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A NEW APPROACH TO HF CHANNEL MODELING AND SIMULATION 
 

PART III: TRANSFER FUNCTION 
 
 

L.E. Vogler and J.A. Hoffmeyer* 
 
 
 This is the third in a series of reports which 
describe a new and unique approach for modeling either 
narrowband or wideband high frequency (HF) channels.  
Although narrowband models of the HF channel have existed 
for many years, they are applicable to only a limited set 
of actual narrowband propagation conditions.  The need 
for an HF channel model that is valid for both narrow and 
wide bandwidths over a more extensive range of 
propagation conditions motivated the research documented 
in this series of reports. 
 
 An explicit expression for the channel transfer 
function incorporating a random time-varying generator is 
derived and its relation to the impulse response and 
scattering function is discussed.  Comparisons with 
measured data indicate the process is best modeled as a 
sequence of random variables with an exponential 
autocorrelation function; this leads to a scattering 
function having a Lorentzian shape.  A brief discussion 
of a Gaussian random variable generator is also included.  
Comparisons of scattering functions from the model and 
from measurements on a near-vertical incidence auroral 
path for a wide range of spread-F conditions are shown. 
 

Key Words: channel transfer function; HF channel models; HF 
propagation; scattering functions; spread spectrum 
communications; wideband HF 

 
1.  INTRODUCTION 

A new model to simulate the sky-wave propagation conditions 

that occur in a high frequency (HF) communication link has been 

under development at ITS during recent years (Hoffmeyer and 

Nesenbergs, 1987; Vogler et al., 1988; Hoffmeyer and Vogler, 1990).  

Older models have been restricted to limited narrowband 

applications and are inadequate for the investigation of wideband 
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spread spectrum techniques.  The recently developed approach has 

been discussed in two previously published reports (Vogler and 

Hoffmeyer, 1988; Vogler and Hoffmeyer, 1990) that describe the 

deterministic and stochastic aspects of the model.  This model is 

currently being implemented in a hardware HF simulation System that 

will be useful for testing all types of HF systems-- conventional 

narrowband, frequency hopping, and direct sequence spread spectrum. 

 

The HF channel simulation model assumes four ionospheric input 

parameters that can be obtained either from observations or from 

some reliable ionospheric prediction model: penetration frequency 

(fp), layer height (ho), layer thickness (σ), and an estimate of 

received signal attenuation (A).  Typically, ionospheric prediction 

models are used to provide monthly median and 90th percentile 

values of parameters that can be used to determine propagation 

characteristics including the received signal level.  These 

parameters are predicted through the use of ionospheric data bases 

that are functions of geographic location, sunspot number (SSN), 

time of day, and month.  Used in conjunction with models of the 

noise environments and characteristics of the transmitting and 

receiving antennas, these parameters form the basis for HF link 

performance calculations that permit the evaluation of predicted 

signal-to-noise ratios at any point on the earth's surface. 

 The channel simulation model, on the other hand, is a 

model that provides an emulation of all aspects of the time-varying 

channel on the transmitted signal --not just the effect of the 

channel on the received signal which is usually calculated by most 

link prediction programs.  The present channel simulation model 

includes the effects of Doppler shift, Doppler spread, group time 

delay dispersion, and delay spread.  The group time delay 

dispersion is caused by the reflection of different frequency 

components of the transmitted signal at different ionospheric layer 

heights.  Additional delay spread or smearing of the transmitted 

signal in the time domain is caused by irregularities in the 

ionosphere.  This effect is particularly noticeable on polar and 
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trans-auroral paths, but can also be seen frequently on 

mid-latitude paths when spread-F conditions occur.  A HF simulation 

model attempts to model more effects of the time-varying 

ionospheric channel than is provided by typical link prediction 

modeling programs.  Accurate prediction of digital HF radio 

performance requires the use of all of the parameters mentioned 

above. 

 In the following pages the derivation of the transfer function 

that is used in the ITS simulation model is given.  The 

introduction of random variation in the transmitted signal is 

described and generation of the random process is explained.  

Comparisons are then shown of the simulation model with the results 

of actual measurements over an auroral path. 
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The mathematical form that has been assumed to represent the 

transfer function was chosen in order to simulate the variety of 

delay time and Doppler frequency characteristics that are seen in 

measured data.  A justification for the analytical forms lies in 

the fact that the resulting delay and Doppler shapes appear to 

compare well with actual measurements.  There are six physical 

quantities that determine the simulated shapes and that are assumed 

as basic input: 

 

Time Delay, τ 

τU = upper or maximum value of τ  

τL = lower or minimum value of τ 
A = peak amplitude at τ=τc 
 

Doppler Frequency, fD 

fs = Doppler shift at τ=τc  

fsL = Doppler shift at τ=τL  

σD = half-width of Doppler spread at τ=τc 
 

The delay time τc, associated with the carrier frequency fc, is 

discussed later on.  Also, it is often more convenient to input the 

total and partial delay spreads, σT=τU-τL and σc=τc-τL, rather than 

the upper and lower τ values.  In any case, the six input values 

normally will be obtained from empirically determined ranges and 

distributions of the above quantities. 

The manner in which the model transfer function was developed 

is outlined in the following paragraphs.  First, certain analytic 

forms were assumed for the scattering functions S(τ, fD).  These 

forms were arrived at by studying many different measured 

scattering functions to determine the key parameters and shapes 

that would best characterize their dependence on delay time and 

Doppler frequency.  The parameters chosen were the input quantities 

given above; explicit expressions for the shapes will be given 

later. 
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Next, it can be shown that the scattering function is the 

Fourier transform of the autocorrelation function of the received 

impulse response as a function of time t (Proakis, 1983; pp. 461-

463).  Thus, if tℓ denotes the time lag, the autocorrelation 

function R(τ, tℓ) can be found from 

 

 R(τ,tℓ) = ∫
+∞

∞−

S(τ,fD)exp(i2πfDtℓ)dfD, (2) 

 
where R (τ, tℓ) is also expressed as 
 

 R(τ,tℓ) = Co ∫
+∞

∞−

h*(τ,t)h(τ,t+tℓ)dt, (3) 

 

with h(τ, t) representing the received signal in time t, Co is a 

normalizing constant, and the asterisk is the usual symbol for 

complex conjugation.  Notice that the variation over t in (3) is 

for a fixed delay time τ. 

The next step in the development of the model transfer 

function is to determine the received time signal h(τ, t) through 

the relationship given in (3).  The signal contains the effects of 

both the delay time and the normal time, but it is the delay that 

is associated with radio frequency and, consequently, leads to the 

transfer function using a Fourier transform: 
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The procedure described above results in the following 

nonrandom, analytical expression for the model transfer function: 

 

 
 

 

and Γ (·) denotes the Gamma function (Abramowitz and Stegun, 1964; 

p. 255).  The phase term φo and amplitude A are assumed constant 

(for a given layer-mode) in the present version of the model 

although either could be made to vary in a more generalized 

version.  The parameters α and τℓ are functions of the delay spread 

and received signal threshold, and their computation is described 

in the Appendix. 

The quantity τc denotes the delay time associated with the 

frequency component at fc and is evaluated from an expression 

derived using a sech2 electron density profile (Vogler and 

Hoffmeyer, 1988): 
 

 
 

where ho, σ, and fp represent, respectively, the height at which 

maximum density occurs, thickness scale factor, and penetration 

frequency of the ionospheric layer; D is the path distance and c is 

the speed of light. 

The shape of the Doppler spread is determined by ζ, which in 

turn is defined according to whether a Gaussian- or a 

Lorentzian-Doppler shape is desired.  In terms of the Doppler 

spread half-width σD and the received signal threshold Afℓ. 
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where sv = Afℓ/A.  The question as to which Doppler shape 

corresponds most nearly to reality can only be answered by 

comparisons with actual measurements; and it may well be that both 

shapes are suitable under different ionospheric conditions. 

With the model transfer function now defined in (5), it is a 

straightforward matter to obtain expressions for both the 

layer-mode impulse response h(τ, t) and the scattering function 

S(τ, fD).  The impulse response is the inverse Fourier transform of 
H( f , t) over f : 

 

 
 

and the transform pair can be found in Campbell and Foster (1948; 

524.2, p. 51). 

The shape factor T(τ) determines how the impulse response 

behaves as a function of delay time τ.  A representative sketch of 

T(τ) is shown in Figure 1.  The maximum always occurs at τ = τc, 

however the position of the peak along the τ axis can vary (with 

the restriction that σc < στ/2).  Shapes can be obtained that range 

from very skewed to almost symmetrical. 

The exponential factor γ1 contains the amplitudes and phase 

constants that characterize Doppler frequency effects.  The 

inclusion of τ in the imaginary part provides the "slant" 

phenomenon that is observed so frequently in measured scattering 

functions (Wagner et al., 1989). 
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To obtain the scattering function, it is first necessary to 

find the autocorrelation of h(τ, t) with respect to τ.  For the 

shapes assumed in the present model (Gaussian and Lorentzian), the 

tℓ dependence of R(τ, tℓ) has the same form as (8a) with t replaced 

by the lag time tℓ; i.e., from (3). 

 

 
where ζ in (8c) is given by (7) with t = tℓ.  The scattering 

function is now obtained from the Fourier transform of (9) over tℓ: 

 

 
 

where a factor σf has been included for normalization purposes and 

the transforms can be found in Campbell and Foster (1948; 438, 

p. 45 and 708.0, p. 84).  For pictorial representation, a 

three-dimensional plot of the scattering function is often shown 

using ¦S(τ, fD)¦ versus τ and fD. 

The foregoing discussion of the HF channel simulation model 

describes a transfer function capable of providing those 

characteristics of a received signal that are of primary concern to 

the communication systems engineer, such as delay and Doppler 

spreads and Doppler shifts.  However, the constantly shifting 

changes in electron density that cause the random variation of 

received time signals observed in most HF systems have yet to be 

treated.  This aspect of the simulation is accomplished by 

introducing a random process to replace the analytic variation of 

signal strength specified by exp (-ζt) in (8).  The process must be 

such that the shifts and spreads characterizing the ionospheric 

conditions remain after appropriate analysis of the received signal 

time series. 
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We start by recognizing that the simulation model should be 

formulated as a discrete function rather than a continuous one.  

Thus, the impulse response in (8) is now represented by 

 

 
 

and x(k,m), y(k,m) are independent, random (real) variables that 

satisfy certain conditions to be discussed.  The incremental times 

∆t, ∆T are constants chosen by the analyst or by the simulator 
builder, and τc is that value of τ corresponding to f  = f-fc = 0 

(see (6)). 

One condition that the random variables (rv) should satisfy is 

that their autocorrelation over tm tend to the analytical value 

given by the real part of the exponential in (9) as the total 

number of sample variables M becomes large.  For a fixed value of τk 

and with C(k) denoting the constant factors, the autocorrelation of 

h(τk, tm) from (11) and (3) can be written as 
 

 
where ℓ = 0, 1, 2, ... and summation over the cross-products of x 

and y is zero because of their assumed independence.  The index k 

in x and y has been dropped to simplify notation. 

 A means of generating rv's having an exponential 

autocorrelation function (leading to the scattering function of 

(10b)) is described in Naylor et al. (1966; p.120).  For sequences 
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of independent rv's ρm and ρm', the exponentially correlated random 

process can be generated from 

 

 

with σf given by (7b). 

 Generating random variables having a Gaussian-shaped 

autocorrelation function (leading to the scattering function of 

(l0a)) can be accomplished by first taking the Fourier transform of 

a sequence of independent rv's such as the ρm above, then 

multiplying this output by the filter function exp[-2π(fm/σf)2], and 

finally taking the inverse Fourier transform of the product 

resulting from the second step.  Notice that this process leads to 

a restricted set of numbers, whereas the method of (14) produces an 

open set.  Thus, the transforms should be done over as large a 

sample size as storage restrictions will allow. 

A second condition for the rv's concerns fading 

characteristics.  In order that the long-term fading statistics of 

the signal follow the usual Rayleigh distribution, ρ and ρ' are 

chosen to be independent, zero-mean Gaussian processes with a 

common variance: this is equivalent to the bivariate Gaussian 

hypothesis assumed in the Watterson model (Watterson et al., 1970). 

As mentioned previously, the above equations defining the 

various quantities of the model have referred to only one 

layer-mode.  For each of the N layer-modes a set of input 

parameters is entered, and the total impulse response is given by 
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The model transfer function with the inclusion of the random 
process then is obtained by a discrete Fourier transform over the τ 
variable: 

 

 
where the impulse responses hn are computed using (11). 

 Notice that the conditions imposed on the random process 

denoted by z(k, m) in (12a) determine the shape of Doppler spread 

in the simulation model.  A Fourier transform of a purely random 

process produces a spectrum that has no shape.  The Doppler spread 

and Doppler shape arise from a Fourier transform of the 

autocorrelation of the random signal. 
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3.  COMPARISONS OF MODEL AND MEASUREMENTS 

A propagation measurement program using the Naval Research 

Laboratory wideband HF prober in the auroral region was undertaken 

recently over a near-vertical 80 km east-west path near Fairbanks, 

Alaska (Wagner and Goldstein, 1991).  The measurements were made 

during May of 1988 and covered a variety of ionospheric conditions 

ranging from quiet and stable to intense spread-F.  The data is 

described in terms of the scattering function and, thus, can be 

compared directly with the simulation model.  The input parameters 

to the model for the different figures are given in Table 1. 

 

 

 

 
Table 1.  Parameters Used in the Simulations 
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A relatively benign condition is first shown in 

Figures 2 and 3 for two different carrier frequencies, 3.3 and 5.3 

MHz.  The higher frequency (Figure 3), showing both the O- and X-

modes, has a larger delay spread because it is nearer the critical 

frequency where more dispersion is expected.  The two plots in each 

figure show a three-dimensional representation of the scattering 

function on the right and a contour plot (looking directly down) on 

the left. 

The corresponding simulations are shown in Figures 4 and 5.  

The difference in delay scales between the model and measurements 

arises from the fact that the measurements are plotted relative to 

an arbitrary delay value, whereas the model shows the simulated 

delay time between transmitter and receiver.  The quiet ionospheric 

conditions were simulated by allowing the random process z in (11) 

to change less frequently than during spread-F conditions.  The 

result is a scatter function that looks more deterministic.  

Because of the randomness, it is not possible to duplicate exactly 

the measured plots; however, the model appears to simulate the main 

features reasonably well. 

Another set of measurements were made during moderate spread-F 

conditions.  Scattering functions for this case are shown in 

Figures 6 and 7 for the two frequencies 3.3 and 5.3 MHz.  The plot 

shown furthest to the right is the actual unsmoothed scatter 

function obtained directly from the data.  In the other two 

representations, a 4-point triangular smoothing has been applied to 

the unsmoothed version.  Without the smoothing, the contour plot 

would look chaotic; on the other hand the contour plot does not 

give a very accurate picture of the true scatter function for the 

5.3 MHz data. 

Simulations of the moderate spread-F results are shown in 

Figures 8 and 9.  The unsmoothed, smoothed, and contour 

representations are quite similar to the 3.3 MHz measured versions.  

The contour levels differ because of software plotting package 

differences; however, the lowest contours in each plot are 

approximately equivalent even though the labeling is not the same. 
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The more pronounced scattering of the spread-F increases both the 

delay and Doppler spreads, and the model reproduces this effect by 

adjusting the input parameters as listed in Table 1.  The model and 

measurement plots are quite similar except in the case of the 

contours for 5.3 MHz. 

An example of intense spread-F conditions is shown in the 

measured data of Figures 10 and 11, with the corresponding 

simulations in Figures 12 and 13.  The measurements were taken at 

2.8 and 3.8 MHz, and the returns at the lower frequency were 

becoming so faint that a relatively short delay spread was measured 

although the Doppler spread is larger than before.  The full extent 

of delay and Doppler spread associated with intense spread-F is 

displayed in Figure 11.  The two parts of the return are most 

likely from different regions of the ionosphere, but the model is 

able to simulate the result (Figure 13) by entering two sets of 

parameters. 

It should be pointed out that the purpose of the comparisons 

in this section is not to examine how closely the model duplicates 

the details of the example measurements, but rather to show the 

model's capability of simulating the wide range of key parameter 

values that arise in actual practice.  If simulation values agree 

(to a given accuracy) with values either pre-chosen or measured, 

then a quantitative validation of the model can be said to have 

been achieved.  This aspect of validation will be the subject of 

investigation in future studies. 
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4.  SUMMARY 

This report is the third in a series that describes a new 

approach for modeling the simulation of narrowband or wideband HF 

propagation channels.  The report presents the derivation of and 

explicit equations for the simulation model transfer function. 

The model simulates the time-varying properties of the HF 

skywave propagation channel and provides a way of studying the 

effects of different ionospheric conditions on digital 

communication systems.  Besides signal attenuation, the key 

characteristics that can affect a digital system are: 

 (1) time delay spread and amplitude shape factor; 

 (2) Doppler frequency shift and spread; 

 (3) variation of Doppler frequency with time delay. 

These quantities enter as parameters into the simulation model and, 

through the transfer function, influence and alter the transmitted 

signal.  The manner in which the signal is altered, of course, 

depends upon the functional form of the transfer function, and this 

report provides the details of the simulation process. 

The report also includes comparisons of the model with NRL 

measurements from a near-vertical incidence auroral path in Alaska.  

The model simulates ionospheric conditions ranging from quiet and 

stable to intense spread-F, and comparisons of scattering functions 

from model and measurement appear to show good agreement in the 

primary characteristics.  The model is capable of handling 

multilayer and multimode conditions and, when measurements are 

available for these kinds of returns, the model provides a 

convincing representation of the scattering function. 

The channel model described here can be used in either a 

software- or hardware- type simulator, and a hardware HF simulator 

is currently under development at ITS.  This simulator will 

implement the new model by coupling the transfer function and a 

newly developed noise/interference model (Lemmon and Behm, 1991) to 

provide a means of studying the performance of candidate 

communication systems. 
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Appendix:  Derivations for Delay Shape Factor 

 

To determine α and τℓ, the parameters delineating the delay time 

shape factor, we adapt the following conditions that depend on the 

overall and the minimum-to-peak delay spreads: 

 
ℓn sv = α(ℓn zL+1-zL) = α(ℓn zU+1-zU), 

where zL = (τL-τℓ)/(τc-τℓ), zU = (τU-τℓ)/(τc-τℓ), 

 
and sv = Afℓ/A. The delay times τL, τc, and τU are those times 

associated with, respectively, the lower (minimum), peak, and upper 

(maximum) τ values of the shape factor; Afℓ denotes the received 

signal threshold and A is the peak amplitude at τc.  These 

conditions lead to the pair of equations  

 
ℓn zL -zL = ℓn zU-zU, 

(1-zL)/(zU-l) = (τc-τL)/(τU-τc) < 1, 

 
from which zL may be found from some iterative procedure such as 

Newton's method. The delay parameters are then given by 

 
α = (ℓnzL+1-zL)-lℓn sv, 

τℓ, = τc-(τc-τL)/(1-zL). 

 
 A slight modification of τℓ is made to facilitate the use of 

the discrete Fourier transform applied later on.  The modified τℓ is 

 
τmod = [τℓ/∆τ]∆τ, 

 
where [·] denotes the nearest integer and ∆τ is the delay time 

increment. 

 








