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MEAN SYNCHRONIZATION TIMES FOR ATM
CELLS: DERIVATIONS AND COMPUTATIONAL

BACKGROUND

Martin Nesenbergs and Darren L. Smith*

ABSTRACT

The mean synchronization (sync) duration time and the mean
sync acquisition times are derived and computed for the Asynchronous
Transfer Mode of the proposed Broadband ISDN. These waiting times
are expressed as functions of channel quality, i.e., the bit error
probability and related event probabilities, and as a function of
two system sync thresholds.

Key words: acquisition time; asynchronous transfer mode (ATM); broadband ISDN;
cell; header error control (HEC); in-sync duration time; synchronization

1. INTRODUCTION
The CCITT adopted recommendation, 1.121, and proposed recommendation,

1.432, specify a new method for broadband ISDN (B-ISDN) cell synchronization
(sync) or delineation in the Asynchronous Transfer Mode (ATM) (CCITT, 1988 and
1990; TIS1, 1989). Cell identification is accomplished by means of an 8-bit
header error control (HEC) field in a 40-bit header of the cell. The cell itself
consists of 424 bits, or 53 bytes, including the header. The sync process, by
design, occupies one of three mutually exclusive system states: HUNT, PRESYNC,
and SYNC. Given specified HEC events, the process either stays in its existing
state or it transits to another state. Figure 1 presents the state-transition
diagram for the process.

In the HUNT state, the sync process performs a bit-by-bit search for the
event HEC = 0 (i.e., for the condition where the parity check syndrome is zero).
Once the HEC = 0 condition is observed, the system enters the PRESYNC state. In
the PRESYNC state, header parity checks are carried out only once per cell, or
after every 424 bits. This is continued until either a violation (HEC 'f: 0)

occurs, or &consecutive correct HEC/s are realized. In the first case, the
search abandons the PRESYNC state and returns to the HUNT state. In the second
case, the system enters the SYNC state. Parameter &is thus an important sync
acquisition threshold. It affects the average waiting time for sync acquisition.

* The authors are with the Institute for Telecommunication Sciences,
National Telecommunications and Information Administration, U.S. Department of
Commerce, Boulder, CO 80303-3328.
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Figure 1- State diagram for ATM cell synchronization.
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Once the system is in the SYNC state, cell synchronization is assumed for
operational purposes. However, the HEC = 0 versus HEC +0 condition is monitored
to identify sync violations. As in the PRESYNC state, the system still performs
cell-by-cell HEC parity checks. The system stays in the SYNC state, unless a

consecutive incorrect (i.e., HEC + 0) cells occur. If so, then sync is assumed
to be lost and the system returns to the HUNT state. In the HUNT state, the
previously described bit-by-bit search is started allover again. Parameter a
is another important synchronization threshold. It affects the statistics of the
in-sync duration time.

This study presents equations and curves for the mean in-sync duration time
Td(a) and the mean sync acquisition (or waiting) time T8 (6). These two quan­
tities, as already indicated, are functions of threshold parameters a and 6,
respectively. They also depend on channel bit error probability, Pe. Since
values a = 7 and 6 = 6 have been proposed, the numerical work here considers
ranges a = 5, 7, 9 and 6 = 4, 6, 8. For Pe,a realistic computation range from
10-6 to 10-2 is assumed. Li kewi se, it is assumed that the occurrences of HEC
errors are independent random events.

The analytical methods employed here will be largely associated with the,
so called, probability generating functions (gf). Section 2 introduces the gf's
and their key properties.

Section 3 derives expressions for the mean in-sync duration time Td(a).
Numerical evaluation leads to different duration for different (e.g., HEC = 0 or
HEC + 0) starting conditions in the SYNC state.

Sect ion 4 gi ves approxi mat ions and plots of the mean sync acqu is it ion
waiting time, T8 (6), as a function of Pe. In recent submissions to CCITT these
characteristics have been indicated to represent close upper bounds to the true
T

8
(6).

Section 5 solves the exact problem for T8 (6). While retaining the same
general features, these curves are slightly more favorable than the approximate
curves of section 4.

Finally, section 6 gives a brief introduction to variances for both in-sync
duration and sync acquisition times.
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2. GENERATING FUNCTIONS

If p(n) is the probability that a random event occurs at time n, where
n = 0, 1, 2, ... , then the probability generating function, or gf, for this
event is defined (Feller, 1968) as

G(s) =:E p(n) sn.
n-o

(1)

If there are a number of mutually exclusive classifications of these random
events, then separate gf's may be assigned to the individual classes of events.
For example, if i = 0, 1, 2, •.. identifies different classes of events, then
Gi(s) can represent the gf for the i-th class.

When dealing with event-generating systems, it seems natural to use the
term "state." Thus, when an event of class i occurs, the system is said to be
in state i. In this report, state-transition diagrams will be used to represent
the states and to defi ne trans it ions between the states. For systems of
interest, the number of states will be finite, but not necessarily a known fixed
number.

Recent texts, such as Gupta (1966), Cadzow (1973), and K1einrock (1975),
refer to the gf as the z-transform and apply it to analysis of finite-state
machines or systems.

There are at least three types of system states that occur in analysis of
synchronization systems: the recurrent states, the nonrecurrent states, and the
i rre1evant states. The recurrent states are those that occur any number of
times. Thus, state i is recurrent if events of class i can be generated either
0, or 1, or 2, or any number of times by the system. Nonrecurrent states can
happen no more than once. Finally, irrelevant states are those with no direct
bearing on a given problem. Among them one finds dead-end states, escape (or
exit) states, and states that can never be reached.

Recurrent states occur frequently in the work to fo 11 ow. However, the
sought synchronization times are more closely associated with nonrecurrent
states. For nonrecurrent states, any arrival is the first and only arrival.
Therefore, given a nonrecurrent state with gf G(s), the expected or mean waiting
time, T, for the first arrival event is given by the derivative of G(s) evaluated
at s = 1:

4



T =L n p(n) =G'(l).
n='

(2)

As an illustration of gf construction and application to a waiting time
problem, Figure 2 presents an example of a state-transition diagram. This
di agram has four states, i = 0, 1, 2, and 3. Of these, states 0 and 1 are
recurrent, state 2 is nonrecurrent, and state 3 provides escape (it is
irrelevant). The one-way arrows between states indicate state-to-state
transitions that are allowed to occur at discrete times. The descriptor
associated with every transition, such as PiSd, is a linear attribute. It is
additive for parallel transition paths and multiplicative for serial paths
through the system (Zadeh and Desoer, 1963). The typical attribute, PiSd,
denotes that the transition occurs with probability Pi and that its duration
(delay) is d. Note that descriptor 1, indicated on the state 2 ... to - state 3

transition in the diagram, represents Pi = 1 and d = O. This transition is
certain and immediate.

Finally, Figure 2 shows two initial state probabilities ao and a,. That
means that at time n = 0, the system starts in state 0 or 1, with probability ao
and a" respectively. No other initial states are permitted in this example, so

ao + a, = 1. (3)

Let us continue the illustration by deriving the mean waiting time
expression for the system to arrive in state 2. According to equation (2), this
waiting time is given by G'2(1), where G2(s) is the gf of state 2.

Figure 2 shows that G2(s) depends on Go(s) and G,(s), but not on G3 (s).
Specifically, at state 0, the event probability po(n) at time n must satisfy

po(n) =ao
=Po Po(O)
=Po po(n -1)

if n=O,
= 1,

+P2p,(n-2) ~2,

5

(4 )
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where P1(n) is the corresponding occupancy probability for state 1 at time n.
One concludes that the gf for state 0 must equal

CIll

Go(s) =L po(n) s n
n=()

CIll

= ao + poPo(O)s + L [popo(n-l) + P2 P1(n-2)] sn
n=Z (5)

CIll CIll

=ao + Po s Po (0) + Pos L Po (n) s n + P2 S2 L P1 (n) s n
n=1 n=()

= aO + Po s Go (s) + P2 S2G1(S) .

Inspection of Figure 2, state 0, confirms that the gf for state 0 is equal
to the sum of the initial condition plus all "transition inputs." The transition
inputs come from all indicated states (including 0 itself), and they are
multiplied by their linear transition attributes, such as Pos and P2S2.

Similar derivations apply to states 1 and 2. One obtains

G1(s) = a1 + (I-po)s Go(s) + P1 s2G1(S),
G2(s) = (l - P1 - P2)S 2G1(S).

(6)

Note that in equations (5) and (6) one has three linear equations for three
unknowns: Go(s), G,(s), and G2(s). The gf for state 3 is not involved here and
therefore can be ignored. Yet, the presence of state 3 is significant in that
it assures us that state 2 cannot occur more than once.

A standard way to solve for G2(s) is to express (5) and (6) in a matrix
form and then to invert the matrix. In the present example, let

and

[

Go(S)]
G = G1(s) ,

G2(s)

7
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I-pos

M= -{I-po)s

o

o . (9)

Then (5) and (6) are equivalent to

M• G =A,

and

G=M-'.A.

(IO)

(11)

It is illustrative to work out this example in detail. First, by any of

several standard techniques, the determinant IMI is seen to be

(I2)

Note that for s=I, thi s determinant equal s (1 -Po) (I -P, -pz). Thi s means that
there is no finite mean waiting time solution for state 2 whenever the
determi nant vani shes, i. e., when either Po = 1 or P, + Pz = 1. These are the
necessary and sufficient conditions for the system to be stuck in the recurrent
states, and never being able to reach the nonrecurrent state 2.

More generally, solutions will always exist, as long as the determinant
IMI does not vanish at s = 1. Violations of this rule and subsequent infinite

waiting times typically occur in transition diagrams with periodic, separated,
or dead-end states. The cases to be considered here will avoid such pitfalls by
verifying that IMI + 0 holds at s = 1, and that the adverselMI = 0 would occur
only under justifiable circumstances.

8



The matrix inverse is given by

I-p,s 2 P2S2 0

M-, 1 (I-po}s I-pos 0--
IMI

(I-po) (I-p,-p2) S3 (I-P,-P2) (I-POS) s 2 IMI

as can be verified by multiplication with Min (9).
The gf for state 2 follows from (8), (II), (I2), and (I3),

(I3)

(I-p,-p2) [aD (I-Po}S3 + a, (I-Pos}s2]

I-pos -P, s2_( P2-PO p,-Po P2) S3
(I4)

and the mean waiting time for first arrival at state 2 is therefore

(IS)

The following sections derive expressions for mean in-sync duration times
and acquisition times for ATM cells. The method is identical to that illustrated
here. One begins with the state-transition di agram. The di agram generates
linear equations for the unknown gf's. Matrix inversion produces the desired
first-arrival gf. Finally, the derivative of the generating function evaluated
at s = 1 is the sought mean wait i ng time. The approach for wait i ng time
vari ances differs sl ightly from the above. It requi res second deri vat ives
evaluated at s = 1.

9



s =
a =
p =
q =

T =
aj =

3. MEAN IN-SYNC DURATION TIME

ao + a, + az + • • • + aa _, =1. (16)

The matrix equations require (a + I)-dimensional vectors

Go(s)
G,(s)

(17)G = Gz(s)

Ga(s)

and

ao
a,

A = az (18)

aa-'
0
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End of
run of

length a,
T>O
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Figure 3. State-transition diagram for sync loss.
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and an (a + 1) x (a + 1) matrix

l-qs -qs -qs -qs 0

-ps 1 0 0 0

0 -ps 1 0 0
M = (19)

0 0 0 1 0

0 0 0 -ps 1

It follows from addition of row (column) multiples to other rows (columns)

that the determi nant IMlis gi ven by

I-s+qp asa+1
IMI =---­

I-ps
(20)

For s =1, this determinant equals pa. Thus, the inverse matrix always exists

for finite a and p + o.

12



M-'I = 1
(l-ps) IMI

l-s+qs

(I -ps)ps

(1-ps)p2s 2

(l-pa-'lsa-'l)qs

1-s+qps 2

(1-s+qps 2)ps

(I _pa-isa-i)qs

(1-pa-isa-i)qps2

1-s+qp 2s 3

(I-ps)qs

(I -pS) qpS 2

(1-ps) qp 2s 3

o
o

o (21)

w

(l-ps) pa-'l Sa-'l (l-s +qps 2) pa-2Sa-2 (1- S+qp 2S3) pa-3Sa-3

(I_pS)paSa (1-s+qps 2)pa-1 Sa-'l (I-S+qp 2S3)pa-ZSa-i

l-s+qpa~sa 0

... (1-s+qpa-1 Sa)pS 1-s+qp aSa+1



Entity Ga(s) depends on the last row of M-1. From equations (11), (18),
(20), and (21J follows

a-1

L aj(l-s+qpj sj+1) (ps)a-j

= j~
(22)

One identifies the expected value of the random count T for state a with the mean
in-sync duration time. It follows from (2) and (22) that the in-sync duration
time, denoted by Td(a) , is given in cell units as

(23)

(24)

Two particular cases of this duration time seem of immediate interest. The
first case arises when the system starts in state 0 (i.e., when the most recent
cell header satisfies HEC = 0). The second case is conditioned only on the
premi se that the system is in one of the states ao' a" ... , aa-1.

In the first case, ao = 1 and aj = 0 for all j :;. o. Then

l'"'"pa
Td1 (a) =--.

qpa

In the second state, while the system is in SYNC the previous headers could have
generated none, one, or more HEC :;. o. The initial probability for state j is
then estimated from the approximation aj!aj_1 • p, which must be valid in Figure
3 for all j = 1, 2, ... , a-I. Then

qpj
a· =--,

J 1 a-p
j = 0, 1, . . . ,a-1 . (25)

Substitution into (23) yields the in-sync duration time Td2 (a) for the second
case,

1 [ a
qpa

]Td2 (a) = - 1 - -- •
qpa l;:>a

14
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(27)

Both duration times, Td1 (a) and Td2 (a) , depend on channel bit error-

probability, Pe' For a 40-bit header, transmitted over a binary symmetric

channel,

q = (1 - Pe)40,

p = 1 - (l - Pe)40.

The work of CCITT Study Group XVIII has suggested a value a = 7 for the thresh­

old parameter. To illustrate the effect of different a values, we have computed

(24) and (26) for a = 5, 7, and 9. Figure 4 shows Td1 (a) as a function of Pe
for these three a values. Note that Td1 (a) increases monotonically as Pe

decreases. For very small Pe' the asymptote Td1 (a) -(40Per-a is valid. Thus,
for all a > 0 Td1 (a) tends to infinity as Pe tends to zero. On the other hand,
Td1 (a) ~ a applies over the entire range of O.~ Pe ~ 1.

Figure 5 shows the very similar behavior of Td2 (a). Note that Td2 (a) is
always less than Td1 (a) , while Td2 (a) ~ ~ (a+l) is of particular interest for

1arge Pe'

15



In-Sync Time
Td1 (0-)

in cell units

For ISO Mb/s
1040T '--- ~

....
..........

'.
••••• 0: - 7....
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Bit error probability (pc)
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1 year
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1 second

Figure 4. In-sync time vs bit error rate, given that the system starts with an
error free cell.
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In-Sync
Time

Td2 (cr)

in cell
units

10
40
----------------------------.

104-----_r--------r------....-------~
10-6 10-5 10-4 10-3

Bit error probability (Pe)

For 150 Mb/s

1020 years

10 10 years

1 year

1 day
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1 second

Figure 5. In-sync time vs bit error rate, given that the system starts anywhere
in the SYNC state.
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4. MEAN SYNC ACQUISITION TIME: AN APPROXIMATION

The sync acquisition process starts in the HUNT state, where a bit-by-bit
search for HEC=O takes place. Since there are 424 bits in the ATM cell, there
are 423 misaligned or incorrect bit positions that may require attention. Once
a HEC = 0 position has been located, the search enters the PRESYNC state. Now
the header inspection is reduced in frequency. As described in the Introduction,
423 bits are skipped over and only the 424-th bit is inspected on a cell-by-cell
basis. If HEC = 0 is observed in &~ 1 consecutive cells, the system exits
PRESYNC and enters the SYNC state. If H; 0 occurs before SYNC is attained, the
system returns to the HUNT state. Here, one seeks the mean wa it i ng or
synchronization time, Ta (&), required for the first time to reach the SYNC from
the HUNT state. Suggested values for threshold &are centered around 6 = 6.

Consider the approximate model defined in Figure 6. This is a (6 + 4)­
state model. It assumes that the HUNT starting time, being random over the 424
bits in a cell, can effectively be approximated as being the cell midpoint. The
model also assumes that the events associated with the less frequent false alarms
(fa) take place, more or less, in the center of a cell.

In the approximate model of Figure 6:

s = unit delay operator,
z = half-unit delay operator (Z2=S),
& = sync acquisition threshold,
p = probability of incorrect header (HEC ; 0),
q = probability of correct header (HEC = 0), which satisfies

p + q = 1,
u = probability of no fa in a half-cell (212 bits),
v = probability of HEC ; 0 in a given single bit of a random word,
y = probability of no fa in 423 bits,
Gs(s) • gf of the start state (s),
F(s) • gf of the false alarm state ifa),
Go(s) = gf of the pre-lineup state (0),
Gx(s) = gf of the post-lineup state (x),
Gn(s) = gf of the n-th presync state (n = 1, 2, ... 6 - 1),
Go(s) = gf of the sync state,
as = 1, the initial probability for the start state (s).

18



Start Pre-Lineup
(lSP*: as =1) I

I
I
I
I

0-1 Presyncs

_------'1'-----_____( 1

Sync
I
I
I
I
I

VZ (1-u)z ys p p p p

* ISP • Initial state probability

M---"'-----"""""'--- •••--

I
I
I

Post-Lineup

I
I
I

False
Alarm

Figure 6. Approximate state-transition diagram for sync acquisition.
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Starting from state s, the process reaches the pre-lineup state 0 with
probability u and a half-cell delay. At 0, a nearly instantaneous header test
takes place. If HEC = 0, which is an event with probability q, then the system
enters PRESYNC state 1. From there it may sequentially proceed to states 2, 3,
... , and eventually to the SYNC state 6.

If instead, at pre-lineup HEC + 0 materializes, the system goes to the
post-lineup state x. At this time the cell synchronization counters are still
in alignment, but the system does not know it. From post-lineup x the system may
go back to pre-lineup 0 if there are no fa's in the next 423 bits of the cell
(this happens with probability y and one cell delay). Or, if false alarms do
occur, the system must pass through the fa state. There are several ways in
which state 0 can be reached from x and via fa, for example:

x-fa-s-O with probability (l-y)vu and delay 2,
x-fa-fa-s-O with probability (l-y)v(l-v)u and delay 3,

x-fa-s-fa-s-O with probability (l-y)v2(I-u)u and delay 3.

In all of these paths, the system traverses cell centers, effectively represented
by state s. And, of course, the system, while starting at s, need not go to 0
directly. It may experience one or more false alarms first. An example may be:

s-fa-s-O with probability (l-u)vu and delay 3/2.

With the aid of the previously introduced matrix method one next derives
Gs(s). Let

~(s)

F(s)
Go(s)

(28)G = ~(s)

G,(s)

Gs(s)

be a (6 + 4) - dimensional vector of unknown gf's. Let A be another (6 + 4) ­
dimensional vector,

20



1
o

A = 0 •

o

(29)

The (& + 4) x (& + 4) - dimensional transition matrix M is now more elaborate
than it was in earlier (9) or (19). From Figure 6 one gets,

1 -vz 0 0 0 0 0

,.-(l-u)z 1-( I-v) s 0 -(l-y)s 0 0 0

-uz 0 1 -ys 0 0 0

0 0 -p 1 -p -p 0

M = 0 0 -q 0 1 0 0 .
0 0 0 0 -qs 0 0 (30)

0 0 0 0 0 1 0

0 0 0 0 0 -qs 1

The complete inverse M- 1 can be derived, but it does turn out quite complicate~.

Fortunately, most of the matrix inverse is really not needed. Since Avanishes
in all but the first position, only the first column of M"1 is needed to
determine vector G. The derivation of this column is still relatively long, but
its validity can be checked (as we have done) by substitution into defining
equat ions (10), (28), (29), (30), and M-1 • M= 1.

To simplify, introduce

1-(qs),H
D(s) =1 + q -~~

l-qs

and claim that the determinant of Mis

IMI = I - (l-uv)s - ps[y-(y-uv)s]D(s).

21
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It follows that at s = 1 the determinant is uvqs, which is non-zero for non­
vanishing u, v, q, and finite o.

With the aid of D(s) and IMI, the left-hand column of M-1 can be expressed
as

[1-(l-v)s] [1-pysD(s)] • · ·
(l-u)z + p(u-y) zs D(s) • · ·

uz[I-(I-v)s] · · ·
puz[I-(I-v)s]D(s) · • •

M-1 1 quz[I-(I-v)s]-- · · · (33)IMI q2uzs [I-(I-v)s] • · ·
q S -1 UZS S-2 [1- (I-v) s] · · ·
qSuzs s-1[1-(l-v)s]

• · ·

It follows immediately that the gf for the mean sync acquisition time is

GS(s) = _1_ uqs SS-'h [1-(I-v)s]. (34)
IMI

The derivative with respect to s is a straightforward matter. With the aid of
(2) one gets the approximate mean sync acquisition time,

1 S-1
l-y+uv (1 +q2 -q ) - (u+ouv-y)qS

T
a

( 0) • 0 _ % + I_-_q _
uvqs

(35)

Since the probability of a false alarm in a single bit is relatively small,
the quantity v is close to unity. For practical purposes it appears justified
to set v = 1 and (u - y)(1 - qS) = 0 in (35). If so, then a simpler form,

(36 )

materializes.

22



(38)

We have used both forms (35) and (36) to compute and to plot T8 (6) as a
function of Pe' The difference between the two approximations appears
insignificant, especially in a graphical presentation.

In the ATM cell case, the dependence on Pe and on the frame format is given
through:

q = (1 _ Pe)40,

p = 1 - (l _ Pe)40,

u • (l _ 2-8)212, (37)

v • 1 _ 2-8,

Y • (1 _ 2-8) 423 •

Curves based on these numbers are shown in Figure 7. Each curve represents the
indicated value for threshold parameter 6. Of the three values shown, the middle
value 6 = 6 has been proposed and conditionally accepted as a starting point for
future B-ISDN planning by Study Group XVIII of CCITT (CCITT, 1990).

The left ordinate in Figure 7 is in cell units, each cell assumed to be 424
bits. On the ri ght side, the ord inate shows the wa it i ng times in p.s for a
transmission rate of 150 MB/s. If, on different links, the actual rate turns out
different, then these times must be appropriately scaled. For instance, a B-ISDN
rate of 600 Mb/s warrants all times to be divided by 4, while a 50 Mb/s channel
requires 3 times larger waiting times.

The ideal error-free channel has Pe = O. But, note that in the limit
Pe = 0 the sync acquisition time does not vanish. Instead, as seen from
equations (35), (36), and Figure 7, the asymptotic limit is

T
8
(6) _ 6 _ % + 1 - u

Pe~O uv

For the numbers given in (37), the error-free channel implies a waiting time of
6 + .80 cell units.

Finally, observe that Pe > 10-3 places the acquisition process in a non­
linear region, where the waiting time starts to grow at an accelerated rate.
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5. MEAN SYNC ACQUISITION TIME: THE BASIC APPROACH

In this section, a detailed and therefore more complex approach is taken
to the derivation of the mean acquisition time. Basically, every bit position
in an ATM cell is now allowed to be the starting point for the search process.
That beginning point is somewhere in the HUNT state, where bit-by-bit scrutiny
takes place. Once out of the HUNT state (see Figure 1), only cell-to-cell search
is performed in the PRESYNC state.

Consider the bit/cell format of Figure 8. If the acquisition process
starts with probability ak at some bit k (k = 1, 2, ... , m) within a cell,
then subject to HEC ; 0, the process suffers a bit-to-bit delay z. Since there
are mbits in a cell (we shall set m= 424 subsequently), the cell-to-cell delay
s must satisfy

s = zm. - (39)

The initial probability distribution {am} is quite general. It is only
constrained by

a, + az + ••• + a. = 1. (40)

For numerical examples, one may start with the uniform distribution, where
~ = l/m for all k. Or, perhaps, one should not overlook the single-bit sync
s1ip (forward and backward from m) characteri zed by a, =am-1 = 1/2, and zero
elsewhere.

Cell Cell

1 1
( Y Y
bit bit bit bit

1 2 ••• k • •• m 1 2 • • • m

L)sitdelay z Cell delay s

Cell

1
)

• •• 13

Figure 8. Bit/cell format.
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Figure 9 presents the state-transition diagram assumed in this section.
The notation is:

s = unit delay operator,
z = 11m of the unit delay,
p = probability of the incorrect header (HEC + 0),

q = probability of the correct header (HEC = 0),
which satisfies p + q = 1,

v = probability of HEC + 0 in a given single bit of a random word,
w = probability of HEC = 0 in a given single bit of random word

(v + w = 1),

m = number of bits per cell (m = 424),
Bk = bit stdte k (k = 1, 2, , m),
Cn = cell state n (n = 1, 2, , 0),

o = sync threshold,
S = sync state,
BC = same as state Bm IC1 (a state that is simultaneously the Bm and the

C1 state),
ak = initial probability of state Bk (k = 1, 2, ... , m).

As done in earlier sections, one next follows the gf and matrix approach.
Let

Gs,(s)
Gsz(s)

G =
Gsc(s) (41)
Gcz(s)

Gcs(s)
Gs(s)
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Figure 9. The basic state-transition diagram for cell sync acquisition.
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and

a,
az

A = a,.. (42)

0

0

be two (m + S) - dimensional vectors. The corresponding matrix Mis (m + S) x
(m + S). Matrix Mfollows from Figure 9. It is a rather complex matrix that can
be expediently partitioned into two submatrices M, and Mz' as in

M= [M, I Mz]'

where M, is the (m + S) x (m - 1) dimensional part

(43)

l-ws 0 0

-vz l-ws 0

o -YZ 1-ws

o 0

o 0

o 0

o
o
o

m

M, =
o
o

o
o

o
o

o -vz l-ws

o 0 -YZ
(44)

o

o

o

o

o

o

o 0

o 0

o

o

and Mz is the (m + S) x (S + 1) dimensional remainder
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-pz -pZ -pZ -pZ -pZ 0

0 0 0 0 0 0

0 0 0 0 0 0
m

1 0 0 0 0 0

M2 = (45)

-qs 1 0 0 0 0

0 -qs 1 0 0 0

0 0 0 -qs 1 0

0 0 0 0 -q 1

Unfortunate1y, deri vat ion of W1 is too long to be repeated here. The
validity of the inverse, however, can be rather easily proved by verifying that
M • M-1 = I holds. Introduce

VZ
lp =-­

I - ws
and

8 1-(qs)b m-1= pz lp
l-qs

where lp and 8 are abbreviations for often-to-be-used functions of sand z.
The determinant of Mis

IMI = (l-ws)m~ (1-8).

29
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For s = 1, this determinant equals vm
-
1 q&. It is clearly larger than zero for

non-zero v and q, while mand 0 are required to be finite. Thus the inverse M- 1

again exists. We claim that it can be written as

1- --
1-8

(49)

where the sub-matrices M- 1
1 and W1

2 are not inverses of M1 and M2 , respectively,
but instead are convenient partitions of M- 1

• Actually, we shall not present the
ent ire W\ and W\. They are too bi g and awkward for that. Instead, we present
only the first mcolumns of matrix M- 1

• The remaining 0 columns are superfluous
for determination of G.

The first m columns of matrix M- 1
1 are given by an (m-l)x m array

8
8 8 8-
fP m-3 m-2

fP fP

8 8

fP2 fP 8 fPm-4 m-3
fP

1
8 8

-1
fP3 fP2 (50)M1 -- fP fPm-5 fPm-4

vz

fPm-4 8
8m-2 m-3 -fP fP fP

~-1 ~-2 ~-3 fP 8 +- row m-l

column m t

30



likewise, the mcolumns of matrix M-12 constitute a (0 + 1) x mdimensional array

".-1 rf~ Ipm~ Ip 1

qSlpm-1 qSlpm~ qSlpm~ qslp qs

-1 (qS)2rf-1 (qS)2rf~ (qs )2rp"'~ (qS)21p (qS)2
M2 = (51)

(qs )&-1lpm-1 (qS)&-1lpm~ (qs )&-1lpm~ (qs )&-11p (qs )&-1 ...

q(qS) &-1lpm-1 q(qS),Hlpm~ q(qs )&-1rp"'~ q(qS)&-11p q(qs )&-1 ... row o + 1

column m t

Substitution of (46) through (51), as well as (42), into (11) yields the
entire G vector (defined in equation (41)). For our purposes, the only entity
that really matters is the last component 6s(s) :

(52)

The derivation of the mean sync acquisition time is next. Set s = 1 and note
that

Further,

1p/(I)

8/ (1)

Ip(l) =1,
8(1) =1 _ q&"

Gs(l) =1.

1 W- - +-,
m v

= - 0q&+ (l - q&) [1 ~q + (m - 1) :),
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which, in the derivative

( 8' 0-1)Gs' (s) = -- + -- Gs(s)
1 -8 s

Ip'
+-

Ip
qOs 0-1 m-1

L (m - k) a Ie Ipm-Ie
1 - 8 Ie =1

(55)

m-1

Ta(o) = (.! + W) L k am-Ie +
m v Ie =1

produces the desired mean acquisition time:

(1 _qO) (1 + (m -1) ~)

(1 -q) qO
-1. (56)

One can view this expression (56) for the mean sync acquisition time as the
primary objective of the last two sections. It has a number of limit properties
that are, at least intuitively, quite acceptable. For instance, as Pe tends to
1 and q tends to 0, Ta(6) tends to infinity. At the other extreme, as Pe tends
to 0 and q tends to 1, the acquisition wait becomes

(57)

Let us consider three different initial probability distributions {ale}'
Let

(i) a Ie = 11m for all k = 1, 2, ... , m,

(ii)~=1 for k = m/2,
= 0 otherwise, (58)

(iii) a Ie = 1/2 for k = 1 and m - 1,
= 0 otherwise.

Case (i) represents the uniformly distributed initial condition (IC), where
the HUNT mechanism must face every bit in the m-bit span as equally likely to be
the true cell beginning. Case (ii) assumes that the search process starts
exactly in the middle of a cell, while case (iii) postulates an equally likely
single-bit synchronization slip in either direction, +1 or -1 bit.
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The mean acquisition times for these three cases follow immediately from
(56),

and

& ( PV
w

)(l-q)I+(m-l)
T (15) I(") =(..!. +w) _m_-_l - 1 + --'-

• 1 m v 2 (1 _ q) q&

T.(cS)l(ii> =T.(cS) I(iii> =T.(cS) 1(0 +% (~ + :).

(59)

(60)

Hence, the uniform Ie (;j yields a waiting time that is % (~ + :) = .003 cell

units shorter than the identical waits (ii) and (iii). For the assumed ATM cell
scenario, the quantity T.{cS)I(i) is plotted in Figure 10 versus bit error
probability. For comparison with the approximate model of Figure 7, the same
coordinate axes and the same threshold parameter values for 15 are used in Figure
10.

One observes that in this exact model, as Pe tends to zero and q to unity,
the asymptotic mean waiting time tends to

T (15)1(0) = 15 -1 +(..!. +W) m-l • cS +.328.
• 1 m v 2

(61)

The fact that this mean delay is nearly 0.5 cell units lower than the estimate
made in the section 4, where an approximate model was postulated, leads to two
comments. First, the difference could be due to the imprecise handling of the
false alarm states in Figure 6. And second, the approximate model produces an
upper-bound for the mean acquisition delay.
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6. VARIANCES
Mean or average values are of primary interest for random synchronization

times, as they are for most random variables. However, occasionally need may
arise for values of their variances. Given a probability gf G(s), the variance
of follows from the relationship (Feller, 1968).

q2 =G"(l) - [G'(l)]2 + G'(l). (62)

For in-sync duration time, the gf was given earlier in (22). The
corresponding variance in units of (cell)2 is then

where the mean duration time Td(a) is as defined in equation (23).

becomes unbounded as q tends to 1, and p to O. At the other extreme,
q = 0 andp = 1, ~ assumes its lowest value, which is

(63)

Entity ~
namely at

(64)

Thus, u~ = 0 occurs when both q = 0 and aj = 1 for some value of j,

O~j~a-l.

Variances can also be computed for both the approximate and the exact sync
acquisition times. The relevant generating functions are given in equations (34)
and (52) respectively. Both cases lead to quite lengthy and complex expressions.
Because of its imprecise character, the variance around an approximate mean seems
to be of least interest. It· is not included here.

We next present the variance u~, which is valid for the exact, or basic,
sync acquisition model. We assume the additional condition that p «1. As
defined earlier, p represents the probability of a HEC ; 0 event. Equation (37)
shows that p « 1 is equivalent to the channel error probability Pe being much
less than 1/40. For practical purposes this implies that the u~ expression,
to be given next, must be valid at least for all sufficiently small Pe.
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Application of equation (62) to the acquisition gf of (52) yields for
p « 1

U~ = Ta (o) [ 20 -1 + 0(0 + 1 + (m -1 ) :) p] - Ta2 (o)

[
1 2] m ( 1 )2 m+ -- +~ L (m-k) ~+ - + w L (m-k}2~
m V 2 k =1 m V k =1

-0(0-1) [1 + (30 +4) p] -cS(m-1} [70 -4 - (m-2):] : p,

(65)

where Ta(o} is the mean acquisition time of equation (56) and of Figure 10.
When the channel is error-free, p = Pe = 0, then this variance becomes

U~=(..!.+W)2 t (m-k}2~-[t (m_k}~]2 +W(l+ W) t (m-k)~. (66)
m v k=1 k=1 V V k=1

Even if the search process is known to start from a fixed bit position, the
variance of (66) does not vanish. Instead, given ak = 0k,j' one obtains for p = 0

U
2 = w (1 + W) (m _j ) .
a V V

(67)

Here, entity : (1 + :) represents the "potential false alarm" contri but ion from

a single bit in the bit-by-bit search of the HUNT state (compare earlier Figures

1, 8, and 9). For the system numbers assumed, see (37), : (1 + :) • .0039.

Although this may look negligible at first, its contribution should not be
ignored. The number of bits in an ATM cell, m=424, reduces (67) to

2Ua • 1.669 - .004j, where 1 S j S m. If one chooses to ignore this effect of

a false alarm due to a single random bit, the expected underestimate of the
standard deviation ua is apt to be on the order of one ATM cell.

36



7. CONCLUSION

The methods of probability generating functions, also known as z­
transforms, and matrix inversions have been used to compute the mean
synchronization times for the Asynchronous Transfer Mode (ATM). First, the mean
in-sync duration characterizes the time that the system is expected to spend in
cell synchronism, given that a valid ATM cell exchange takes place throughout the
period. Second, the mean sync acquisition time is the average wait necessary to
achieve ATM cell synchronization, given that the search starts in a state of
ignorance about the true epochs of cell demarcation.

There are two results presented for the mean acquisition time. To start,
a simpler approximation is derived first in section 4. That is followed in
section 5 by a more complex, but exact, acquisition characterization. Comparison
of the two results shows that the simpler approximation represents an upper bound
on the average waiting time for cell acquisition.

Future studies should answer questions about probabilities of both desired
and undesired events in ATM cell synchronization. For specified values of time,
T, these could be probabilities that synchronization is abandoned at T, given
that the signal is either present or absent. Or one may be interested in
probabilities of the system declaring sync acquisition at time T, conditioned
again either on signal presence or its absence. The latter, known as false lock
or false alarm probabil i ty, is of interest in several app1icat ions. The
probability generating functions are also expected to be useful in the analysis
of such probabilities.

The synchronization times derived here should become of increased concern
and significance, if and when the Asynchronous (instead of the Synchronous)
Transfer Mode ever becomes accepted internationally or nationally as the main
transport mechanism for broadband ISDN.
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