each output/input video frame pair of interest, the Sobel

difference image is computed as the Sobel filtered input image

minus the Sobel filtered output image.

5.  Feature computation

Several features can be extracted from the Sobel difference

image.  Eight are suggested here.  Four of the eight are

blurring features since they are extracted from the positive

pixel values of the Sobel difference image.  The other four

are false edge features since they are extracted from negative

pixel values of the Sobel difference image.  All eight

features possess the same desirable properties of features as

the spatial blurring features for single-frame temporal

alignment.

a.  The mean of the positive Sobel difference image (M-PSDI)

M-PSDI is computed as the summation of the positive

image pixel values divided by the total number of pixels

in the sub-regional area of the image.  The total number

of pixels in the sub-regional area is used as the

divisor, rather than just the number of positive pixels,

so that the total amount of blurring energy can be

directly compared to the total amount of false edge
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energy.  See Appendix A, equation 7 for a mathematical

definition of M-PSDI.

b.  The standard deviation of the positive Sobel difference

image (SD-PSDI)

SD-PSDI is computed as the square root of (the summation

of the squares of the positive image pixel values

divided by the total number of pixels, mi nus the square

of M-PSDI).  See Appendix A, equation 8 for a

mathematical definition of SD-PSDI.

c.  The root mean square of the positive Sobel difference

image (RMS-PSDI)

RMS-PSDI is computed as the square root of (the

summation of the squares of the positive image pixel

values divided by the total number of pixels).  See

Appendix A, equation 9 for a mathematical definition of

RMS-PSDI.

d.  The number of pixels greater than a threshold of the

positive Sobel difference image (NPGT-PSDI)

NPGT-PSDI is computed as the total number of pixels

within any sub-regional area that exceed a fixed

threshold.  Advantages of this feature include the

ability to measure the number of severely blurred

pixels, and ease of computation.  See Appendix A,

equation 10 for a mathematical definition of    NPGT-

PSDI.

e.  The mean of the negative Sobel difference image (M-NSDI)

M-NSDI is computed as the summation of the negative

image pixel values divided by the total number of pixels

in the sub-regional area of the image.  See Appendix A,

equation 11 for a mathematical definition of M-NSDI.
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f.  The standard deviation of the negative Sobel difference

image (SD-NSDI)

SD-NSDI is computed as the square root of (the sum of

the squares of the negative image pixel values divided

by the total number of pixels, minus the square of M-

NSDI).  See A ppendix A, equation 12 for a mathematical

definition of    SD-NSDI.

g.  The root mean square of the negative Sobel difference

image (RMS-NSDI)

RMS-NSDI is c omputed as the square root of (the sum of

the squares of the negative image pixel values divided

by the total number of pixels).  See Appendix A,

equation 13 for a mathematical definition of RMS-NSDI.

h.  The number of pixels less than a threshold of the negative

Sobel difference image (NPLT-NSDI)

NPLT-NSDI is computed as the total number of pixels

within any sub-regional area that are less than a fixed

threshold.  Advantages of this feature include the

ability to me asure the number of pixels corrupted with

severe false edges, and ease of computation.  See

Appendix A, equation 14 for a mathematical definition of

NPLT-NSDI.

Normalization of the above eight features can be performed by

dividing by the appropriate spatial blurring features of the undist orted

input video (M-SI, SD-SI, RMS-SI, and NPGT-SI from section 2.5.1).  Then

the amount of blurring or false edges in the output video with respect

to the input video is obtained.  The th resholds for NPGT-PSDI and NPLT-

NSDI determine the severity of the blurring or false edges that the user

is intere sted in measuring and these thresholds do not have to be

identical to each other nor to NPGT-SI.  The choice of the three

thresholds will determine the range of the normalized features.
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2.6.2  Sample VTC/VT Results

For illustrative purp oses, the four spatial blurring features and

four false edge features (blocking, edge busyness, and image persistence)

were extracted from sampled VTC/VT imagery of a moving black ring against

a white bac kground (motion was from left to right).  The high contrast

moving edges of the black ring provided a sufficiently complicated object

for the VTC/VT codec under test to exhi bit the blocking, edge busyness,

and image persistence artifacts.  The top right image in Figure 11 shows

the median filtered output of the VTC/VT codec that was operating at a

bit rate of 1/4 DS1.  The top left image in Figure 11 is the

corresponding original NTSC input image after median filtering (found by

using multi-frame temporal alignment).  Note that the codec output image

exhibits bl urring, blocking, edge busyness, and image persistence (see

Table 1).  The bottom left and right im ages of Figure 11 show the Sobel

edge extracted imagery of the NTSC input and codec output, respecti vely.

Figure 12 shows the Sobel difference image found by subtracting the

bottom right image of Figure 11 from the bottom left image of Figure 11.

For display purposes only (not for feature value computations), Sobel

difference image pixel values were linearly scaled such that pixel values

of zero (no error) are shown as a gray shade of 128 in Figure 12.  The

gray shade of 128 fell halfway between black (0) and white (255) on the

8 bit video printer that was used to generate the image.  Thus, pixels

that appear white are due to blurred edges in the output and pixels that

appear black are due to false edges in the output.  Clearly, the blurring

energy has been separated from the blocking, edge busyness, and image

persistence energy.

The four unnormalized blurring features and four unnormalized false

edge features for Figure 12 are shown in Tables 4 and 5, respectively.

To eliminate the erroneous edge energy at the image boundaries (due to

median and Sobel filtering), all feature values were computed over a sub-

rectangular region (size 504 horizontal pixels by 464 vertical pixels)

centered on the main image.  For NPGT-PSDI, pixel values that exceeded

a threshold of 125 were counted.  For N PLT-NSDI, pixel values that were

less than a negative threshold of -125 were counted.  For comparison to

the reference, the spatial blurring features for the original NTSC Sobel

extracted image (Figure 11, bottom left) were M-SI=14.7, SD-SI=27.7, RMS-

SI=31.3, NP GT-SI=558 (calculated using a threshold of 250).  Note that

there was more blurring energy than false edge energy for this example.



Figure 11. VTC/VT imagery of moving black ring against white background. Top 
left - median filtered NTSC input. Top right - median filtered 
codec output at rate l/4 DSl. Bottom left - Sobel filtered NTSC. 
Bottom right - Sobel filtered codec output. 
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Figure 12. Sobel difference image of Figure 11. Note the separation of the 
blurring energy (white) from the blocking and edge busyness energy 
(black). 
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Table 4.  Spatial Blurring Features For Figure 12

Scene M-PSDI SD-PSDI RMS-PSDI NPGT-PSDI

M o v i n g 5.6 15.9 16.8 882
Ring
(1/4 DS1)

Table 5.  False Edge Features For Figure 12

Scene M-NSDI SD-NSDI RMS-NSDI NPLT-NSDI

M o v i n g -5.1 9.3 10.6 26
Ring
(1/4 DS1)

Individual adjustment of the NPGT-PSDI and NPLT-NSDI thresholds can scale

the importance of the blurring effects in relationship to the false edge

effects.

Eight consecutive images of VTC/VT codec output video that contained

upper body motion (the first four of which are shown in Figure 7) were

processed to extract the spatial blurring, blocking, and edge busyness

features.  The corresponding NTSC input video frames for each of the

codec output frames shown in rows 2, 3, and 4 of Figure 7 were found

using multi-frame temporal alignment, r ather than single-frame temporal

alignment as shown in row 1 of Figure 7.  Figure 13 shows the resulting

Sobel difference images.  The top, seco nd, and bottom rows of Figure 13

were obtained by processing the codec output video for bit rates of DS1,

1/2 DS1, and 1/4 DS1, respectively.  Ta bles 6 and 7 give the average of

the u nnormalized features, where the average was computed over 8

consec utive images at each bit rate.  Thresholds of 125 and -125 were

used to c ompute NPGT-PSDI in Table 6 and NPLT-NSDI in Table 7.  The

features in Tables 6 and 7 are directly comparable to the features in

Table 3.  Note from Figure 13 and Tables 6 and 7 that both blurring

(white) and false edges (black) increased as the coding bit rate fell

from DS1 to 1/2 DS1 to 1/4 DS1.  Also n ote that there was more blurring

than false edges at all bit rates.



Figure 13. Sobel difference imagery of Figure 7. Top row - rate DSl. Second 
row - rate l/2 DSl. Third row - rate l/4 DSl. 
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Table 6.  Spatial Blurring Features For Figure 13

Scene M-PSDI SD-PSDI RMS-PSDI NPGT-PSDI

Top Row 17.5 35.2 39.4 5443
(DS1)

Second Row 19.0 37.9 42.4 6562
(1/2 DS1)

Bottom Row 22.5 47.4 52.5 9544
(1/4 DS1)

Table 7.  False Edge Features For Figure 13

Scene M-NSDI SD-NSDI RMS-NSDI NPLT-NSDI

Top Row -9.0 20.7 22.6 1138
(DS1)

Second Row -9.6 22.5 24.4 1577
(1/2 DS1)

Bottom Row -11.5 25.0 27.5 1989
(1/4 DS1)

2.7  Jerkiness Feature Using Position Errors

Jerkiness is a video teleconferencing/telephony artifact in which

the original smooth and continuous imagery motion is perceived as a

series of distinct snapshots at the out put (see Table 1).  Jerkiness is

normally pr esent when a codec data compression algorithm achieves data

compres sion by elimination of fields or frames.  The number of fields

and/or frames that are eliminated (not transmitted) is not necessarily

guaranteed to be an accurate measure of jerkiness.  Sophisticated c oding

algorithms can update different portions of the image at different frame

rates and even interpolate missing frames to achieve smooth motion

effects.  Jerkiness is present when the position of a moving object

within the video scene is not updated rapidly enough.  Section 2.7.1

proposes a measure for jerkiness based on injecting a video scene

containing a moving object, and then measuring the object's position
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errors in the output video.  The technique is general enough to use an

arbitrary object which is undergoing translational motion.  A stored

image of the stationary object is required to implement the technique.

Alth ough the jerkiness feature presented in section 2.7.1 is very

accurate, there is one shortcoming.  The feature cannot, in general, be

extracted from arbitrary video scenes.  Section 2.8.1 of this report will

propose another measure of jerkiness which can be extracted from any

video scene.  

For moving objects, the proposed measure of jerkiness complements

the p reviously proposed measures of spatial blurring in that the

jerkiness f eature measures temporal positioning accuracy of the object

while the spatial blurring features measure the spatial resolution of the

obje ct.  Data compression of motion video often involves a tradeoff

between allocating bits to the temporal or spatial attributes of moving

objects.  The ability to measure separately the temporal and spatial

attributes raises the possibility of tailoring performance specifications

to the application.  For example, consider the application of VTC/VT for

trouble shooting circuit diagrams.  In this application, high spatial

resolution of the circuit diagram (assumed to be mostly stationary) is

much more important than having a moving pointer (such as a finger or

pen) seen as smooth and continuous.  In other applications involving head

and shoulders video teleconferencing, h aving less jerkiness may be more

important than having high spatial resolution.

2.7.1  Feature Extraction Technique

A feature for estimating the jerkiness in sampled video imagery can

be obtained using very simple image processing techniques.  The jerkiness

feature can be extracted by injecting a video scene that contains a

moving object.  The horizontal and vertical motion of the object is then

tracked for the output imagery.  Comparing the vertical and horizontal

motion t rajectories of the output to the input, a useful measure of

jerkiness is obtained.  The input motion trajectory can be obtained from

processing the input video scene, or from a priori knowledge (since the

test signal is known).  In this manner, the amount of jerkiness in the

output imagery relative to the input imagery can be determined.  Se veral
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steps are required to apply the techniq ue.  Time alignment of the input

and output video scenes before processing is not required.  The alignment

will be pe rformed on the input and output motion paths (see step 5),

rather than on the input and output video scenes.  The following steps

are applied to extract the feature.

1.  Stationary reference object

A stationary reference image of an object against a uniform

background is stored.  This reference image of the object will

be used to track motion jerkine ss.  The technique is general

so that any non-rotational, non-growing or shrinking object

may be used.  For simplicity, a black ball on a white

background was used for the experiments presented later in

this report.

2.  Moving reference video scene

Successive frames of the object in step 1 above are generated

with the object moving (translating in vertical and horizontal

positions).  The object may be moved horizontally, vertically,

or diagonally depending upon wh ether one desires to test the

jerkiness in the horizontal, vertical, or diagonal directions.

The object may also be moved at different velocities to test

the jerkiness over a wide range of motion in the video scene.

In this manner, a video scene is generated that contains an

object moving according to some known motion path  (the

vertical and horizontal positions of the object are known for

each video frame).

3.  Output video scene

The generated video scene from step 2 above is injected as the

test signal.  The output video scene is recorded or frame

grabbed into the video quality assessment system.  For greater

accuracy, each field (1/60th of a second) was recorded for the

experiments presented later in this report.
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4.  Output motion path

The vertical and horizontal positions of the moving object are

obtained by correlating (see Oppenheim and Schafer, 1975) each

video frame of the output video scene (from step 3 above) with

the reference object (from step 1 above).  In this manner, the

vertical and horizontal motion paths of the moving object are

found for the entire output video scene.  Correlation yields

a very r obust and accurate estimate of the moving object's

position.  However, correlation is also computationally

expen sive.  A computationally more efficient, but less

accurate, method of tracking the moving object's position is

available if the object is agai nst a black background.  Then

one could obtain the object's motion path by computing the

centroid of the object for each video frame (Tzafestas, 1986).

Never theless, the correlation method was used for the

experiments presented later in this report.

5.  Aligned output motion path

The output motion path of the object (from step 4) is aligned

with the true motion path (from step 2).  Alignment of the

input and output motion paths is required to compensate for

absolute video delay of the device under test.  The alignment

procedure used here corresponds to what a viewer would observe

if that viewer were insensitive to the absolute video delay.

The best alignment of the output motion path to the input

motion path is simply that which produces the smallest average

sum of the squared vertical and horizontal position errors

(the sum of the squared position errors is first performed

over all frames of the video sc ene, then this sum is divided

by the number of frames in the video scene).  The jerkiness

feature is then calculated as the square root of this average

sum of the squared position errors.  A mathematical definition

for this jerkiness feature, henceforth called temporal root

mean square position error (TRMS-PE), is given in equation 15

of Appendix A.
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2.7.2  Sample VTC/VT Results

     The notion of testing the jerkiness of motion video first occurred

when the output of a VTC/VT codec was monitored at bit rates on the order

of DS1.  An object that moved across the field of view of the camera did

not seem to move as smoothly after the scene had passed through the

codec.  A q uantification of how jerky the distortion mechanism was and

how it varied with code rate and speed of the object was sought.

An ideal test signal for jerkiness would be a computer generated

scene of an object moving at a constant speed across the screen at a

specified angle (horizontally, vertically, diagonally).  Due to equipment

limitations, test scenes were generated using a black ball suspended by

a long p endulum (about 15 feet) against a backlit (white) background.

Since only a small portion of the center part of the swing was used, the

ball's speed and angle were approximately constant.

A black ring was placed on the backlit background so that background

movement due to imperfections in the test setup or recorders could be

detected and taken into account.  For v ery stable recorders or computer

generated scenes, the black ring would not be necessary.  

To generate test scenes of different speeds, the ball was dropped

from different heights.  To generate test scenes at different angles, the

camera was tilted to the appropriate angle.  In this manner, test s cenes

were generated for horizontal and 45 de gree angles at several different

velocities (ball heights).  Three consecutive swings from each ball

height were captured into the computer.  For each scene, every set of two

fields that could be displayed on the video cassette recorder in still

frame mode was captured and stored in a file for later processing.

Images were grabbed for every NTSC field increment of the recorder (1/60

second).  Although the speed of the consecutive swings for each ball

height was slightly decreasing, the motive was to establish the acc uracy

and repeatability of the jerkiness measurement by examining three

independent trials at each ball speed.  The following scenes with

horizontal motion were captured into the computer and analyzed: 

1. Nine original reference scenes (three consecutive swings of

the ball for each of three different ball heights or speeds).
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2. Nine degraded codec output scenes at the ball's fastest speed

(DS1, 1/2 DS1, and 1/4 DS1 code rates for the three

consecutive swings at the fastest speed).

3. Six degraded codec output scenes at the ball's medium speed

(DS1, and 1/4 DS1 code rates for the three consecutive swings

at the medium speed).

4. Six degraded codec output scenes at the ball's slowest speed

(DS1, and 1/4 DS1 code rates for the three consecutive swings

at the slowest speed).

The foll owing scenes with 45 degree diagonal motion were captured and

analyzed:

1. Three original reference scenes (three consecutive swings of

the ball at the fastest speed).

2. Nine degraded codec output scenes at the ball's fastest speed

(DS1, 1/2 DS1, and 1/4 DS1 code rates for the three

consecutive swings of the ball at the fastest speed).

The horizontal and vertical motion paths of the ball for each scene

listed above were obtained by correlating a stored reference ball with

each image of the video scene.  Possible movement of the background

(which contained a black ring) due to imperfection in the test setup was

detected by correlating a stored reference ring with each image of the

video scene.  The motion of the background in the test setup was found

to be on the order of one or two pixels and hence was neglected.

Figure 14 shows four sequential images grabbed (every 1/60th of a

second from left to right) at the various bit rates for a horizontally

moving ball.  The top row in Figure 14 shows four consecutive field

increments of the original NTSC signal, the next three rows show the

corresponding codec outputs at bit rates of DS1, 1/2 DS1, and 1/4 DS1,

respectively.  For viewing convenience, single-frame temporal alignment

has been applied to the video in Figure 14.  Note that the second and

third images in each row of the codec o utput are correctly aligned with
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the NTSC input.  For each bit rate, the ball is identically positioned,

but this positioning is not the same as the input in the first and fourth

codec output images.  In addition, for each bit rate, the ball in the

fourth codec output image appears to have backed up while the original

continues to advance from left to right.  The reason for the strange

posi tioning of the moving ball in the codec output video will be

explai ned below.  Figure 15 shows a portion of the diagonal test data

with the ball moving from the upper left to the lower right.  The f ormat

of Figure 15 is the same as that of Figure 14.
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Figure 16 shows the h orizontal and vertical positions of the ball

as a function of field number for fast motion at the horizontal angle.

The ball positions are plotted for the original NTSC scene and for a code

rate of DS1.  Figure 17 shows the ball positions for fast motion at the

diagonal an gle of approximately 45 degrees.  In Figures 16 and 17, the

codec very accurately positioned the ball for two consecutive fields, but

then, to save on transmission, simply repeated these two fields before

accurately placing the ball again.  This omission and repetition of every

other f rame caused the backup mentioned earlier in Figures 14 and 15.

Examining Figure 14, the ball position in the first DS1 output image

corre sponds to field number 3 in Figure 16.  In the second DS1 output

image, the ball jumps a large distance to field position 4 in Figure 16.

The ball in the second and third DS1 output images was accurately p laced

(correspond ing to field numbers 4 and 5 in Figure 16).  Then, the ball

in the fourth DS1 output image (field number 6 in Figure 16) backed up

because the codec output the same field that occurred earlier in time

(field number 4 in Figure 16).  Thus, the fourth DS1 output image in

Figure 14 was identical to the second DS1 output image (since field

number 6 is identical to field number 4 in Figure 16).

In order to measure the TRMS-PE feature, the input and output motion

paths had to be aligned according to processing step 5 of section 2 .7.1.

Figure 18 shows the aligned motion paths for the diagonal case in F igure

17 that minimizes the root mean square position error.  The TRMS-PE

feature can be calculated from equation 15 of Appendix A.
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The same number of fields in the middle portion of the motion paths

was used to calculate the TRMS-PE feature for each trial within each test

case.  Each input path speed was found by taking the difference in pixels

between the endpoints of the middle portion of the motion path divided

by the total number of fields (thus, speed is measured in pixels per

field).  Ta ble 8 summarizes the TRMS-PE results for all the test cases

mentioned p reviously.  In Figure 19, the TRMS-PE is plotted verses the

speed of the ball for two particular code rates (1/4 DS1, and DS1) and

a partic ular type of motion (horizontal motion).  The TRMS-PE feature

reflects how far off the output object positions are from the input

object p ositions, on the average.  For faster speeds, the output

positions are proportionally farther off from the input positions.  Thus,

the TRMS-PE feature is also proportionally higher.  The plot in Figure

19 shows the linear variation of TRMS-PE with speed as described above.

In Figure 20, the TRMS-PE is plotted verses the code rate for a

particular speed group (fast) and a particular type of motion (diagonal).

Here, three trials are shown for each code rate.  Since each trial is

slightly slower than the previous (three consecutive swings of the ball),

there is a slight variation in TRMS-PE between the trials.  There is no

variat ion in TRMS-PE with code rate, so the codec is not changing the

location to which the output object is placed.   The codec is only

changing the amount of spatial resolution it allocates to the object (see

Figures 14 and 15).
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Table 8.  Summary Of TRMS-PE Results

Orientation Code Rate Speed TRMS-PE

horizontal 1/4 DS1 17.79 19.13
horizontal 1/4 DS1 17.26 19.01
horizontal 1/4 DS1 16.95 18.13

horizontal 1/4 DS1 9.89 10.84
horizontal 1/4 DS1 9.58 10.86
horizontal 1/4 DS1 9.47 10.51

horizontal 1/4 DS1 6.53 7.91
horizontal 1/4 DS1 6.42 7.51
horizontal 1/4 DS1 6.21 7.08

horizontal 1/2 DS1 17.79 19.09
horizontal 1/2 DS1 17.26 18.88
horizontal 1/2 DS1 16.95 18.13

horizontal DS1 17.79 19.10
horizontal DS1 17.26 18.76
horizontal DS1 16.95 18.01

horizontal DS1 9.89 10.60
horizontal DS1 9.58 10.28
horizontal DS1 9.47 10.15

horizontal DS1 6.53 7.40
horizontal DS1 6.42 7.20
horizontal DS1 6.21 6.70

diagonal 1/4 DS1 17.28 18.49
diagonal 1/4 DS1 16.99 17.93
diagonal 1/4 DS1 16.39 17.71

diagonal 1/2 DS1 17.28 18.54
diagonal 1/2 DS1 16.99 18.19
diagonal 1/2 DS1 16.39 17.52

diagonal DS1 17.28 18.47
diagonal DS1 16.99 18.31
diagonal DS1 16.39 17.88

(Pixels/Field)
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Applying the TRMS-PE measure of jerkiness to one particular codec

has illustrated several important insights into the operation of VT C/VT.

First, the TRMS-PE jerkiness measure is very stable; in fact, the small

variation in speed between consecutive swings of the ball shows up as a

small variation in TRMS-PE, as expected.  Second, the jerkiness, or

temporal update of the codec, may not v ary with code rate (as in Figure

20).  The particular codec tested here achieved bit reduction by

degr ading the spatial resolution of scenes and not the frequency of

update.  For the particular codec tested, the jerkiness was due to

omission of every other frame, regardless of operating bit rate.  This

simple result would not necessarily have been obtained for codecs that

use more sophisticated coding/decoding methods.  Other codec algorithms

for attaining less jerkiness might trade spatial resolution for more or

less temporal positioning accuracy.

2.8  Jerkiness Feature Using Difference Image

The TRMS-PE measure of jerkiness cannot easily be applied to

arbitrary v ideo scenes.  Section 2.8.1 proposes a measure of jerkiness

that can be applied to any video scene.  The genesis of this new me asure

of jerkiness occurred when observing codec input and output video that

had been aligned using the single-frame temporal alignment method

discussed earlier (as in Figure 14).  If one were to compute the

differe nce images of the input and the output video, image pairs that

contained no positioning errors (second and third images of each row in

Figure 14) would yield smaller difference errors than image pairs that

contai ned positioning errors (first and fourth images of each row in

Figure 14).  As a function of time, the total composite difference error

of a moving object would be composed of two components.  One component

represents errors due to blurring or distortion of the object.  The other

component represents errors due to inco rrect positioning of the object.

Sect ion 2.8.1 presents a method for extraction of three new

features.  One of the features will be shown to be intimately related to

jerkiness.  The other two features represent the average distortion of

the output video due to jerkiness and spatial blurring.  The exact

feature extraction technique and sample VTC/VT results are discussed in

detail next.
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2.8.1  Feature Extraction Technique

The features are extracted from the undistorted input and distorted

output sampled video.  The feature extraction technique is

computationally efficient and possesses many of the other desirable

properties of features that were previously mentioned.  The features are

extracted from the standard deviation of the difference images (input

image minus output image), where the input and output video has been time

aligned using the single-frame temporal alignment method.  The standard

deviation of the difference image is used, instead of the mean or root

mean square, because the standard deviation is insensitive to gray level

shifts in the sampled video.  The exact feature extraction method

follows:

1.  Video alignment

Single-frame temporal alignment of the input and output video

is performed.

 

2.  Difference image

For each aligned video image pair, a difference image is

formed by subtracting the output image from the input image.

3.  Standard deviation of the difference image (SD-DI)

The standard deviation of each difference image (SD-DI), from

step 2 above, is computed as the square root of (the summation

of the squares of the image pixel values divided by the total

number of pixels, minus the square of the mean of the

difference image).  Here, the mean of the difference image is

computed as the summation of the image pixel values divided by

the total number of pixels.  See equation 16 in Appendix A for

a mathematical definition of    SD-DI.

4.  Feature computation

From the time history of SD-DI, from step 3 above, the

following three features are computed:

a. The temporal mean of SD-DI (TM-SD-DI)

TM-SD-DI is computed as the summation of the SD-DI

values divided by the total number of SD-DI values.  TM-
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SD-DI is primarily related to the average distortion

caused by spatial blurring and jerkiness.  See equation

17 in Appendix A for a mathematical definition of TM-SD-

DI.

b. The temporal standard deviation of SD-DI (TSD-SD-DI)

TSD-SD-DI is computed as the square root of (the

summation of the squares of the SD-DI val ues divided by

the total number of SD-DI values, minus the square of

TM-SD-DI).  T his estimate of the standard deviation of

the population of SD-DI time samples is asymptotically

unbiased for a large number of SD-DI values.  An

alternate method of computing TSD-SD-DI that is unbiased

for a small n umber of SD-DI values may be used instead

(see, for example, Crow et al., 1960).  TSD-SD-DI is

primarily related to jerkiness.  See equation 18 in

Appendix A for a mathematical definition of TSD-SD-DI.

c.  The temporal root mean square of SD-DI (TRMS-SD-DI)

TRMS-SD-DI is computed as the square root of (the

summation of the squares of the SD-DI val ues divided by

the total number of SD-DI values).  TRMS-SD-DI is

related to the total distortion caused by spatial

blurring and jerkiness.  See equation 19 in Appendix A

for a mathematical definition of TRMS-SD-DI.

To compute the amount of distortion in the difference images with

respect to the input images, the SD-DI values could be normalized by the

standard deviation of the undistorted input video.  Alternatively,

normalized features could be obtained by dividing TM-SD-SD, TSD-SD-DI,

and TRMS-SD-DI by the temporal mean of the standard deviation of the

undistorted input video.  Thus, normali zed features closer to zero will

represent smaller distortions while normalized features closer to one

will represent larger distortions.
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2.8.2  Sample VTC/VT Results

The VTC/VT imagery of Figure 7 was processed to e xtract the TM-SD-

DI,    TSD-SD-DI, and TRMS-SD-DI features as described above.  The

difference images were obtained by subtracting the output images (rows

two, three, and four of Figure 7) from the single-frame temporally

aligned input images (row one of Figure 7).  Figure 21 shows the

resulting difference images, where rows one, two, and three of Figure 7

correspond to codec bit rates of DS1, 1/2 DS1, and 1/4 DS1, respectively.

For display purposes only, the difference images of Figure 21 have been

scaled such that gray (intensity of 128) represents no error, black

(inte nsities from 0 to 127) represents negative error, and white

(int ensities from 129 to 255) represents positive error.  Note that

images 1 and 2 (from left to right) for codec bit rates DS1 and 1/4 DS1

contain small errors, while images 3 and 4 for a codec bit rate of 1/2

DS1 contain small errors.  The particular codec under test achieved some

of its data compression by discarding every other input frame and

repeating every other decoded output frame (one frame represents two

images in Figure 7 since the images were grabbed for each field increment

of the video recorder, and there are two fields for each NTSC frame).

Since the input video was injected asyn chronously for each of the three

codec bit rates, there was no guarantee that the same frames would be

discarded for all bit rates.  In Figure 14, the same video frames were

discarded for all bit rates (by chance) while in Figure 7 the same frames

were d iscarded for the DS1 and 1/4 DS1 bit rates but different frames

were discarded for the 1/2 DS1 bit rate.  Thus, care should be taken to

process a sufficiently long time sequence of images when extracting the

TM-SD-DI, TSD-SD-DI, and TRMS-SD-DI features.  Otherwise, inaccurate

results may be obtained, particularly for codecs that discard a large

number of video frames.

The first two differe nce images for rate DS1 in Figure 21 contain

errors due to blurring.  The third and fourth difference images contain

errors due to blurring and jerkiness.  Examining Figure 7 closely, each

image in the NTSC video scene (top row) is unique and shows steady motion

of the report crossing the man's face.  Meanwhile, the third and fourth

codec output images for rate DS1 (second row) are the same as the first

and second codec output images, respectively.  One can see from Figure

7 that the codec is performing frame re petition.  Thus, on the repeated



Figure 21. Difference images for VTC/VT imagery of Figure 7. Codec bit rates 

of DSl (top row), l/2 DSl (second row), and l/4 DSl (bottom row). 

63 



64

frame (consisting of images 3 and 4 in Figure 7), large difference errors

are obtained and these errors are due to jerkiness in the codec output.

Figure 22 is a graph of the time history of the SD-DI values for the

images in Figure 21.  The SD-DI values for the first four fields in

Figure 22 were calculated from the first four difference images in Figure

21.  The ball test scenes (Figures 14 and 15) and the man test scene

(Figure 7) were obtained from the same codec.  The time history of SD-DI

very much resembles the codec output ball position errors (compare with

the output ball position error with respect to the true input ball

position in Figures 18). 

Table 9 presents the computation of the unnormalized TM-SD-DI, TSD-

SD-DI, and TRMS-SD-DI features for the eight fields of Figure 22 (for

reference, the temporal mean of the standard deviation of the undistorted

input video was 77.6).  The temporal mean of SD-DI (TM-SD-DI) and the

temporal root mean square of SD-DI (TRMS-SD-DI) represents the average

and total distortion due to blurring and jerkiness.  The temporal

standard deviation of SD-DI (TSD-SD-DI) represents the extent of the

variation of SD-DI about its mean.  More jerky motion will result in

larger values of TSD-SD-DI.  Curiously, from Table 9, TSD-SD-DI increases

slightly with increasing bit rate.  This contradicts the earlier TR MS-PE

measure of jerkiness which showed that jerkiness was the same for all bit

rates (see Figure 20).  An explanation for the phenomenon is as fol lows.

The added spatial blurring for low bit rates versus higher bit rates

tends to raise the SD-DI curve (increasing TM-SD-DI in Table 9).  In the

raised SD-DI curve, smaller increases in difference errors due to

positioning are obtained, and this resu lts in a flattening of the SD-DI

curve (decreasing TSD-SD-DI in Table 9).  Subjectively, the TSD-SD-DI

measure of jerkiness may be more accurate than the TRMS-PE measure of

jerkiness b ecause added spatial blurring tends to reduce the effect of

jerkiness.  If the object is badly blurred, one cannot tell if the motion

is jerky.  If the object is focused, one readily notices jerky motion.
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Table 9.  Summary Of SD-DI Features For Figure 22

Scene TM-SD-DI TSD-SD-DI TRMS-SD-DI

DS1 18.1 5.9 19.1

1/2 DS1 18.4 5.7 19.3

1/4 DS1 22.0 4.6 22.5

3.  CONCLUSIONS AND RECOMMENDATIONS

Objective feature extraction techniques have been presented that

measure the predominant artifacts present in digitally transmitted video

systems.  Among these artifacts are blurring/smearing, blocking, edge

busyness, image persistence, and jerkiness.  Features are extracted from

the digitized video imagery that reflect degradations perceived by the

viewer.  The features are sensitive to the type of video being

transmitted which is important since the performance of digital codecs

depend strongly on the type of video being transmitted.  In addition, the

features possess many of the desirable properties that humans also

possess, including the potential adaptability to focus attention on local

disturbances in the video.  Thus, the features are expected to corr elate

strongly with subjective quality ratings.

Depending upon the feature one wishes to extract, the method for

temporally aligning the input and disto rted output video frames varies.

Spatial blurring and jerkiness measures have been presented that do not

require the input and output video scenes to be aligned.  Other measures,

such as edge busyness, blocking, image persistence, and jerkiness for

natural motion scenes, require some form of temporal alignment.  Two

possible methods of temporally aligning the input and output video were

presented.  The computational requirements of the proposed features

varied.  However, these computational requirements appear reasonable for

modern digital signal processing systems.

Spat ial blurring features were presented that relate to the

sharpness of the edges in the video imagery.  These spatial blurring

features appear to be applicable to many types of video imagery,

including natural scenes.  Blocking, edge busyness, and image persistence

were shown to be forms of false edge energy appearing in the output
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video.  Since the importance of edges are well recognized in the areas

of human vision and object recognition, it is expected that these spatial

blurring, b locking, edge busyness, and image persistence features will

correlate especially well with subjective quality ratings.

Two measurement techniques for the jerkiness arti fact of digitally

transmit ted video systems have been proposed.  The temporal root mean

square position error (TRMS-PE) feature compares the horizontal and

vertical positions of a moving object in the output video scene to those

in the input video scene.  Although a ball was used for the moving object

in the presented example, the technique is general enough to substitute

any o bject.  The TRMS-PE feature has been shown to be an accurate and

repeatable measurement that determines the temporal positioning acc uracy

of a codec.  Additional features were presented that measured the

jerkiness of arbitrary video scenes.  These included the missing frame

ratio (MFR) feature and the TSD-SD-DI feature computed from the sta ndard

deviat ion of the error difference images.  Video data compression is

often a tradeoff between allocating bits between temporal positioning

accuracy and spatial resolution.  The ability to measure separately these

two attributes raises the possibility of tailoring performance

specifications to the application.  

Further work needs to be done to determine the optimal method for

combining all of the extracted feature values to produce an overall

quality rating (the quality classification subsystem shown in Figure 1).

Properly combining the many feature measurements into an overall qu ality

assessment rating may require an understanding of the temporal and

spatial properties of the eye and brain.  To be universally useful, the

quality classification subsystem must p erform well over a wide range of

applications.  To obtain this goal, the quality classification system may

require user specific application information.   Subjective test re sults

on imagery that spans the full range of digitally transmitted video

systems should be used to select an optimal set of features, to train the

quality classification subsystem, and to evaluate the performance of the

completed system.
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7.  APPENDIX A:  EQUATIONS

This appendix describes all of the equations that were used to compute

the feature values in this report.

Equation (1): Single-frame Temporal Alignment

Let i(v,h,t ) be the digitized input video sequence where v is thei

vertical sampling index, h is the horizontal sampling index, and t  is the i

input frame sampling index.  Here v = {1, 2, ..., N }, and h = {1, 2, ..., v

N }, where N  is the total number of vertical pixels, and N  is the totalh   v         h

number of horizontal pixels.  Similarly, let the digitized output video

sequence be represented by o(v,h,t ), where t  is the output frameo   o

sampling index.  Assume that the input video sequence and the output

video sequence are sampled at the same frame rate.  Then, given an output

reference frame t  = r, the single-frame temporal alignment problem is too

find the closest corresponding input frame t  = m.  The single-framei

temporal alignment proposed here assumes that a priori knowledge is

available which gives the range of the closest corresponding input frame

index (say, from t  = t  to t , where t  and t  are the lower and upperi   l   u   l   u

limits, respectively) and that the input video sequence contained m oving

and/or changing scenes.  Then the closest matching input frame t  = m can i

be found as the t  that minimizes the standard deviation of the errori

(accumulated over all pixels in the error image) or 

where t  falls within the range from t  to t , inclusive.  Pairing of thei       l   u

input and output video frame indices is performed as ..., (t  = m-1, t i    o

= r-1), (t  = m, t  = r), (t  = m+1, t  = r+1), ...i    o   i    o

Equation (2): Missing Frame Ratio (MFR)

To apply multi-frame temporal alignment to the output video frame

sequence o(v,h,t ), where t  = {1, 2, ..., N }, and N  is the total numbero   o     o   o
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of output video frames, the method of finding the closest matching input

video f rame (equation 1, Appendix A) is applied to every output video

frame t  = {1, 2, ..., N }.  The computation of the closest input videoo     o

frame to output video frame t  = 1, may be used to refine the estimateso

of the lower (t ) and upper (t ) input frame limits for output video framel    u

t  = 2.  While performing multi-frame alignment, the c losest input videoo

frame index to each one of the output video frames is stored.  Let the

number of unique  input frame indices within the set of stored indices be

N .  N  will be less than N  if input video frames have been omitted inu   u     o

the output.  Then, the missing frame ratio (MFR) is calculated as

Equation (3): Mean of the Sobel Image (M-SI)

If the Sobel edge ext racted image is given by s(v,h), where v and

h repres ent the vertical and horizontal sampling indices of the video

image, then the mean of s(v,h) over a given sub-regional area is given

by

where the summation is performed over the sub-regional area and N  is the A

total number of pixels within the sub-regional area.

Equation (4): Standard Deviation of the SI (SD-SI)

Following the notation established for equation (3) in Appendix A,

the standard deviation of the sub-regional Sobel image is
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Equation (5): Root Mean Square of the SI (RMS-SI)

Following the notation established for equation (3) in Appendix A,

the root mean square of the sub-regional Sobel image is

Equation (6): Number of Pixels Greater than Threshold of SI (NPGT-SI)

Following the notation established in equation (3) in Appendix A and

letting T be the chosen threshold, the number of pixels greater than T

within the sub-regional Sobel image is

Equation (7): Mean of the Positive Sobel Difference Image (M-PSDI)

If the Sobel difference image (Sobel filtered input image minus the

Sobel filtered output image) is given by s (v,h), where v and h representd

the vertical and horizontal sampling in dices, then the mean of the sub-

regional, positive part of the sobel difference image is



0	36', 

�

1
$

M
Y
M
K

V
G
�Y�K� � V

G
�Y�K�!�

6'	36', 

�

1
$

M
Y
M
K

V
�

G �Y�K� 	 �0	36',�� � V
G
�Y�K�!�

506	36', 

�

1
$

M
Y
M
K

V
�

G �Y�K� � V
G
�Y�K�!�

75

where N  is the total number of points within the sub-regional area.A

Equation (8): Standard Deviation of the PSDI (SD-PSDI)

Following the notation of equation (7) in Appendix A, the standard

deviation of the sub-regional, positive part of the Sobel difference

image is

Equation (9): Root Mean Square of the PSDI (RMS-PSDI)

Following the notation of equation (7) in Appendix A, the root mean

square of the sub-regional, positive part of the Sobel difference image

is

Equation (10): Number of Pixels Greater than Threshold of PSDI (NPGT-

PSDI)

Following the notation of equation (7) in Appendix A, and letting

T  be the chosen threshold, the number of pixels greater than T  withinp           p

the sub-regional, positive part of the Sobel difference image is
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Equation (11): Mean of the Negative Sobel Difference Image (M-NSDI)

If the Sobel difference image (Sobel filtered input image minus the

Sobel filtered output image) is given by s (v,h), where v and h representd

the vertical and horizontal sampling in dices, then the mean of the sub-

regional, negative part of the sobel difference image is

where N  is the total number of points within the sub-regional area.A

Equation (12): Standard Deviation of the NSDI (SD-NSDI)

Following the notation of equation (11) in Appendix A, the standard

deviation of the sub-regional, negative part of the Sobel difference

image is

Equation (13): Root Mean Square of the NSDI (RMS-NSDI)

Following the notation of equation (11) in Appendix A, the root mean

square of the sub-regional, negative part of the Sobel difference image

is
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Equation (14): Number of Pixels Less than Threshold of NSDI (NPLT-NSDI)

Following the notation of equation (11) in Appendix A, and letting

T  be the chosen threshold, the number of pixels less than T  within then           n

sub-regional, negative part of the Sobel difference image is

Equation (15): Temporal Root Mean Square Position Error (TRMS-PE)

Let the input, or ref erence, vertical and horizontal positions of

the moving object be represented by v (t ) and h (t ), where t  representsi i   i i   i

the frame sampling index such that t  = {1, 2, 3, ..., N }, and N  is thei       i   i

total number of time samples for the in put object path.  Similarly, let

the ou tput vertical and horizontal positions of the moving object be

represented by v (t ) and h (t ), where t  = {1, 2, 3, ..., N }, and N  iso o   o o   o      o   o

the total n umber of time samples for the output object path.  In order

to measure TRMS-PE, the input and output motion paths have to be al igned

to compensate for the absolute video delay of the device under test.  The

alignment procedure described here corresponds to what a viewer would

obse rve if that viewer was insensitive to the absolute video delay.

Assume that the output motion path corresponds to some portion of the

input path, and is thus contained completely within the input motion path

(i.e., N  < N ).  Then, the TRMS-PE feature is computed as the minimumo  i

root mean s quare position error of the output motion path with respect

to the input motion path, where the minimization is performed over all

possible time s hifts s = {0, 1, 2, ..., N -N } of the two motion paths.i o

In equation form, the computation may be written as
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As in equa tion (1) in Appendix A, a priori knowledge of the absolute

video delay may be used to narrow the range of time shifts.

Equation (16): Standard Deviation of Difference Image (SD-DI)

Assume that the input and output video sequences have been aligned

using single frame temporal alignment g iven in equation (1) in Appendix

A, and thus each output video frame has been paired with some input video

frame.  Let each pair of video frames be represented by the index p = {1,

2, 3, ..., N ), where N  is the total num ber of input/output pairs.  Letp   p

the diff erence image (input image minus output image) of each

inpu t/output pair be represented by d (v,h), where v and h are thep

vertical and horizontal sampling indices.  Then, the standard deviation

of the difference image over a sub-regional area is given by

where N  is the total number of points within the sub-regional area.A

Equation (17): Temporal Mean of SD-DI (TM-SD-DI)

Following the notation of equation (16) in Appendix A, the temporal

mean of the time history of SD-DI is given as
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Equation (18): Temporal Standard Deviation of SD-DI (TSD-SD-DI)

Following the notation of equation (16) and (17) in Appendix A, the

temporal standard deviation of the time history of SD-DI is given as

Equation (19): Temporal Root Mean Square of SD-DI (TRMS-SD-DI)

Following the notation of equation (16) in Appendix A, the temporal

root mean square of the time history of SD-DI is given as
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8.  APPENDIX B:  FILTERS

This appendix describes the median filter that was used to

precondi tion the digitized video images and the Sobel filter that was

used to extract edges from the preconditioned images.

Median Filter

A median filter will remove noise spikes from the image without

significantly blurring the edges.  Very fine detail, such as sharp

corners, will be removed by the median filter.  For this report, a 3 x

3 median filter was used.  Figure B-1 shows 9 image pixel values (X , X , 1  2

..., X ) within the 3 x 3 filter window.  In Figure B-1, the 3 x 3 filter9

window is centered on the image pixel value X . 5

X X X1 2 3

X X X4 5 6

X X X7 8 9

Figure B-1.  Filter window centered on image pixel value X . 5

The median filter outputs the image pixel value that is the median of the

9 image pixel values (X , X , ..., X ).  That is, the 9 pixel values are1  2   9

first sorted from low to high, and then the middle value is selected as

the median.  The median filtered image is obtained by sliding the 3 x 3

window over the entire input image.  At each pixel for which the mask is

centered in the input image, the median value is placed in the output

image.  Note that as an edge is crossed, one side or the other domi nates

the window and the output switches sharply.

Sobel Filter

The Sobel filter is an edge extraction filter that is implemented

using two f ilters.  One filter is designed to extract horizontal edges

from the image and the other filter is designed to extract vertical

edges.  The outputs from the two filter ing operations are then combined

to give a c omposite edge extracted image.  Figure B-2 gives the filter
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mask that extracts the horizontal edges.  Figure B-3 gives the filter

mask that extracts the vertical edges.

-1 -2 -1

0 0 0

1 2 1

Figure B-2.  Horizontal edge extraction filter mask.

-1 0 1

-2 0 2

-1 0 1

Figure B-3.  Vertical edge extraction filter mask.

If both of the masks shown in Figures B-2 and B-3 are centered on pixel

value X , as in Figure B-1, then the output response at pixel location X5             5

from the horizontal edge extraction filter is

G  = -1*X  - 2*X  - 1*X  + 1*X  + 2*X  + 1*Xh  1  2  3  7  8  9

and the o utput response at pixel location X  from the vertical edge5

extraction filter is

G  = -1*X  + 1*X  - 2*X  + 2*X  - 1*X  + 1*Xv  1  3  4  6  7  9

Note that horizontal edges result in an output response G  and verticalh

edges result in an output r esponse G .  Diagonal edges result in outputv

responses G  and G .  The com posite output response at pixel location Xh  v          5

from both filters is computed as

G = [G  + G ]h   v
2  2 1/2
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The output image pixel values are obtained by computing the filter

response G at each corresponding pixel in the input image, where both

filter masks (Figure B-2 and B-3) are centered on the input image p ixel.


