
NTIA Report 95-319 (3)

Performance Evaluation of Data
Communication Services: NTIA

Implementation of American
National Standard X3.141

Volume 3. Data Extraction

Martin J. Miles
David R. Wortendyke

u.s. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

Larry INing, Assistant Secretary
for Communications and Information

August 1995

CONTENTS

FIGURES

TABLES

ABSTRACT

1. INTRODUCTION

Page

v

vii

1

1

2. DETERMINE THE PROTOCOL
2.1 Protocol Analyzer
2.2 Manual Operation.
2.3 Schematic Protocol

'. 7
7
7
8

3. DETERMINE ENTITY RESPONSIBILITY

4. ASSIGN STATE CODES TO ENTITIES
4.1 Primary States.
4.2 Secondary States .

5. DRAW THE SESSION PROFILE
5.1 Initial Idle State
5.2 Access State ...
5.3 User Information Transfer State
5.4 Disengagement State
5.5 Final Idle State.

10

12
12
12

14
18
18
19
20
20

Each Network

6.

7.

CREATE THE PROTOCOL FILE
6.1 Contents of a Protocol File
6.2 Schematic Protocol File
6.3 Sample Protocol File.
6.4 Create a Protocol File for

MODIFY THE TRANSMITTING PROGRAM .

21
21
21
22
26

28

8. CREATE THE END USER IDENTIFICATION FILES
8.1 Source End User File
8.2 Destination End User File

9. CONFIGURE THE PORTS AND CREATE THE CLOCK CALIBRATION FILE
9.1 Link the Communication Ports ...
9.2 Set the Communication Ports
9.3 Create the Clock Calibration File

10. SET THE TIME LIMITS FOR RESPONSES

11. CONDUCT A TEST .
11.1 Synchronize the Clocks
11. 2 Select the Appropriate runx Command

iii

31
31
32

34
34
34
34

37

38
38
39

11.3
11.4
11.5
11.6

CONTENTS (Cont'd)

Start the Test
Example of Data Extraction Using runxt
Check the Results
Test the Data Extraction Software

Page

41
42
43
43

12. PROCESS THE TEST DATA .
12.1 Consolidate the Extracted Data
12.2 Merge the log Files
12.3 Copy the Extracted Data
12.4 Activate ado Shell Script

13 . ACKNOWLEDGMENTS

14. REFERENCES ...

APPENDIX A: ON-LINE DATA EXTRACTION

APPENDIX B: OFF-LINE DATA EXTRACTION (DATA CONVERSION)

iv

45
45
46
47
47

50

51

53

69

FIGURES

Page

Text version of the history.x file produced by show-h. 56

Text version of the overhead.x file produced by show-h. 58

Pseudorandom, 64-character ASCII data used for transmission
of the user data and stored in data.x at the source site. 55

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure B.

Figure 9.

Figure 10.

Figure A-I.

Figure A-2.

Figure A-3.

Figure A-4.

Figure A-5.

Schematic diagram of a data communication system
and end users.

Structured design diagram of the operator
procedures in data extraction.

Session profile for the schematic protocol.

Schematic protocol file.

Sequence of commands, expected response~, and state codes
at the source user-system interface of the schematic
session profile. . .

Protocol file for a direct dial network.

Venn diagram of the major subprograms of xmit net.

Structured design diagram of xmit net.

Example of a source end user identification file.

Example of a destination end user identification file.

Structured design diagram of on-line data extraction
at the source site ..

Contents of logn.x (renamed 21341ogn.x).

3

4

15

22

23

24

29

30

32

33

. 54

59

Figure A-6a. Screen display of log.x for access-disengagement tests. 59

Figure A-6b. Screen display of log.x for user information transfer
tests. 60

Figure A-7. A portion of the log file generated by the mklog
program. 61

Figure A-B. Structured design diagram of on-line data extraction
at the destination terminal. 62

Figure A-9. Text version of the history.r file produced by show-h.

v

64

FIGURES (Cont'd)

Page

Figure A-10. Text version of the overhead.r file produced by show-o. . 66

Figure B-1a. Structured design diagram of off-line data extraction
for do or dopre. . 70

Figure B-1b. Structured design diagram of off-line data extraction
for doqik. . 71

Figure B-2. Structure of the source (SUI) and destination user
information (DUI) files. 73

Figure B-3. Format of the source (SUI) and destination user
information (DUI) files. 74

Figure B-4. Example of source user information (SUI) files. 75

Figure B-5. Example of destination user information (DUI) files. 76

Figure B-6. Structure of the source (SOl) and destination overhead
information (DOl) files. 77

Figure B-7. Format of the source (SOl) and destination overhead
information (DOl) files. 78

Figure B-8. Example of source overhead information (SOl) file. 79

Figure B-9. Example of destination overhead information (DOl) file. 80

vi

Table 1.

TABLES

Commands and Expected Responses and Their Corresponding
Primary Reference Events

Page

9

Table 2. Combinations of Responsibilities for the Three Entity­
Interface Pairs

Table 3. Entity-Interface State Codes

Table 4. Available runx Commands

vii

11

13

40

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

PERFORMANCE EVALUATION OF DATA COMMUNICATION SERVICES:
NTIA IMPLEMENTATION OF AMERICAN NATIONAL STANDARD X3.141

VOLUME 3: DATA EXTRACTION

Martin J. Miles and David R. Wortendyke1

The six volumes of this report are:

Volume 1. OVerview
Volume 2. Experiment Design
Volume 3. Data Extraction
Volume 4. Data Reduction
Volume 5. Data Analysis
Volume 6. Data Display

This volume explains how to conduct a data communication
session. Specifically, it explains how to determine the commands
and expected responses of a protocol (for access and disengagement
functions), how to determine the responsibility of the participating
entities for producing each reference event, and how to draw a
profile of the session (which demonstrates the flow of information
between the participating entities and across user/system
interfaces) . It explains how to create a file containing the
commands and expected responses of the protocol, the code that
causes the times at which they cross interfaces to be recorded, and
a code number that indicates the state of the entities at each
interface. This volume also explains how to modify the transmitting
program to agree with the protocol. It explains how to create files
that support the on-line data extraction software. Specifically,
these files are the end user identification files, the clock
calibration file, and the protocol file. This volume then explains
how to execute a shell script that conducts a test, and how to
execute a shell script that processes the test data.

Key words: access; communication state codes; disengagement; reference events;
protocol; satellite clock receiver; session profile; user informa­
tion transfer; user/system interfaces

1. INTRODUCTION

The extraction of information from a data communication system requires a

set of hardware and software to access and disengage, terminate connections,

lThe authors are with the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U.S. Department of Commerce,
Boulder, CO 80303.

transmit and receive user information, and record system-independent interface

events (called reference events) at the user/system interfaces. The data

extraction software is written in the C programming language. Figure 1 is a

schematic diagram of a data communication system, the participating entities,

interfaces, and interface events2.

Figure 2 is a structured design diagram that describes the data extraction

procedure for the experimenter. The activities shown in this diagram correspond

to the sections of this volume.

Section 2 shows how the commands and expected responses (i. e., the

protocol) for the access and disengagement functions can be determined. A

schematic protocol that could serve as a template for others is also discussed.

Section 3 shows that it is necessary to record which participating entities

are responsible for each reference event.

Section 4 shows how to assign a state code to each entity after each

reference event. This code indicates the communication state of the entity and

its responsibility for producing the next reference event at each interface.

Section 5 shows how to draw a profile of the data communication session.

The session profile shows the flow of information among the participating entity-

2Sess ions can involve either two-way (duplex) transmission or multiple
pairs if the on-line data extraction procedures are modified:

• Each session is treated as the superposition of two simplex
sessions.

• A given user acts as the source in one session and as the
destination in the other.

• Each interface monitor generates one set of extracted data
files in which the local user acts as the source and another
set in which the local user acts as the destination.

• These sets of extracted data are input to separate data
conversion runs to produce two performance data batches - one
for each direction of transmission.

• The two data batches are then reduced and analyzed in the
usual manner.

2

I
L

I
I

SOURCE
USER-SYSTEM

INTERFACE
I

I

DATA COMMUNICATION SYSTEM
_____________----i-

I

I
I

DESTINATION
USER-SYSTEM

INTERFACE

CPU

11:111

~r I/O

:1:111

MEMORY
DATA

COMMUNICATION
NETWORK

I/O I~~~:::,

CPU
Vol

Figure L Schematic diagram of a data communication system and end users.

Commands/
Responses

file:
net-aaaa.bbb

Protocol
File

files:
preface.x
preface.r
End User

Identification

file: clkcal
Clock Reading

Delays

file header:
pdn_test.h
Time Limits

files: spi.acd
spi.xfr

Specified
Performance

Values
(3.5)

Figure 2. Structured design diagram of the operator procedures
in data extraction.

4

interfaces, lists the entity state codes, and shows how the time of occurrence

of reference events are to be recorded. The session profile that matches the

schematic protocol is also shown.

After the session profile is drawn, the protocol file that matches it must

be created. Section 6 shows the schematic protocol file and a sample protocol

file for a direct dial network. It then shows how to create a protocol file.

Section 7 discusses the transmitting program that must also match both the

session profile and the protocol file. It describes its function and provides

hints for modifying it for other protocols.

Section 8 shows how to create files that identify each end user, define

the type of session, and define the type of disengagement.

Section 9 shows how to link and set the communication ports, and how to

calibrate the satellite clock receivers.

Section 10 shows how to set the time limits for responses; these limits are

related to the performance values that are specified as part of the design of the

experiment (Volume 2).

Section 11 shows how to conduct a test (called on-line processing). Before

the experiment begins, it is necessary to synchronize the UNIXtm clock with the

satellite clock receiver.

Then a test can be conducted by simply typing (at the source computer), a

command such as

runxt 0 <network > <opt 1> <opt 2>

for access-disengagement tests, and

runxt u <network> <opt: 1> <opt 2>

for user information transfer tests. The options (i.e" opt 1 and opt 2) refer

to levels of variable conditions that are determined in Section 4.2 of Volume 2.

Section 12 shows how to process the test data (called off-line processing) .

After the test is completed, the data files must be consolidated in one computer,

and the data processed by typing a command such as

do nnnn

where nnnn is the test number. This single command activates a set of command

files and UNIXtm utilities that

• convert the data to text files,

5

e reduce the data to performance data (i. e., times and failures)
(Volume 4),

eanalyze the data (Volume 5), and

e create files for various graphs of primary time parameters
(Volume 6).

The on-line software is described in Appendix A, and the off-line software

is described in Appendix B. The appendices contain structured design diagrams

that show the relationship among programs, shell scripts, and other files.

The procedure described in this volume is augmented by a report of the NTIA

experiments (Spies et al., 1988) and a text on the C programming language

(Kernighan and Richie, 1978).

6

2. DETERMINE THE PROTOCOL

A protocol is a set of rules governing the interaction between pairs of

communicators. For our purposes, a protocol is a sequence of commands and

expected responses required to complete the functions of access and

disengagement. The protocol can be determined from protocol analyzers, manual

operation, user's manuals, and experts.

2.1 Protocol Analyzer

Following is an example of using a protocol analyzer:

• Connect a protocol analyzer to the remote computer
communication port.

• Call the remote computer (which is identified by a connect
line) by typing

cu -scccc -l/dev/coml

where cccc is the transmission rate (baud) as set by the super
user, 1 (Le., "el") indicates the connect line, and /dev/coml
specifies the device at the first communication port.

• Log in to the network.

• Connect to the remote computer.

• Issue any command (e.g., sys).

• Log out of the computer.

• Log out of the network (if necessary).

• Disconnect from cu by typing the following two characters

2.2 Manual Operation

If a protocol analyzer is not used, simply record all keystrokes and screen

responses provided by the port when accessing the system, logging into it, and

disconnecting from it.

7

2.3 Schematic Protocol

Reference events are those interface events that are system-independent.

Primary reference events are reference events that define primary performance

parameters (and are given generic names, such as Access Request). A schematic

protocol containing five nonspecified commands and their nonspecified expected

responses is discussed here. It will be used to demonstrate a session profile

and its corresponding protocol file. Table 1 lists the primary data

communication states, primary reference events, and symbols for selected commands

from the source end user (i.e., Gl , ... , Gs) and their expected responses (i.e.,

Rl , ... , Rs). The primary reference events that result from blocking are not

identified by a symbol.

8

Table 1. Commands and Expected Responses and Their Corresponding Primary
Reference Events

PRIMARY DATA
COMMUNICATION

STATES/FUNCTIONS

(Initial) Idle

Access

User Information
Transfer

Disengagement

(Final) Idle

PRIMARY REFERENCE EVENTS COMMANDS/
EXPECTED

RESPONSES

*The number of blocks to be transferred is j=l, ...• N.

9

3. DETERMINE ENTITY RESPONSIBILITY

To define the sequence of events during a data conuounication session, it

is necessary to identify, after each reference event, the entity (or entities)

responsible for producing the next reference event.

In the NTIA implementation of ANS X3 .141, the par1:icipating entities are

the source end user (the application program, xmit_net), the system, and the

destination end user (the application program, recv). '1.11e three entities define

two interfaces: a source user-system interface and a destination user-system

interface. Arbitrarily call one interface the local interface, and call the

other interface the remote interface.

combinations:

Then there are four entity·· interface

• local user at the local interface

• system at the local interface

• system at the remote interface

• remote user at the remote interface.

For any entity at either interface, there are two states of responsibility for
producing; the next reference event: either the entity is responsible or it is
not. Therefore, there may be 16 combinations of entity- interface
responsibilities:

(responsibility states) (entity-interface combinations) = 24 = 16.

However, we can make two logical observations that reduce the number of

combinations to six. The first observation is that the remote user cannot be

responsible for the next reference event. 3 Hence, there are three remaining

entity-interface combinations:

• local user at the local interface

• system at the local interface

• system at the remote interface.

3The remote user cannot be responsible for producing the next reference
event because a reference event must occur at the remote interface before the
remote user is (can be) responsible for producing a reference event.

10

Now there are eight possible combinations of entity-interface responsibilities:

(responsibility states) (entity-interface combinations) = 23 = 8.

Table 2 lists the three entity-interface pairs and all possible combinations of

responsibility for them. The words "yes" and "no" indicate responsibility and

non-responsibility, respectively. The second observation is that the seventh and

eighth combinations cannot exist (as indicated by the lack of shading) because

the user and the system cannot both be responsible for the next reference event

at an interface.

Since the remaining six combinations are not illogical, it is conceivable

that some protocol permits them.

Table 2. Combinations of Responsibilities for the Three Entity- Interface
Pairs

LOCAL USER
RESPONSIBLE

AT
LOCAL INTERFACE

SYSTEM
RESPONSIBLE

AT
LOCAL INTERFACE

SYSTEM
RESPONSIBLE

AT
REMOTE INTERFACE

1

2

3

4

5

6

7

8

Yes

Yes

Yes

Yes

11

No

Yes

4. ASSIGN STATE CODES TO ENTITIES

NTIA software requires each entity-interface pair to have a code number

that identifies, following each reference event, its primary state (when

knowable) and its secondary state.

4.1 Primary States

An entity can exist in one of three primary states: Idle (before and after

the session), Access-User Information Transfer, and Disengagement. (Because User

Information Transfer does not require a protocol, it is combined with Access for

the purpose of assigning state codes.) Following are the conditions under which

entities exist in the primary states:

• (Initial) Idle State. An entity is in the Idle State if it is
not participating in the communication session. If the
sys tem' s performance time is wi thin the service time, an
entity is responsible for the next reference event, otherwise
it is not responsible.

• Access-User Information Transfer State. An entity is in the
Access-User Information Transfer State if it is involved in
the communication session with the intent to transfer user
information. In this state, an entity mayor may not be
responsible for the next reference event.

• Disengagement State. An entity is in the Disengagement State
if it is involved in the communication session with the intent
to terminate involvement without transferring additional user
information.

• (Final) Idle State. As stated above, an entity is in the Idle
state if it is not participating in the communication session.
An entity is returned to the Idle State following the
Disengagement Confirmation reference event.

4.2 Secondary States

Within each primary state, an entity has a secondary state. This state is

the state of responsibility for producing the next reference event at a given

interface.

Table 3 lists the entity-interface state codes. The six possible entity­

interface states at the local interface are assigned the numbers 0-5. However,

the entity-interface states of the system at the remote interface are assigned

the numbers 0-1 (indicating the secondary state only) because unpredictable

12

transmission delays render unknowable the primary state of the system at that

interface.

These state codes will be used in the session profile (Section 5) and in

the protocol file (Section 6).

Table 3. Entity-Interface State Codes

STATE

Primary Secondary

LOCAL USER
RESPONSIBILITY

AT LOCAL
INTERFACE

SYSTEM
RESPONSIBILITY

AT LOCAL
INTERFACE

SYSTEM
RESPONSIBILITY

AT REMOTE
INTERFACE

Idle

Access~UIT

Disengage.

No

Yes

No

Yes

No

Yes

13

5. DRAW THE SESSION PROFILE

A session profile is. a diagram of the flow of information among the

connected entities during a data communication session. A session profile could

dontain the following elements:

• Rectangles. Rectangles contain commands and expected
responses from the entities.

• Directed Line. Directed line segments connect rectangles and
indicate the flow of information. When a line segment crosses
a user-system interface, an interface event has occurred.

• Enti ty- Interface State Codes. These three code numbers
indicate the state of each of the three entities (about each
interface) following the preceding reference event. The order
of the three codes at each interface is as follows:

• Source User-System Interface. At the source
user-system interface, the order, from left to
right, is

• source user at source interface,

• system at source interface, and

• system at destination interface.

• Destination
destination
from left to

User-System
user-system
right is

Interface.
interface,

At the
the order,

• system at source interface,

• system at destination interface, and

• destination
interface.

user at destination

• Primary Reference Events. These events may be shown at the
interfaces.

The data communication session begins when the source user issues the first

command while the communication system is in the idle state. Then, from each

command/response rectangle, one or two line segments extend to the next

command/response rectangle(s) (depending upon the responsibilities whose

possibilities are listed in Table 2). This sequence continues until the system

returns to the Idle state. Figure 3 is the schematic session profile

14

ISOURCE USER SYSTEM DESTINATION USER
TI START I I 0

xmit,.net

II I Wrile(C l) I .I Read (CI) II (I I 0)"1
IDLE 1

2 I Read (RI)
L 1

I1 I I 0 I Wrile(RI)

1 /"" ACCESS REQUEST
3 I I

I
Wrile(Cz)

I 2 3 0-1
Read(Cz)

Lr
o 1 1

Transfer (Cz)

IReceive (Cz)

1
Wrile(Rz) II Receive(Rz)

Transfer (Rz)

4 I Read(Rz)
I Wrile(Rz)

r 3 2 0

1
5 I

1 ~.NONORIGINATINGWrile(C3) I 2 2 II Read (C3)

I USER COMMITMENr
ACCESS Transfer 1f3)

1 Receive (C3) ITIME Wrile(C3)
"' "I Read (C3) Io 2

1
1 II Receive (R3)

1'1 3 2 I Wrile(R3)
Transfer (R3)

I Receive (R3)

I6 I Read (R3) L Wrile(R3) 1I 3 2 0

ACCESS CONFIRMATION/ I I .1
Read (R3) I7 Wrile(R3)

1 0 , 3 1
~TARTOF 1BLOCK TRANSFER

g I. I I Read (wrile block I) ~ 1 Write (write blockl) IWnle (read block I) I ~ Read (read block I) I·2 3 I 0 , 2 I

t 1I
1Q block I I l

Read (block I) lTransfer (block I)
Receive (block I) I

1 "I Wrile (block I) J blockl I1
-I

INPUT I Read (ready)
L 1

Wrile(le'ldy) I I W 1 J Read (ready) I10 TIME Ie 3 2 0 II nle(madY~ 3 "I

j
1 END OF 1BLOCK TRANSFER

• •• •• •

OUTPUT
TIME

j

Figure 3. Session profile for theschernatic protocol.

15

ISOURCE USER SYSTEM DESTINATION USER

I START 1 1 0
xmit,.net

I1 I WIite(C I) I J Read (C1) II (I 1 011
IDLE J

2 I Read (Rl)
I I Ir I I 0 I Wri!e(Rl)

1 / ACCESS REQUEST
3 I I

Wri1o(C:z} Read(C:z} U o 1 1
I I 2 3 0"1 Transfer (C:z) IRec<ive (C:z)'1

1

rJ
Wrile(R:il

I
I Receive(R:z}

Transfer (R:z)

4 I WIite(R:z}
Read(R:z}

I 3 2 0

1
5 I I ~ NONORIGINATINGWrite (C3) 1 2 2 Il Read (C3) I USER COMMITMENT

ACCESS Transfer (C3)
Receive(Cy

1TIME '1 Wrile(C3)
3 ~: Read (C3) I(I 2

1
r

Ir Receive (R3) rI 3 2 I Write (R3)
Transfer (R3)

I Receive(R3) r6 I Read (R3)
I. Write (R3) 1r 3 2 0

ACCESS CONFIRMATION/ I I r
Read (R3) l7 Write(Ry I 0 2 3 1

~TARTOF 1BLOCj< TRANSFER

8 I Wrile (read block I) i r Read (wrile block I) 10 I w· I-2 3 1 ~ Read <read block I) I 2
2 l DIe(wnlebiockl)

L 1I
I

9 block I I 1
Read (bloCk I)

Transfer (block I)
Receive (block I) -,

1
Wlite(block I) r block 1 I1 1

INpur I Read (ready)
L I

Write (ready) I r
-, .1

Read (ready) I10 TIME I (3 2 0II Write(read~ 3 1

1

1 END OF 1BLOCK TRANSFER

• •• •• •

OUTPUT
TIME

j

Figure 3. (cont'd). Session profile for the schematic protocol.

16

corresponding to the command and expected responses listed in Table 1. Along

with the activities, it shows the primary reference events (except for blocking

events), the state codes of the three entities about each interface, the duration

of the communication states, and the Input Time and Output Time (which appear

equal in duration only because this is a schematic diagram).

Before discussing the schematic session profile further, the entities and

their operations are described.

A. Active Peer Entities

The participating entities are the two end users and the system. End users

are active in one sense: they provide logic (i.e., application program

instructions in RAM cause the system to perform operations). Systems are active

in two senses: they provide logic (i.e., operating system instructions in ROM

cause the system to perform operations), and they provide the (electric and

magnetic) means to execute instructions from both the end user application

programs and their operating systems. Because logic is provided by both

entities, the schematic session profile por1:rays both the end users and the

system as active peer entities.

B. Entity Operations

Four types of entity operations are specified in the schematic session

profile: read, write, transfer, and receive. Each operation has an operand that

is either an instruction or user information. The read and write operations

represent user-system interface events as operands that are passed between each

end user and its proximal portion of the system. However, the transfer and

receive operations do not create user-system interface events; they represent

activities within the system.

A data communication session may require thousands of instructions to be

read or written. Moreover, several steps (i.e., interface events) are required

to complete each of them. 4 However, the schematic session profile shows only

4As CPUs are currently designed, each instruction must be fetched (from
program memory), decoded (by the instruction dE!coding unit), and executed (by the
timing and control unit). Fetching requires a few program memory-CPU interface
events, and execution requires a few data memory-CPU interface events (if the
instruction has a data operand).

17

those user-system interface events that are necessary to evaluate performance

(except blocking events).

Since the schematic session profile is intended to be expository, it states

the fact that all instructions are read or written - even if the instruction,

itself, causes the system to read or write. For example, the symbolic

instruction, "read block 1," which causes the system to read block 1, must first

be written by the end user to the system. Hence, this write operation has the

instruction, "read block 1," as its operand, and it is listed in the schematic

session profile as

Write (read block 1).

5.1 Initial Idle State

5.1.1 Source User-System Interface

The communication system is initially in the Idle state. After the

application program xmit_net is started, it can issue zero or more commands prior

to the Access Request (all commands denoted by C1) and receive corresponding

responses (all responses denoted by R1).

5.1.2 Destination User-System Interface

There is no activity at the destination user-system interface during the

initial idle state.

5.2 Access State

5.2.1 Source User-System Interface

The Access State begins when xmit_net attempts to access the remote

computer by writing the command, Cz . In connection-oriented sessions, this

command is the primary reference event, Access Request. After the response, Rz ,

is read at the source user- system interface, the source user invokes the

destination user by writing the command, C3 • The application program at the

destination site is called recv. The source user then reads the response, R3 •

The primary reference event, End of Access, occurs when the source user

writes the command to read the first block of user information.

18

5.2.2 Destination User-System Interface

When the command, C3 , is detected at the destination user-system interface,

control is transferred from the source computer operating system to the

application program recv. The destination user is committed to participate in

the session; this is the primary reference event:, Nonoriginating User Commitment.

In connection-oriented sessions, user information is entered only after

this event is confirmed at the source user-system interface (i.e., after R3 is

detected).

In connectionless sessions (e. g. , message-switched .and datagram services) ,

user information can be entered before the nonoriginating user is committed.

The destination user writes, R3 , to the system. The system writes a

response to the destination user.

The next (and last) reference event at this interface during the Access

State is caused when the destination user writes a command to the system to write

the first block of user information to memory.

5.3 User Information Transfer State

5.3.1 Source User-System Interface

The source user writes the command to the system to read block 1. The User

Information Transfer State begins with the Start of Block Transfer for the first

user information block. The system reads block 1 and transfers it to the

destination portion of the system. The system writes "ready" to the source user.

This sequence of "write" commands and their responses is repeated for each of the

N user information blocks that is transferred.

5.3.2 Destination User-System Interface

Receipt of the block at the destination user-system interface is the

primary reference event, End of Block Transfer. It is received when the system

indicates that the block has been written; the destination portion of the system

writes "ready" to the destination user. This sequence of commands and responses

is repeated for each user information block that is received.

The state codes at the destination interface are 22 only for the first

block because the destination interface does not know if the first block has been

written. The state codes alternate as 23, 32, ... after the first block.

19

5.4 Disengagement State

5.4.1 Source User-System Interface

The Source Disengagement State begins when the source user writes an end­

of- text character, C4 • This is the primary reference event, Source Disengagement

Request. After it reads the UNIXtm prompt, R4 , it writes a command, Cs , to

disengage. The response, Rs , from the source portion of the system is the

primary reference event, Source Disengagement Confirmation; it marks the end of

Source Disengagement Time.

5.4.2 Destination User-System Interface

Destination Disengagement Time begins when the destination portion of the

system writes "ready"to the destination user. Destination Disengagement Time

ends when the end of the recv program is reached. This is the primary reference

event, Destination Disengagement Confirmation.

5.5 Final Idle State

5.5.1 Source User-System Interface

After Source Disengagement Confirmation, Rs , is read, the source portion

of the system is returned to the Idle State.

5.5.2 Destination User-System Interface

After the end of the program is detected (Destination Disengagement

Confirmation), the destination portion of the system is returned to the Idle

State. s

sThroughout this six-volume report, action required of the experimenter is
described in a shaded block.

20

6. CREATE THE PROTOCOL FILE

Protocol files are read by the source end user (the application program,

xmit_net). One protocol file exists for each network (and also for each site

that is accessed by a telephone number), and it must agree with the session

profile at the source user-system interface. 6

This section describes the contents of a protocol file, describes both the

schematic protocol file ana a- sample protocol file fot a direct-dial network, and

shows how to create a protocol file.

6.1 Contents of a Protocol File

A protocol file isa text file that contains three types of lines:
\ ... '1-

• ':' Nonexecutable Comment Lines. They have a: # in column one and
, can be placed anywhere.

\ '

• Executable Command/Response Lines. They contain commands on
the left side, the (expected) response on the right, and the
lilli character sequence between them. The Li character
represents either the blank charact:er or a tab.

• Executable Time Stamp and Entity State Code Lines. These
lines cause the time to be recorded. They have an * in column
one. The * is followed by three digits, the lilli character
sequence, and three more digits.

• The left-hand three digits are the entity state
codes of the three entity-interface
responsibilities about the source interface
following the previous response.

• The right-hand three digits are the entity state
codes of the three entity-interface
responsibilities about the source interface
following the next command.

6.2 Schematic Protocol File

Figure 4 is the schematic protocol file. It shows the sequence of

commands, expected responses, and entity state codes at the source user-system

6A network can be defined by a unique combination of pairs of end users,
telephone numbers (e. g., numbers of the public data network at each destination
site), bauds, window sizes, etc. If there is more than one protocol file, the
proper file will be selected by the network argument of the runxt shell script.

21

interface as shown in the schematic session profile. The codes in parentheses

in the session profile are not listed in the protocol file, but are embedded in

xmit net. The minus sign preceding the state codes 231 indicates the end of the

access state.

~It.

t.lt.
of access

~l~ 2~i
t.lt. R3 = READY
t.lt. -231

access - Beginning of user information transfer
user information transfer - Beginning of disengagement

t.lt. R4 = %\s
t.lt. 450
t.lt. Rs

disengagement

lrb
Beginning

C2
320

= recv\r
320
End of
End of

= \e
540

Cs
End of

*#

#

Figure 4. Schematic protocol file.

Figure 5 relates the schematic session profile and the schematic protocol file

to each other:

• Figure 3. Figure 3 is a schematic session profile that shows
time increasing down the user-system interfaces, and the
interface events are numbered along the left margin. Figure
5 shows the source-user interface as an undulating curve and
those interface event numbers are encircled.

• Figure 4. Figure 4 is a schematic protocol file. Figure 5
shows its executable code and state codes within the two
rectangles.

6.3 Sample Protocol File

Figure 6 is a sample protocol file for a direct-dial network. In this

case, two computers are connected toa public data network by modems. Each

executable line is numbered; this number is not part of the file, but is for

reference only. The commands are listed on the left, and the last few characters

of the expected responses are listed on the right. These characters are unique

among all possible expected response character strings. This protocol file

contains no unnecessary time stamps. During a test, each command will be written

to the system, and the response will be compared with the expected response from

22

• • •

C;::'"
3a:

(Rea

,<?~,twJ'~:2:a~r"" ..

Figure 5. Sequence of commands, expected responses, and state codes at the
source user-system interface of thla schematic session profile.

23

- "/#: Protocol File for Direct Dial From Laramie to Boulder
1 AT&V\r 818 OK
2 * 110 818 230
3 ATDT9,303-497-2l34\r 818 00
4 \r\d\d 818 ogin:
5 net\r 818 ord:
6 test\r 818 %\s
7 * 320 818 221
8 recv\r 818 READY
9 * 320 818 -231
10 "/#: logout sequence
11 \e 818 %\s
12 * 540 818 450
13 logout\r 818 RRIER

Figure 6. Protocol file for a direct dial network.

the protocol file. Each command and response will be discussed in the order they

occur in the protocol file.

6.3.1 Preliminary Activities

As stated in Section 5.1, any command/response lines prior to the first

time stamp

(Le., * 110 230)

represent activities that occur prior to the Access State. For example, the

first executable line in the sample protocol file contains the command

7The \ followed by a character is an escape sequence that is considered
to be a single character (not two). The following escape sequences may be used
in the protocol file:

\r carriage return.
\d delay the command for 2 seconds.
\s provide a space.
\e end of text.

24

which requests a listing of parameter settings from a modem. Since this command

is not needed to access the destination site, it is placed before the first time

stamp. The expected response for this command is

OK. 8

6.3.2 Access

The second executable line is the mandatory time stamp mentioned above.

The third, fourth, fifth, and sixth lines contain the following command/response

pairs:

ATDT,303-497-2134\r AlA
\r\d\d AlA
net\r AlA
test\r AlA

00
ogin:
'ord:
'%\S9

A more complete expected response to the fourth line would be

login:

and a more complete expected response to the fifth line would be

password: .

However, the last few unique characters of these strings are sufficient. The

expected response to line six is the UNIXtm prompt (1. e., %), followed by a space

8Three sets of time stamps have been incorporated in the transmitting
application program xmit_net. The remainder must be in the protocol file. The
three sets incorporated in the transmitting program are:

• Initial set-up time stamps with the state codes 110 and 110.

• User Information Transfer time stamps which follow the negative
state code at the end of Access. The entity state codes are 231 and
320 for each block transferred and 441 for Source Disengagement
Request.

• End of Disengagement time stamp with entity state codes 110.

It is assumed that the first line in the protocol does not start the Access
function, but is placed there to set parameters in a modem or packet
assembler/disassembler (PAD). The access function should not be started until
after encountering time stamps and a set of entity state codes such as 110 and
230, respectively.

9% is the operating system prompt established in the C shell file, . cshrc ..

25

(i.e., \s). The next command/response line (i.e., line 8) is mandatory. It

invokes the destination user (i.e., the application program recv) which responds

with the string READY. The end of Access is indicated by the negative state

codes, -231.

6.3.3 User Information Transfer

The ninth line, mentioned· above as marking the end of Access, is a function

delimiter line. It also serves to start the User Information Transfer function.

User Information Transfer ends with the eleventh executable line:

\e

The \e (i.e., end of text) character is sent to the destination site, ending the

User Information Transfer function. It also causes the primary reference event,

Source Disengagement Request.

6.3.4 Disengagement

The twelfth executable line is the time stamp line.

executable line contains

The thirteenth

logout\r RRIER

where the command logout is followed by a carriage return (i.e., \r) and the

string RRIER is the last few characters of the expected response to logging out

of the source computer: NO CARRIER is returned by the local modem.

6.4 Create a Protocol File for Each Network

Protocol files are contained in directory usr/net/proto. They are named

net-aaaa.bbb where aaaa identifies the network and bbb identifies the source

site. (A unique identification is required if the source site is accessed by a

telephone number.) Both the network aaaa and the source site bbb must be defined

in netcodes (as described in Section 4.3.3 of Volume 2).

Each command and its expected response are listed on a line. The command

is listed first (1. e., a set of contiguous characters). This is followed by the

character sequence 818 (where 8 is the blank character or tab), and some or all

of the expected response. (A set of unique contiguous characters - usually only

the last three, four, or five.)

26

Command/response lines cannot exceed 75 characters unless HAXLINE is reset.

MAXLINE is in the header file pdn_test.h which is located in directory

usr/net/src/d3a. Additionally, there can be no more than 75 lines unless MAXCMD

is reset in pdn_test.h.

27

7 . MODIFY THE TRANSMITTING PROGRAM

The transmitting program, xmit_net, is a C program that is located in the

directory /usr/net/src/d3a. It reads the protocol files and must agree with

them. Specifically, xmit_net contains a sequence of status statements. They

have the following form:

status = net_access(city, net, PHASE, &fd_netin, &fd_netout);

where net_access is a C function (contained in the file connect. c) , and PHASE is

a dummy argument representing one of the four phases : SET_UP, REWIND, CONTINUE,

and CLEAN UP.

Yhen a status statement is executed, control passes from xmit_net to

net access. Control then passes from net_access to other subprograms, depending

upon the value of the PHASE argument:

• PHASE = SET UP. Yhen PHASE = SET_UP, the protocol file is
interpreted by subprogram parsecmd and stored in an array
called Dialogue. This array contains alternating lines of
commands and expected responses as well as lines having an *
in column one.

• PHASE = REWIND. When PHASE = REWIND, the global variable
Response is set to 0 so that Dialogue can be read from the
~eginning.

• PHASE = CONTINUE. When PHASE = CONTINUE, subprogram converse
reads a command and its response from the Dialogue array.

• PHASE CLEAN UP. Finally, when PHASE = CLEAN_UP, the file is
closed.

Figure 7 is a Venn diagram that shows the calling relationship among

several important subprograms of xmit net. Figure 8 is a structured design

diagram showing the procedures of xmit net during a test .

•••••••••••i~i~~j::._~.~I~~ ••••~~ •••••l.i~~~ ••••••~I~~~Ii.~~~.~ ••~•••••••••••••••••••••.:•..:•.:•..:•.:•...:•.:•...:•.:•...:•.:•..:•.:•..::.:•..:...:..:..:•..:•.:•.:•.:•••••••••••••••••••••••••••••••••!.......'I ••I..............:: ..:[.:[..:•.:•..:•.:•..:[.:[..:•.:[..:. !I!II! ·!IIIIIIIII.I·III

28

progra".: Ilet_aee••
Op.",Mod.". a"d Co".".,,,,tcat.,

witll til. LocalLoop, til. Public Data
Ndwork, til. R.".ot. Op.rati"g Sy,t."., dc.

progra".: e_vene
(calZ.d wll." PHASE = CONTINUE)

S."d, Co".".a"d, to til. Ndwork
a"d R.ad, R.,po",.

progra".: panecm.d
(caU.dwll." PHASE = SET_UP)

Tra",!o,."., til. Protocol Pil.

Figure 7. Venn diagram of the major subprograms of xmit net.

29

Start Test

array: Dialogue

Pbase =REWIND
Reset Converse
Pointer to Begin

Access

Pbase = CONTINUE
Converse Reads

Dialogue file
Until Timestamp

(Code = 441)

Pbase = CONTINUE
Converse Reads

Dialogue file
Until Timestamp

(Code = -231)

• • •

Loop Until
All Blocks
Are Read

FOR Statement

,...

Pba~=SELUP
Reformat

Protocol File

Pbase = CONTINUE
Converse Reads

Dialogue file
Until Timestamp

(Code = 541)

file: net-aaaa.bbb
Protocol

File

Read Clock

Pbase = CLEAN_UP
"Cleanup"

Close Files

Figure 8. Structured design diagram of Xmit net.

30

8. CREATE THE END USER IDENTIFICATION FILES'

There is an end user identification file for each end user. Each end user

must log in to the home directory of net, and create the file. They will be read

by subroutine preface in the C program access.

8.1 Source End User File

This file is called preface.x. The seven lines of identification are as

follows:

1. " The first line identifies the experimenter.

2. The second line is the four-digit test number nnnn which is
assigned by the shell script runumb (it must be 1000 or
greater).

3. The third line is Source.

4. The fourth identifies the type of test. lO

5. The fifth line is the name of the source site computer.

6. The sixth line is the name of the destination site computer.

7. The seventh line contains two digits. The first digit is
either 1 or 2, depending upon whether the session is
connectionless or connection-oriented, respectively. The
second digit is either 1 or 2, depending upon whether the
disengagement is independent or negotiated, respectively.

Figure 9 is an example of this ftle.

lOThere are two types of tests: user information transfer tests and access­
disengagement tests. However, the word User always appears here. The type of test
is also entered as an argument when the shel~ script runxt is invoked; it is this
argument that determines that the data extraction software performs correctly ­
not the fourth line of the preface.x file.

31

NTIA-ITS (Boulder)
2260
Source
User
NTIA - crestone
NTIA - eldiente
22

Figure 9. Example of a source end user identification file .

.:.:.:.:::::::::::::::::.... ::::::::::~/:::::::: ~:}) ;=;=;:;:;:";:::;,;,;".;.;.;.;.:;:::.::::::::::::::::::::::::;::::::::::::::::::::;:: .:.:.:.:.:.:.:.:.:'.'; ',':':':'.':' '.' ,', ;.:.:.:.;.; : ',. :::::::::::::::::::::::::::::::::: :~i~~~~tfj(' :.:.:.:..:..::::::i;' "?;;;~;:;;~~~:~~~:~:;: :.:.::;::.:.: ':::':'.:.:.:.:.:::.:.:.:.:.:.:::;.::::::::;::: :::~:::::::::::::::: :::::::::::::::~:~{:~:~:~:~:~:

:::::::::::::>:·::d··::·:·:·:;'E'·£h·:::::·:··:·:£ij~BB~ii .•:: .•:·.c:•.•:•.•:•.•:a.::it6h ·.:~.:.:.~.:.:·.~.:'.•·.~.·•.•·.1:.t.I:.L.·~.:~.:::.•..•.~.:•..:•.~.•.•••.~.::.:.p...:.: •..~.:.•.:.:~.••..~.·::.:.·'•.'~.:.:]~~#.~.'•.. ::it.~tij·:a;~.'•.• :trt:thi:::·
:.!;:a.•:.••.·W.•:~.:·.:.~.:•.:•.:t.·•.::.b.•:.··.•~.·•.:..•~.:..•.:e.$.:.·:.;:.•.;n.•.•·.•.r.·•.•:.b.·•.:.P.:..•.ht.••.•·.•p7.!~.•.•:.r.e.·•.r.~..•.r.~.:.F.L.•j.•C.::.j..:e.:.:.;:;···.<:::2••• :::..••·:••:::.::.:::::::::::'{::;:;=:::./\;."

.. . :•..:· ..:•..:·..:· ..:•..:· ..:•..:•..:·..:1.:•..:•..:•..:1.:•..:•..:·..:·..:·..:•..:•..:•..::..:1..:•..:•..:•..::..:1..:•..:·..:•..:•..:•..::.:•..:•.:•..:•.:.:•.:•.:•.:•.:.:•.:•.:•.:•.:•.:.::::::~:~:~:~:~:~:::::: ::::::::::::~:~:~:~:~:~:~:~:~:~:::::::::::::~:~: :~:~:~:::~:::::::::~:~:::~:::::::::::::::::::::~:::::~:::~:~:::-:::.:. :.:.:.:.:.:::::::.::::::::::::::::;:::::;:;:;:::;:::=;::~::::::::::::::::::::.::.::.'.:.'.:.'.:.'.:.'.:.'.:.::.::.:.: .•.:.:.:.•.:.•.:.:.::'.::'.::'.::'.::'.::'.::'.::'.::'.::'.:::.::::::::::'::.:'::.:'::.:'::.:'::.:'::.:.::.:.::.:•.•.•:•..:.::..:;:.:..:•.:;::...•:.•••.':;..:•.'::.:;'.:•.::.:'.::':;'.:•.:'.::.:'.::.:'.::.:'.::.:'.::.:'.::.:'.::.:'.::.:'.:: ..:'.:~ ..:'.:: ..:'.:: ..::.:: ..:'.:: ..:'.:: ..:'.:: ..:'.:: ..:'.:: ..:'.:: ..:'.:: ..:•.•:•.:.•.:•.•..:::.:::.:::.: ::..:•.::.::..:.}::{:frt fff=:{:rr:::=:{{{:=:= ;:;:;;:;:=:=:=:=:=:=:=?f;{{:)::::::;:;:::;::::::::::-:::>....:-....

8.2 Destination End User File

This file is called preface.r. The seven lines of identification are as

follows:

1. The first line identifies the experimenter.

2. The second line is the four digit test number which is
assigned by the shell script runumb.

3. The third line is Destination.

4. The fourth line identifies the type of test. See the footnote
concerning this line for preface.x.

5. The fifth line is the name of the source site machine.

6. The ~ixtp. line is the name of the destination site machine
(called destination identifier).

7. The seventh line contains two digits. The first digit is
either 1 or 2, depending upon whether the session is
connectionless or connection-oriented, respectively. The
second digit is either 1 or 2, depending upon whether the
disengagement is independent or negotiated, respectively.

Figure 10 is an example of this file.

32

NTIA-ITS (Boulder)
2260 .
Destination
User
NTIA - eldiente
NTIA - crestone
22

Figure 10. Example of.a destination end user identification file.

33

9. CONFIGURE THE PORTS AND CREATE THE CLOCK CALIBRATION FILE

9.1 Link the Communication Ports

9.2 Set the Communication Ports

Figure I is a schematic diagram showing how the ports are to be connected.

NTIA software assumes the clock receiver is a Kinemetrics True Time1M Model 468

Satellite Receiver.

9.3 Create the Clock Calibration File

The time of each reference event is recorded. However, each recorded time

must be corrected due to the transmission delay between each computer and its

satellite clock receiver. Let To be the reference event time as reported by the

satellite clock receiver.

34

9.3.1 Response Reference Event Time

After a response is read, a single character is transmitted to the

satellite clock receiver to obtain the time of the reference event, Ta • This

tl:'ansmission requires some time, say t 1. Therefore, the time obtained from the

satellite clock receiver, To, is later than the reference event time, Ta • The

actual time (after) the response is

9.3.2 Command .Reference Event Time

Before a command is written, a single character could again be transmitted

to the satellite clock receiver to obtain the time, and adjust it for

transmission time. However, it is simpler to use the previously recorded time,

To and adjust it. A number of characters, say k characters, is required to

define the time. They are transmitted to the computer and read individually.ll

The required time is t z (which will be approximately k times t 1). The actual

time (before) the command is

...................•..:.;.:.;.:•.;.:.:.;.:;:.:>..:.: :::::::'.::;:::.;:}:: •.•.•••.••••' ••• :.:.:.:.:.:.:.:.:.:.:::::::::::::::::.:.:.:.:.:•••••••••••••••• ,' ?/~~ ::;:;:;:;:::::::::::::::::::::: :.:.:.:.:.:.:.::::::':.:.: : :.;.:.:.. . '.:.' .:.:.:.:::.: : iiiJ!iiim \:;;;:,..:

,:

.,:.,',:.,,:.,:.,:.,' ,:.,.:•.:•.:•.:.,.:•.:.,.:.,:.,:.,:,:.,:.,:,:.,:.,~,:.,:.,:,:.,:.,:,:.,::,:,:.::,•. ::.• ,::,::•.•:,:•.::,:.:,::'.:.:..:.,:.',.:.'.:.,.:•.:.,,:.,:.,,:.,:.,:.,',:.,:.,',:.,:',:,:.,:.,:,:.,:',:,:•.:,:.,f.:•.:.:.,:.:•.:,:.,:,:•.:::.::••f:·••,:,:.:':.,',:.,••,',:.":.,,:.,,:.,,:.,,:.,:.,:,,:.,,:.,,:.,:•.',,:.,:•.:,:•.::•.:.:•.::•.:,:•.::.,:,:.:.,:,:.:',:,:. '.. .. ' '.',',',','. ,., ..' '.'.',', , ','.',',., , '.'.',',', ' , , ,'.'.'.'.'.',', , ,', '••'.":'••' ',::,::,::,::,::.::.::.::.::.: :,',:.',:,:.:,:.:,:.:,:.:.:.:.:,:.:.:,:,:.:,::',::',:::,:::,:::.:::.:::.:::,:::.:::,::~,:,:',:,::',:,:: :(.. '?!:~: ~:~:}!:: ~:~::.::;:;:;:;::;:;:;:;:;:;;;:;~;;;;; ~; ~; ~; ~; ~; ~; ~; ~; ~;;;;; ~: ~:t\~::::::::::::::::::i;;;;;;;;;" ',;I,;I,;i:,:/,~ ~,~i~,~ ~,~,~ ~,~ ~,~ ~,~ ~,~ ~"~ ~,~,~ ,: ~,: ~,',~ ~,~ ~,~ ~"~ ~
,i:,.,i:,.,i.,~.t,~.~,:.:,:.::.,:,:,i,:,i:"i :,,:,:,,~,' ~,',~,' :,:i:,.~,·~,·.~,·i,.~.·:,: .•.:i" •.:i,,:,:i,,~,·:::,~,'~:',.,::::",:::",:::.",:~:'.:,:::.,:,\::,:,::::,:,::,.,:,::'.",::::,:,: .,~,:,::,.",:,:,i,~ ..:.,:..\,\,\t,:\)\::>t~:~: .' ,,.., '.: '. :::,::::,::::,:::'

'.:.:':':':':":':::':".::::::::::::::;:;:;:;:::::;:\ :;:::::::::::::::;::~;;:})~:}?:(~~~~~~~t~~)!~)) ::::::::::::;:;:;::;:;:;:;:;:;;;;;;;;;;::;:;:;:;

The C program calibrate 70rrects the time to within approximately 5 ms. The time

must be calibrated only once - before the experiment begins. 1Z For example, if

t 1 = 2 ms and t z = 24 ms, the file is as follows:

2
24.

llIt is slower but more reliable to read the characters individually than
as a block.

lZHowever, a
change in hardware
operating system.

clock calibration file must be created whenever there is a
or software, such as a change in the serial board, buffer, or

35

These times will agree for each end user only if their hardware and software are

identical.

36

10. SET THE TIME LIMITS FOR RESPONSES

A timeout is a factor of three times a specified primary performance

parameter. There is a timeout value for each primary delay performance parameter

(i.e., Access Time, Block Transfer Time, Destination Disengagement Time, and

Source Disengagement Time). To assure that the extraction software is not unduly

suspended awaiting a response, another type of "timeout" value should be

specified. It should be longer than the maximum of the above four timeouts.

(The timeout variable is called toutcccc where cccc is the baud.)

:::::::::::::::::::~::::::;:::;:~:;:~:~:~:~:~:~:~:r;~;;;;;;\;:;:~:~:~:~:;:::::::;::::::;:;:;;;;;:;:~:;:;:;:;;;;;;;;;;;;;;;~;;f ;:::;:::::;:;:;:;::;:; :t;:;;:; ;i;:;:~:;:~;~:::;:i;:;::;:;:;:::':':' :.:.:.:.:.:.:.:.:.:.:;:;:;:;:;:;:;:;:;:;:::;::':':' ..:::::;::::;:;::::::.:.;.:.............. :::::::::::;:;::::;:rr ;:; ::;.:.:.:.:.:.::;::::::::::.... /{;:':':":':'.. :::::::::;:: ;.;:;:)r:;; :::;:;\;

rlllt...•.;.•.r.t.•.:.:.:.t.I.I:I.v::.:..~.•.j.t.~.~.••.t.l.!.~.t.•.i.i.i.r.;.I..~.~.t.·~.r.:.i.l.;T.:.:t.;p.i.•..~.I.i.t..~.;.t.:.I.r.,~.;.~.;.:.t.l.i.~.i.!.,f.~.i.;.i.i.i.~.i.l.r.'.'.t.i.i.lt..i.i.;.i.;.~.i.:.~.t.:.~.t.i..~~..I.~.~.!.~..~.:.~;.i..flltl"'I•.;:•.I::;..i•.•.:;.j:.•:.;:..!•..:.I:I.:.I.::'.:.:'::.:
...... :r i!i~i~i~i~~~i]l]ii1i.ii.ii.ij.!j.~j.f!.~!.ii.f!.jj.f.i.f.f.f.i.i.~.~.~.t.i.i.i.j.i.i.i.j.i.j.!:i:!:!:!::.i.;.i.:.!.- :.: :.
;:;:;:;:;:;:;:;:;:;:::;:::;:;:::;:;:;:;:;:;:;: :;:::::;::::::::::::::::::.:.::;:;::::::::::::.:.:.:::::.::::;:::;::::::::.;. ;~;;;;:::~::::::::::::::::.:.:::.:.: , ;:;:::;:;;::::::::;=;:;:;;;=::;:::::;::::=:::=:=::::::;::::=:::::::::::::::::::::::::::=:: . :.:.:.:.:.:.:..:'.' '.':~.':' ':':~:'.~..~.:~.~..~..~..~..~..;..;.:;.;..;..;..;..;..;..;.:;..;.:;..''..::: .
~~rt;rrfif>?:::~:::::: ::::::::::::::::::::::::::~{:rrr;:{}{:::tftr :::::=:=:::::=:=:::::;:;::::::;.:.:.::.:.:-....... . :.: :.:.::.:.:.:.:.:.:.;.:::::::::::::::::::.:::.:::;::::::::::::::::::::;:;:;:;:;:;:;:;:;::::::::;;:::::::::::;::: . "'::~:r;:::::::

37

11. CONDUCT A TEST

When the experiment is designed, some of the variable conditions and levels

necessary to conduct an experiment are defined. Many of the variable conditions

are listed in the default file (Section 4.3 of Volume 2), which is located in

net's home directory.13 The performance values are specified in the spi.acd and

spi.xfr files (Section 5 of Volume 2). Although these values are specified for

the preliminary characterization test (Section 6 of Volume 2), perhaps they

should be reconsidered at this time.

During User Information Transfer tests, blocks of characters are

transmitted in a psuedorandom order from the following set of 64 characters:

A-Z, a-z, 0-9, :, and ;.

11.1 Synchronize the Clocks

Once for each experiment, each end user must synchronize the UNIXtm clock

time with the satellite clock time using the C program st (i.e., set time). The

super user must change the ownership and mode of st.

13Variable conditions listed in default are: Source Site, Destination
Site, Block Size, Interblock Delay, Number of Accesses, and Interaccess Delay.
The number of blocks is also listed, but this is considered to be a fixed
condition (due to the precision that is specified).

38

The program st will list the initial satellite clock time, and it indicates that

the computer clock is set.

If they are not synchronized, something is wrong with transmission, the

receiver,the antenna, or even the satellite; a delimiter (e.g., ., #1:, etc.) will

appear to the right of the time in the first line.

If they are synchronized, the UNIXtm clock is automatically set to the time

listed in the second line.

IJ.J.J.J.J.~..I.I!.•..:.:.:i.il_.i.:a.i.;;.i.:·.~.•.:.·:.r.:;:•.:.:..•.::.:.,..:.r.:.i.:.·.i..;:tt.•.;;.•.·i.:::
n::;.:::...;·•.:;:::::.:.;:.:.;::.::.;~.e'.··.:· ..;•.·..;i.;i·:::•.:;.•.;•.• :.;.;..:.:;.•:•.•.:•.~:.;::.•;i:•.;:.•.i.•;i.•.•i;•.•i.;.i.:.••.•.•...;.:.·.p.;·.::.:.•:.·.:.••.;;.:.t.•;•.i.•.•.••.•.:.•.i.J.•~.~.r.~= 1:.;:;.;.;•.•.:.:..:..:.:.:.:.:•.:1:•.•:..::.••.;•.•.:.•.•.;:.i::.•.:.1:.:.~.j.~.I.•.

.:.:-:.:-:-:.::::::::::: rrrrrfi~~ff it!!!!!!?jrttff!~~! /~fti: \i).}(:f~:f~:)ri~ ?~~~ ~rff rm :~ f!turr fitifffti . :•.;:.::.:·:;•.:.··;.;••;•.•.••;••:.;•.:.••.•;•..•·:i .•.i.i.•.;.•::;;;;;;;:;:;::::::::;;; :::::::::: ;;;:::;:;:;:;::::;;;;;;:::;:;:;::::;::;:;;;:;;;; ;.;.; :..:.:.:..:......::;: .s........................;:;:;;::;;:;:}:/:;};

The screen will return a message such as

System time - Tue Feb 28 14:04:19 1989
NBS Satellite time - 28 14:04:19
System Time off - 0 seconds.

The discrepancy (i.e., System Time off) is considered inconsequential if it is

less than 1 s.

:::::::::::::;:::;:::::::::::::;:::;:;:;:::;: ::;:;:;:;:::::;:;:::;:;:;:::;:::::::;::.::.::'.':.::.::.::.::.::.::.:.;.;.;.;.;.;.;.:.;.:.;.:.;.:.;.:.: ;:;:;:;:;:;:;: .:~.:~.~~.;~:.'~.:;.:~.:~.:~.;; ;{:); »)) /.::.~;f:::;' :?:;:::::::':':':':':':':':::. ..:'::":."::".:•.::".:~:::'::"::":;.:;';::;".:•.;~.•.. ;;.. ;:.:;.;..;.. :: .•.. :~ .•" .~.~.: ..;;•.:;;.:;:.::•.;:::;:;:;:::; ::=:;:::;:::::::::=;::::;;:;:::: ;=:::::=::;:; ~{{:f~::~fft.~ .:.~.~.~.~.~.~.~.;.~.~.~:~.~.~~.~:.~.;.,::.:~.:::(::::: ;:;:;:;::.::::. ;::;::::::::::::::;:;:;:::;::::::
:.:.;.;.:.;.:-:::::::::.:.:.:.:.::::::::::::: ::,:::,:::,:::,:,:,,;::,;:;:;:;:::;;;:;:;;;;:::::::::::::::.:.:.: .;.:; •.,..:;;..•.:;::.::::..:;:::.:.:: :':::'.;..:.;.;.:..:.:..;:':;::..:..;.::..:.::..:.:.;:..;,..;;;:;;.;.;:::::;;:::;.::;.:.:.:: ::.•.•;;: :: :::: :::.:..:;.;.::

;;;~;;:~:;:~;;:~:;:~:;:~:;:~.:;:;.:;:;.:;:;.:;:;.:;:~.:;:~.:.:~.:; :..::~.:.::..::;.::.::::.:::..::;;;.;;;: ":':':... :.:.:.;. '.':'.':.:.:..' ' .':. .:.:.: :-:.:.:-:.:-:.:.:-:-: -:.:.:.; '.';.;.:-:.:-;.: :.:.:.:.
:."t;:.:•.:;.;..,,;:...•.:;:.&..;:.•..;:.:..;:.;....:.::.::;;;'.•.;; ; ,; :;.:'.;;;..,..;::.;.;.."".:;..:;.:;•.:'....•..:; :.·,:.·.•.o::.·;•. ·;:.;;;....·;:.·.:.:;t:.·;·.·.•,·:.,••;••.:••; ;.:.• ;.: \ :::;:::;:;:;;::::;:::::::::::::;::;;;;::::::::::; ••.:••••.•:•••••::•••.•:•••••:••••••:••::.::::::: : ::::.:.;;::;:::)))j:.:){);::: ::::::::;;;;:;:;:;:::::::;;;:;:;:;:;::
:~~:~ y~.~ ~.~ ~: ~'. :j:):j:~:!:~:j:):~:);j:r:~;):j:j:~.:):j.:):j.:):j.:):j.:):j.:~:).:):~:):):~:).~:):):):).r:i.):~.).~.):).) ::/.~::/.~::::.~::i:.~:;::;~:.~::~.f.:./.~::~.;.:::~::/:~::;::~:~::~:::·.•.:::.;;~:r.;.~.:r:~:;.:·.:.•.:[.:!.:r:: !!!!;i;!.;i.;i;~!ii ·:!:!":!;f;!:f:!:f:!:f.:!.:r.:!.:f:i:::·:!:f.!.f:!.I.!.1:1:1.; ::: ::;:;:::;::::::::::;::~:::::: .1.!.i.1.i.i.i:;.j:;.j:!:j:!:!:!.!.!.!.!,,~ji.I!.,f~~i~i~~~~~~i ::::::::::::::::::;;~;~i~i~i~:~:~:~~:~;~!:::!!!i!ii

ii;i;iii;iiii~i~iii;iiii;i;;;;;;;;;;;;;~:;::; ::~i~i~~~i!~!~~~! r!i!:!:!: ::::;!;!;!::;~;!;~;~;~!~~ ::j;~~~;~~~;~r~ .?~t:;~;~;~:~:;:~:~:~:~~~~;.:.;.......... :.:.: :.:.: :.:.:.: :.:::::::: i~i~i~i~iiiiiiiiiifiiii(i;i;i;ir;i;i; :.:.:.;.;.;.;.::::::::::::::::::::::;:::::::::::::: {{))~~~~f~//::::::::::::::::::

11.2 Select the Appropriate runx Command

Four commands are available to conduct a test: runx, runxt, runxf, and

runxtf. Although each serves a slightly different function, they use the same

arguments and files. Table 4 is a list of the four commands regarding flo~

control and adjustment of the reference event times (for transmission times from

the computer to the satellite clock receiver and back to the computer).

39

Table 4. Available runx Commands

Flow Control
Option

On Off

Adjust Times

Do Not Adjust Times

The following discusses the features of these options:

• Examine Test Results Before Reduction. If the runxf or runx
commands are selected, the test data for three primary delay
performance parameters (Access Time, Source Disengagement
Time, and Block Transfer Time) can be examined immediately
after disengagement. However, the reference event times will
not have been adjusted for the transmission delays from the
computer to the satellite clock receiver and back to the
computer (Section 9.3) .14 This option is an artifact: the
correlation algorithm that checks for bit failures (Volume 4)
was originally quite slow, and these commands allowed this
algorithm to be by-passed; trading accuracy for speed. See
Section 12.4.

• Adjust Times. If the runxtf or runxtcommands are selected,
the test data are adjusted for the transmission times to and
from the satellite clock receiver (as they should be).

• Enable Software Flow Control. If the runxtf or runxf commands
are selected, flow control will be implemented. That is, the
software implements xon and xoff - regardless of whether the
network does also. If this option is selected, generally an
even number of characters are recorded at the end of log file
(indicating xon and then xoff). However, xmit net can "panic"
and send an extra xoff.

• Do Not Enable Software Flow Control. If the runxt and runx
commands are selected, flow control will not be implemented
(unless the network implements it).

14Reference event times preceding a command are increased by t 2 and those
following a response are decreased by t 1. Documentation often refers to these
adjustments as "tweaking".

40

The runxt command is the most commonly used of the four commands, and·it

will be used in all further discussion.

::::;:;:::::::::::::::;: ~.t.:~t.~r~.~~.~~.~~.~~.~~.~~.~~.~.~.~~.~~ ::::::;:::::::::::::::::. :;:: :. ',:.: :,':-: :-:.:.:.:.:.:.:.:-:.:.:.:.
::.~::.:::.~::.:::.~::.:::.:::.~::.~::.~:::~::.~ :::: '.::'.{ '.':'.' :.' :.: ':' :.::.:..... :.::'.~ ':' :.::' :.::' :.::' :.::: :.::' :.::: :.:.:~ '.: ~'.{:':':':':':-:',':':-:-:-:':-:':':':':' :·:~~~~~~t~~~~~~~~t~:frr:::::

;:•• :•••••••••••i:.i·••••i••••iii••••••••i.i••·.I•••I· :.:.:.:.:.:.:::::.:.: .

11.3 Start the Test

Each test is conducted by invoking a UNIX~ shell script, such as runxt.

This shell script requires two arguments and allows two more. Specifically, the

arguments are:

• Type of Test. 0 or u, depending upon whether the test is an
access-disengagement (i.e., overhead) test or a user
information transfer test, respectively.

• Network. <network> is the four-letter abbreviation, aaaa
(which also exis ts in file netcodes). (The network, aaaa,
specified here and the source site, bbb, specified in the
default file uniquely identify the protocol file,
net-aaaa.bbb.)

• Other Arguments. <levels of 07 or Ue> and <levels of 0e or Us>
are two optional arguments consisting of three characters each
(Section 4 of Volume 2). Each argument represents a level of
a variable condition not listed elsewhere. These variable
conditions will be used to analyze the data (Volume 5).

The shell script activates the appropriate data extraction software in the source

computer and in the destination terminal.

41

The shell script mover moves the data collected at the destination site

into permanent storage; the data extraction phase is now complete, and the data

at the source site is automatically saved in permanent storage.

i.I.•.i.!.·.•.!.•.#.~.·.•.!:·.~.·..•.:.••.·.t...•.•.~.j.iJ.·.•.·..·.:·:.i.:·:·:·.::·.•·.:~!::·:':•.~,•.II'~if~.JI.:t .•:::.:i.:..•.:i..:•.:;•..:•.:.:.•::.:nY.:•.::i.:.:.:.::::.:.·.•:.•.~:#•..:.••.•.k._\~:: .•:'.,•.:•.::•.:•.:'.::.:•.:'.. t.'.·:·.•.·'.":•.I.·:•.·.:.·.•,··.1.8,::•.·.:i!1
.........i.j.i.j.:..~.j.j.;:.•.j.[.j.j.i.j.j.[.j.j.j:.:.i.j.j.i.i.i.!:!.!:!.!:!.! .j.j.~.j.~.j.j.j.!.j.~.j.j.j,j.j.i.j,j.j.j.j,j.j,j.j.[:i:i:i.i.i.i.i.i.! ;. rrmrfrf~: . ".'".. .::f:;;'; :.;.::::::::::::::::::.............. ~:~rr:~r:~.:r:::::::::::: ·mover···· ~:~:;:;:~:~:~:~:;:;:::~:~:!:~:~:;:;::~~:~;~~~::~:~: :.:.:.:.: :.:.:.:.:.:.:.:.:.:.:.;.:.:.:.: .:.:.:.:.:.:.:.:.:.:.:.:.:.'

;:::;:::::::::::;:::::::::;:::::;::::::;:::::::: :.:.:.:.:.:.:::::::::::::::::::.:.:. :.:.;.;.:.:::::::::.:::::::::::::::::::::::::.:-:.:., ~:~:~:~;~:~:~:~:~:~:~:~:~:~:~:~~~~~:~~~~~~~~~~~~~~~::::::::::: ::::::::: :: ::.': ::-.- .. ::.. :.:::~ :.:.:.:.:.:.: :.:.:.:.:.:.......... . ::::::::::::::::::;:::;:::;:;:;:;:;:;~;~;~;~~~(: ::::::::::::::::::;~~~~~~t:~~~~~~mf:::trt~r~~~

.
:,: .::j.j ,:.: ,:.: ,:.i::.:::.i::.i::.: ~.:::.:::.:::.:::'.~::.i::.i:f.[:f.~:f..~ .f.[.·.:.i.·.:.:.·.:.~:: .:.'.:.:.:.:.:.:. :.:.:.:::::::::::::::::::::.:.:...... [~ f:[; [:: j:i: [i [iii i i.~i:., i.~ i.~ i.~ i.~ i.~ i.~ i.~ f.~ f.~ f.~ f.~ f.~ f.~ [.~ [.~ [.~ f.~ f.~:.~ [.~ [.f:.: :.::.::.f:.f [.i i.i i.i i.i j.~.i.~.i.~.i.~.i.~.i.~.f.~.f.~.i.~.i.~.f.~.i.~.i.~.j.i.j.i.i.~.i.~.f.i.i.i.i.i.i.j.f.i.j.i.i.i.i.j.i.i.i.i. i.i.i.i.i.i '. . .;.. .:.

:;:'::.:.:::::::.:::.:::;:::;:.:-:::::::;;::::::::::::::::::::::::.:.:.,.... - - ::;;::::;:::::::::::::::::::::

11.4 Example of Data Extraction Using runxt

Example: Conduct a user information transfer test from Laramie to Boulder

for the public telephone network through 9600-baud modems. Forty blocks of 512

characters are to be transferred. As an experiment, attempt to reduce the

autocorrelation between blocks by adding a I-second interblock delay.

Solution: Before conducting the test, make sure that all files are

current. Then, do the following:

• Check the preface.x file and the preface.r file.

• Make sure that the values in the spi.acd and spi.xfr files are
appropriate.

• Examine the default file. Before running this test, the
default file would looked like this:

lar source site
bol destination site
512 block size (bytes or chars)

xfr info ---
40 number of blocks
o interblock delay (sec)

ovh info ---
21 number of accesses
55 interaccess delay (sec)

Since the default block size and the number of blocks are
identical to those desired for this test, they needn't be
changed. However, the default interblock delay is 0 s. We
could change this delay to I s in the default file, but we
could pass that value to runxt as an optional parameter, -i 1.

42

• Make sure the appropriate protocol file exists. That is,
check the netcodes file to see that the abbreviation lar
exists for Laramie, bol for Boulder, and pt96 for Public
Telephone at 9.6 kbps. Therefore, the protocol file would be
named net-pt96.1ar.

• After this information has been checked, conduct the test by
typing

runxt u pt96 -1 1

at the source site. The operator at the source site can
observe the progress of the test via runxt's output to the
monitor.

• When execution of runxt ends, the destination operator logs
into the computer, enters net's home directory (/usr/net) ,and
invokes the shell script mover by typing

mover.

This completes data extraction of the sample test by moving the data collected

at the destination site into permanent storage.

11.5 Check the Results

Before proceeding, the operator should be as confident as possible that the

test is valid.

IA.i~_tr&l:.
"""""'it"':',,:,:::'j,(:':':':"":;;":""""'"""'" .,.,.,.,.,.,.,.,.,.,.,.,.,.,.""",., .,,,,,,,,,,,,,.,,,,,.,.,.,.,.:.,:,,,,, """""""""""""',', }"""':':"((:"""" """"""""""""""":"':':::''':':::':,:,'':':))#¥??tm1!iP$::::: }}}}",."•.•••••••••••••••••••.•.••••••.•.••••••••••••••••••••••• ••••••:••••••",..,',' ".".,.",)))(•••••.••....

•·.•• ·.••·.••·.••·.••. : .•.•.••.1 .• ·.1.· .•.• ·.:.1·.•.1·.·.•.I,I.I.II·.!.!I:·II••IIII.III. .:..,•........•.....,1.•••....,·...•.•1..:..•:......••........:••8:! :1......•!:•......:I:•.........:! :I :I:•.........:•.........:•.........:11::
1:•.....:•.......:!:•.h:!:! :.·•.......:•.......:•......:•.......:I:.

e

•:•.....:•.•......:•.....:•.::.. :··I.!~lii~~i_ljl2,I.~:·: ...::::::::.:..:.:.:.::::;::\::::<'{{..".........:~.:~..:~.:~ .•~..:~ ..:~.:~ ..:~.,~ .•~..:~ ..:~.:~ ..,j.:~ ..:!.~.· ..:j,•.•••••..,! ..:f..,: ..,[.,[..,[.,[..,[.,~ ..,~.,[..,[.,~..,[.,~ ..,[.,[..,[.,~ ..,~.,~ ..,[.,~ ..,[.,~ ..,[.,~ ..,[.,~ ..,!.,~ ..,j.,~ ..,j,:.: ..,i.,i .•..:.:~,.,: ..:[::.:: ..,[.:: ..,[.:[..,[.:f ..,[.:f ..,[.:~ ..,[.:1 ..,[.,~ ..,[.:~ ..:[.:~ ..:[.,~ ..:j.,~ ..:j.,i ..:i.,~ .•~.',~.' ..:j.,].,.:.,] ..,:..,[",:.,,;.,[.,[.,[..,[.[,[.,[,[.,t,~.,!,[,[,f,[.[,[.[,[.f.[.[.[.[.[[.[!.[ff[[[[[[?[f........................;.;.;.:-:.:.:.:.:.:.;.:.:. :::::::::::::;:::::::::::::::::::::::::::::::::;:::{:::::\::::::::::::-:-:.»> : .

IH~i~l. ~llriWibgfbfth~fl~W~diU~!f!·······················
.~~.~ ~.~ ~.~ ~.~.i.~.~.~.~.~.~.~.~.i.~.~ ~ ~ ~iii~i~i~ ~ ~ ~ ~ ~:~: ~:

<~~ttr:r::;:::::::::;.;.;.······· '.' :.: :.:.:-:.:.:-:-:.;.»;.;.;.>:.;.:.>:-:-:-:-:-:.:-:-:.:-:.:.> ;.:.:.:.:.:.:.:.:.:.:.:.:-:-:-:-:.;.;.:::::::::::::::::::::::::::::.:.: .

The character * prompts the UNIXtm command rm to remove all files from the

/usr/data/3x directory whose names begin with nnnn.

11.6 Test the Data Extraction Software

After critical portions of the data extraction software have been developed

or changed, they should be tested. The easiest method is to run a test. In

43

order to avoid saving useless test data, four more run commands are available:

runx.tst, runxt.tst, runxf.tst, and runxtf.tst. They are identical to their

counterparts, runx, runxt, runxf, and runxtf, except that the data are not moved

to permanent storage. Instead, they remain in net's home directories of both

computers. After such a test, the operator must either save or erase the test

data.

11.6.1 Save Test Data

1
IIIIillllili 111111111111111111 111111111 ::::::::::: ...:.:.:.:::::.:.:.:.:-;-..;., .

.........:.:.:::::::::::::~\

....' ::::;:::;:;:::::::;:::::;:.:.: ::::::::.,:. r~~

•••••.•••••••••••••••••••••••••••••2;88800 ')Jj.·.·[JJ•••••••J........ 811 ::::::::::ttt:/:\\\::;::"

11.6.2 Erase Test Data

44

12. PROCESS THE TEST DATA

The data from a test may be processed by consolidating the extracted data

from the two computers, merging the log files, copying the extracted data, and

activating a do shell script.

12.1 Consolidate the Extracted Data

Data from a single test can be processed by consolidating the data into one

computer and activating a comprehensive shell script. However, it is usually

more efficient to consolidate the data after a number of tests, say 10, have been

completed. The test data is in usr/data/3x .. The contents of this directory and

the file log (which is in the home directory of net) must be consolidated into

one computer.

The 10 files from on-line data extraction and the data. x file are

consolidated. That is, they are stored in one computer either manually by

transporting magnetic tape or disks or electronically by the using the UNIXm

utility uucp, the public domain utility Kermit, or a network utility such as FTP.

One of three types of programs is then used on the files: merge, show-o, and

reform.

The following discussion assumes that the data are copied to a diskette,

the diskette is transferred to the disk drive in the computer that is chosen for

data processing, and the data are copied.

·:.p·.··:·.::L.::•.·.•:·:.:""'.·.:.·:::.·.·m••.·.·.:.·.•a•.••.•·:·t·:·:.·.:•.•:.:·.: ::.:":··:•.·•.•~.:·.:··:··.·.:•.:e··.·:•.•:•.:·:: ::.·:·.·:a··.··.··.··.·.··.·1··:

J.·..•.:··.:s·.:••.• :.·.:·.1.···..

i:· •.•
e
·.:.·.
i.:·:.:.:L.. ·.:·:.·.:··.:L.·.:·:··.:·e.·.·.:.·.:: :.:·:.: :b··.··:··:..:::.:·:v::·:i.:·:::·.:. ·.: :.·.:.·.::...·.··:::::·.:::vn.:·.::·:: ::·.:::.:·::·:::::·..:1::·:~.··.::·: :n:·.::::·::::::.::.::.:g.•.••.:: ..:•...:.:,::•..::•.:.:.:••:••.:•.:..:••:..:. ·:•.:.•·.:C·..·.·.· ·.··· : ': ..: }).:.? .:•.:•.:.:•.•...::.:.:.:•..:.:•.:.:•..:••...:•....:•.•..:•....:•.•...::.... :..::.·..:::..::·:i:.::·.:::..:::.•:·..::••..:.

U·.I..: :wi i\;; ;l;;.;:L; J:: :i,;,;.:~::~: :A.; •••:•••::::::::~:::~:::::j :::::..::]:]:r:::] ::j:1.:.: ::[:: ::1::.:::.:[:::::[::::::::.:[::::.:.::::::::::::.:::::::::::f::::::::::·:~::::::.f:::::::~:t :~:i:~:~.:~:~:~:~.:~:i.:~:~.:~:~.:~:i:~:1.:!:i.:j:i.:i .:1.:i.:j:~.•.:j.:].:j.:j:..: " ',',',',', :~.~:~.i:i.~:~.~:~.i:j.1:i.1:!.j:j.j::.j::.:::..f:t.!:!.!::.!::.:::.!::.!::.::1:1:::1:1:1:[:1:1:1:[:1:::1.:]:1:].1:: >::.:.::.::.::::::::::::::::::::: ~~~~~~~~~~~~~~:~~~~::~~:~~:::::::::::::::::::::::~:~j1:::::~:~:::::::; ::::i:i:::i::=::i:i::::::::::::::::::::::::::::::: ::ii::::i::i::i:~iiiiiiii::i:iii:::i::i::i::::iijiiiiii j~:ij:::::::!!!!:::~ :;~; ;;::r:::::

)~H(?~ :::::::;:::::::::::::::::::::::::::::::::::::=::.: .. ' .. ",. ;:;;;;;:;;:;:;:::;::::;::::::::;:;:::::::::-:-:.;.:.;.;.:-:-:-:-;::-:-;.;.:.:-;.:-:.::;::::.;.;.:;::;:;:::;:;-:::.;::;;::;:;;:;:;;;.;::;;:::;:;:::;;;;;;::;;:;::;:::;::::::-:-:-:-:-:-:.:-:::::.:-:-:.;.:.:.:.:.:.: :i :~ :i :~ :j :~ :; :~:..::~ :i•~: :::: :i :j :::..::::..::::>.:::././.:::.:::.:::.:::.:::.:::.:::.::'.;:'.;j.;j'.:?:j:.:j:.:j.:::.:::.::.::.::./.::.==.::.::.::.::.:=.::::=.:::::.::.: ·.::.:·.::.::.::.:·.:i.·:;.•.j.;:.:·.:~.·...•.i:..::.:: ::.::.:::·.;:::.::.i:· ..::.j:'.::::.:: •.:::'.•..:•.:•..::..:•..::..:•..:•..:•..:~.: •.,:< ·<····<···.·i9Pm'i~:l~iyZ¥:fP:QtH))·

i·..... : .. .ed....Zditiza:*...::./.
....}} ••.::.::.::.::.::.:.:.:.:.:.:.::.:::.:::.:::.:::.:.: :.:·.:·.:·.:·.:·.:··.:·.:.:.:·.:.:.:·.:·un·.·.··.··.:.·.··.. ··.::a·.?··.·:~:i:'.::.:i::·.:·i·:·:·.:::.:·:a··.··.··:·~.:·.··::·.:::·:::·:·:·~:::·::.::::·:··.::.s·:.· •.•.: •.:.:.:•..•:.:.:.:.::.:.•:•..::•.•:•... :.:-:.:.:.:.:.:.:.:.:.:::::::::::::::::::::::::::::::::::;:::::

....

:: :~ :: :~ :: :~ :: :: :: :: :: :~ :: :~ :: :~ :: :~ :~ :: :: :~ :: :~ :~ :~ :~ :~ :~ :~ :i :~ :j :~ :~ :; :~ :~:•.::; ::.· :~ :i :~ :i..:.:~:..::·:•...:":.:..:~ . . :wi;;:a;; '.
...
:
·.: :: ..::::.::.:.•f:f :: ..:·.: :f :f..:f :: :: ..:f ..:: ::..:f . :.:-: ;.:-:-:.:.:- ::::::::::::::::::::::::::::;::::::::::::::::}?=::::::::::: ... :.:.:.:.: :.: :.:.:.:::::::::;:::.; : .

::::::;::::::::::: (;;»)<::(((>?)U)Yi/??)}f~)i?«::::::::;:: rtfi))i?ff :::::::::::::::::::::::::::;:;:::::::::::::::::::::::::::::::~:~ :::;;:;;;:::::;:::::::::~:~t:~~ ~:~:~:~:~:~:~:~:~:~: ::::~:~::::::::fr:::::::r;::':::::;:::;::::i:;:ii/?r

45

12.2 Merge the log Files

The files may not be identical.

12.2.1 log Files Identical

12.2.2 log Files Not Identical

46

12.3 Copy the Extracted Data

The numbered data files for each test must be copied from a diskette into

the .. /data/3x directory with their companion files and the log file (merged into

the existing log file) in the home directory of net.

The checksum files (nnnncksm) generated at each site can be compared to

verify the integrity of data transfer.

12.4 Activate a do Shell Script

After the data of one or more tests are consolidated into one computer, one

of the do shell scripts processes one test at a time. There are three such shell

scripts:

• do. The shell script do is usually used. Regardless of which
"runx" command was used to conduct the test, a code is passed

47

to do indicating whether the times should be adjusted or
not. 15 This shell script causes the extracted data from each
test to be converted, reduced (Volume 4), and analyzed
(Volume 5). The implementation of this shell script is
described by Figure B-Ia in Appendix B.

• dogik. The shell script doqik allows the experimenter to view
files of some performance parameters prior to reduction and
analysis. It provides a "quick look" at Access Time, Block
Transfer Time, and Source Disengagement Time. This shell
script is an artifact created because the original algorithm
for detecting bit failures was quite slow, and it was often
desirable to view these performance parameters prematurely
(before adjustments for transmission delays between computer
and satellite clock receiver), particularly Block Transfer
Time. This shell script also knows which "runx" command was
used to conduct the test. doqikproduces the file nnnninfo:

• Access-Disengagement Tests. For access­
disengagement tests,· this file contains Access
Time and Source Disengagement Time.

• User Information Tests. For user information
transfer tests, this file contains Block Transfer
Time.

The file nnnninfo can be used by data display software to
produce graphs of these performance parameters. The
implementation of this shell script is described by
Figure B-Ib.

• dopre. The shell script dopre processes data for a
preliminary characterization test (Volume 2, Section 6). This
shell script is to be used with runxt or runxtf: It contains
no provision for adjusting times. The implementation of this
shell script is described in Figures D-l and D-2 of Volume 2.

15do calls either tweakall or tweaknon, depending upon whether the times
are to be adjusted or not, respectively.

48

I::I:::'::}~:~:::::::::::::J:::::::.::::::::::::::::.,::'::':::::':·":·:·::::11:11 ·j:::I:::·j!i:i:.. •....::oa..:•..:•.•.:•.:· .•...::oo:•.::.•.:•..:o..:•..:•.np.:·.:.:•.•:O.•.:•.::.:.r:·.i..:: ..:·.:•.•...:•.•....:•...:.k
e

:··.:••..:

tI
.•..:•.:·::•..•....::·:•...:.n::.· ::·..· ..:•.Dn..:: ..:· ..:D:••::•.:.nnn.nnn.:·.•.:·.•::

fi
:•.:•.•.:•.••••.:·..::.::·:.•..:•••:•.:•...:•.::•.:.::.•.::.•.:.:•.....:•..:.:•...::•...::.:.:••.:..:••:.:.•:.:•..::••:.:••:::••:::.:.:••:.:•..::••.::.•.:•.:: .••..::••.:.:•.:.:•.:.:•..:.'.:::•...:•.:..••.:•.:...•.:...•.:•..:•.:•.•..•.:•.:••..•...•.:.:•.:•..:•.:.:..•.:••.:•.:••.•:!.:.:.:.•:.:.:.:.:.:•.•:•.•:•.•.•.•.•...•..I..I..III!.!!lllllIl.II.IIUII.illlll.lllilil!III··I.1111·1!1

:i~1~ ~. .~ ~ ~ ~ ~ ~f.\r::::: :~;~;~[[t!~!!!/r~:::; ~;~;;;:::::::;:: ::~;~~ ~[~~:::::::::::: !!jj!jji!;!: ;;;!~! ~!; ~;!!!i!!!!! ~ ~! ~!!:! [![[[[[[[!!!!;[[[!!!J[!;;!!!!!!;!!!!! [! [! [! [! [! [! [j!!! ~ :••............:: ::..::i.· :•............:•.............::.· :i :~.: :~:.· :~•.: :~.· :[.· :i..•::~..•::•...:: :'..•[::~ ::::..........•...::::•.....•....•:•........:::•......:::::•....•••. ...•.......:i: ..:::•.:::i•....::•...::::.•........:.:.:•.........:i.,::••.::::..:::•.::i: :•..::••...........:1.·..::!.::•.........:1•............:•..:::i.· :i.: :i.· :•.:.::1 :: :~•.:::[.·.::i::j•.........:~.·:••::::.· ::.·..::i::i.·::i:· ::::i.::•..::i::•.·.::i.::•..::i::•...::i..::•...::i..•......::.·..::i.::•....::::·•......:1•.·::1

iiiiiiiliI1111!!:::::jil·':::=:··:·:···:··:·······::····:.::::::·••::::c:)cm. .:I:~.il.·.i'.:ellll.llsllill.I::.l.·il.·I.:·:: •.i..•..•.:!::n:I.·.I!um!.·!.!l.i.·lelllli.·I!..i:· .•.•!.:·.I ·.i.:I..:i:I.•.I..i..•..•I..I.i

..

:

•.: ..::.:..:..•.,.:•...,:.:.,.:•...::..:•..:•...:•....:.,..:~....:·...::...:·.:..:·.'..:·::..:'.,..:·:n.:':'.::.:::'.::.'..::.:..:'.::.::.'..:e....:•.:..::.·...:.....:~:....:::...:p,...::...:•....:•...:!....:i...:e,...:!...:•....:!...:!....:!...:I....::...:I....:I...:1....:I,:·:Ji...:·.:,.:·.:....:!,'..:'::..::.:..:ka.,..:::...::.:,..::,:..:::....:::...:•....::....::....::....:•....::...::....:8...::....::...::....::...:1....::...::...::.':•.:;.:::::.:;::::.•.:J:.....:~.:.:•...:•.·.:I ...:i·,.:~....:!·...:•....:!·,..:·...:!.,:•...:I..:I.,.:I..:'...:I..:I.,:t.::.•..:!.:·.:..:!:::n.::.•.::.•.·.:•.•.:::.:•..:::•.:•.e...•.:•.:.:•...:.:.:.:·.·..:•.•.::.:.::....:•..:: ...:...::...:..,:."'...:. "::,,::,,::,,::,,::,,::,,,::,..:'.,.:: ...:'.,..:: ..,:':: ...:::~...:::: ...:::: ...:::: ...:::: ...:::: ...:::: ...:::: ...:: ...::.,..:::::: ...:::: ...::.,..::,..:::: ..,:::' ...::"'....:: ...:::::: ...:':: ...:'::...::"....:: ...:':: ...:'::: ...:':::•....:: :::: ...:':: ..':""::"':""::"':""::"':' ...::::>111.11·1111111:·<

49

13 . ACKNOWLEDGMENTS

Many people contributed to this volume. Dwight Melcher, ScottSeebass, Tim

Gardner, .Dan Byers, Chris Bogart, Darin Schwartz, John Waber, Margaret H. Morris,

and Rob Reichart - all students working part-time - contributed to many aspects

of this volume, particularly the software. Mike Eubanks, an ITS consultant,

provided a key breakthrough in the design of the network access software. Lorna

L. Kent, Rob Reichart, and D. J. Atkinson drew the structured design diagrams.

Rob Reichart prepared many of the figures and tables in this volume. The authors

are truly indebted to all of these contributors.

50

14. REFERENCES

.,~ ANSI (1987) , American National Standard for Information Systems Data
communication systems and services - measurement methods for user-oriented
performance evaluation, ANSI X3.141-1987 (American National Standards
Institute, Inc., New York, NY).

ANSI (1983), American National Standard for Information Systems Data
communication systems and services - user-oriented performance parameters,
ANSI X3.102-1983 (American National Standards Institute, Inc., New York,
NY) .

Kernighan, B.W., and D.M. Richie (1978), The C Programming Language, 228 pp.
(Prentice-Hall, Englewood Cliffs, NJ)

Spies, K.P., D.R. Wortendyke, E.L. Crow, M.J. Miles, E.A. Quincy, and N.B. Seitz
(1988), User-oriented performance communication services: Measurement
design, conduct, and results, NTIA Report 88-238, August, 294 pp. (NTIS
Order Number PB 89-117519/AS).

51

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

APPENDIX A: ON-LINE DATA EXTRACTION

The following two sections describe the on-line data extraction for each

end user.

A.l Source End User

Figure A-I is a structured design diagram of the on-line data extraction

software as implemented by runxt at the source site. This section describes the

major functions of this software and some files it produces.

A.1.1 The xmit_net Program

Program xmit_net reads the source end user identification file (preface .x) ,

reads the protocol file (net-aaaa.bbb), reads the arguments supplied by runxt,

reads the two delays (resulting from transmission delays to and from the

satellite clock receiver) (file c1kca1), transfers a block of pseudorandom bytes,

updates the 10g.x file, generates and monitors reference events, starts the

destination user application program (recv) 16, generates two binary files of

reference events, and logs out. The five files that it generates are data.x,

history.x, overhead.x, 10gn.x, and 10g.x. These files are discussed below.

A. data.x File

This ASCII text file contains a user information block consisting of a set

of 64 characters (A-Z, a-z, 0-9 ; and :) generated in a psuedorandom order. This

file resides in net's home directory in the source computer; Figure A-2 is a

sample data.x file.

B. history.x File

This binary file contains

• the first six lines of preface.x (plus a seventh line that
contains the month, day, and year of the test),

• the type of session,

• the type of disengagement, and

16It sends four values to recv: the number of blocks, the block size, the
number of access attempts, and the test number.

53

U1
.p.

file: data.x
Generated- Bytes

(data)

file: historyoX file: nnnnhis.x
file: elkcal Transfer Transfer
Trailing &: Reference Reference
Leading Event Data Event Data
Edges of (binary) (binary)

Clock Times -(text)
lfile: ovemead.x file: nnnnovhoX

~
program: xmlCnet Overhead Overhead
• Read Preface File Reference Reference
• Generate Random Bytes Event Data Event Data
• Read Protocol File . (binary) (binary) shell script:

'---+I • Generate &: Monitor cksumInteiface Events Add
/ ·....,andMj""'l1Ma

file: lognoX lfile: nnnnl~ Checksum
• Update log.xfile - Commands Commands

&: &:• Stan Host Program
• Type ofTest

~
Responses Responses

• BlockSi1.e ~<I.~ (text) (text)
• Number1r.Blocks IdentifICation mklog• Network D: aaaa (text) Make Log• Inter Trial Delay Entry file: log.x file: nnnnlogoX
• Level ofVariable Narration Narration

Conditions , &: &:
Information Information

(text) (text)

~~
xmt-lIlIlIlLbbb

file:Combine Protocol with
Data reev Arguments nnnncksmoX

Insened

~
Checksums

(text) nmumb (text)

~ ",,,,,,,,,,TalNumber, - shell script: move.xmt
file: prefaee.x .

shell script: movexfile:

I Arguments I End User V
net-lIlIlIlLbbb Identifier shell script: nmxtProtocol fromreev (text)

(text)

(toprogram: reev)

Figure A-l. Structured design diagram of on-line data extractiqn at the source site.

OOE2W4Y4YAhEHEEsxssERFFEOGGOu77UoeFORPMOHWaOQnxlTXr26UI6m668
daRYrJ4exmliJD;8EvJB;cw:qbGGvSQ80mRB2N3;ILwBaRzAiI72EGkQxAiwOwwO
DVzsfumI8rjH70v4TPcik3aISIRpRZr26cJj.rP5PXbUcds;aJyJRtAyqNZLKOGGO
mi;gYcnNhikfHJ7Zw3jRSMEI4qyNoRREVK6GeLr4K2WgteeETFFsBqrEYCBEHkoO
ixmVuPA2dBw6bgV9R2vToRphHzRYD5FGspNhiUFyheEb6I2mKwZfVFCnjPK1QJl4

ivuMoxlNpBL32UApjPqhPbLSl3Mnp8TOcKDHvxUHaKSlvLxZv378ldp
PpJYactWvvMAua3Q3vrVmuduW3wrVmeP6XgNCWB5F22sz0TvQ4v7789sqNZzXXMD
eovVHi7RnpstOry9a5AVBZZEKOGWz:jYIIuBiweGTFVyXPLNcIhDoTphPK14SH9H
;;kjfknslr6iJDfgckPSvzUHaSrhv2jxuskV2oytkNRkZ07He7p6SvYfdsWPj6BV
BxSo5qaeFLkwd2hhkfvWnGgT6nive258NWLaaOYQz4bom87FONO;FXCpLoQxAiYF
qokMppcH72kKYil;7N3v7jZVOgBoD7FeTKtxUXEizeGbyH5G2mifs2LmoUmmM5;1
N;mb2QnBrj3JebVkuF5:Vh90rsNwgeUFqYmOpRZL6miPaTLN1Pn5C98sSYruVPz4

Figure A-2. Pseudorandom, 64-character ASCII data used for transmission of the
user data and stored in data.x at the source site.

• the start time.

Then, for each block, it contains

• the record number,

• the number of bytes in the block,

• the start time of the block transfer (Le., hr, min, sec,
fraction), and

• the end time of the block transfer (Le., hr, min, sec,
fraction).

Figure A- 3 is a text version of this binary file (Le., nnnnhis. x located in

data/3x)17. (To read this file, type show-h 1280 nnnnhis.x.)

C. overhead.x File

This binary file contains

• the first six lines of preface.x (plus a seventh line that
contains the month, day, and year),

• the type of session,

17It is produced during data conversion by the show-h program.

55

History.information files:

Perfor. measur. ID
Run number
Type
Information ID
Source
Destination
Mo/Day/Yr
Session Category
Disengagement Category
Start time (Hr:Min:Sec)

Data from
Record Bytes

- UW to NTIA. ITS
- 2134
- Source
- User
- UW - e1diente
- NTIA - crestone
- 3/6/89
: Connection oriented
: Negotiated
- 14:48:18
file /usr2/net/ .. /data/3x/2134his.x
Start time End time

128 128 14:48:18:431 14:48:18:436
128 128 14:48:18:478 14:48:18:484
128 128 14:48:18:524 14:48:18:704
128 128 14:48:18:744 14:48:18:750
128 128 14:48:18:791 14:48:18:973
128 128 14:48:19:013 14:48:19:018
128 128 14:48:19:058 14:48:19:241
128 128 14:48:19:281 14:48:19:287
128 128 14:48:19:327 14:48:19:510
128 128 14:48:19:551 14:48:19:557
128 128 14:48:19:597 14:48:19:779
128 128 14:48:19:819 14:48:19:824
128 128 14:48:19:864 14:48:20:048

128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128
128 128

14:48:27:075
14:48:27:121
14:48:27:344
14:48:27:391
14:48:27:612
14:48:27:658
14:48:27:881
14:48:27:927
14: 48: 28.: 150
14:48:28:195
14:48:28:419
14:48:28:464
14:48:28:688
14:48:28:734
14:48:28:961

14:48:27:080
14:48:27:304
14:48:27:350
14:48:27:572
14:48:27:618
14:48:27:841
14:48:27:886
14:48:28:110
14:48:28:155
14:48:28:379
14:48:28:424
14:48:28:648
14:48:28:694
14:48:28:916
14:48:28:966

Figure A-3. Text version of the history.x file produced by show-h.

56

• the type of disengagement, and

• the start time.

Then, for each block, it contains

• the record number,

• the state code of the three entities about the source
user/system interface,

• the code indicating the order of time stamping, and

• the event time (i.e., hr, min, sec, fraction).

Figure A-4 is a text version of this binary file (i. e., nnnnovh.x in data/3x)..

D. logn.x File

Figure A-5 is a sample file. This text file is a log of all commands land

responses. After the files have been moved and the test number prefix added, the

name of this file is changed to nnnnlogn.x.

E. log.x File

This text file contains messages that are sent to the source operator via

the console. Figure A-6a is an example of log.x for access-disengagement tests

and Figure A-6b is an example of log.x for user information transfer tests.

A.l.2 Make a Log Entry

Program mklog uses information from files logn.x and log.x to append one

record per test to the file log. Each line of log contains the test number, the

date, the day of the month and time of day, the three-letter identification of

the source site (bbb) , the four-letter identification of the network (aaaa), the

type of test (ovh or xfr) , the number of access attempts, the number of blocks

transferred, the block size, the number of seconds between access attempts, the

number of seconds between blocks, and the destination site. Figure A-7 is an

example of the log file. It will be used by the C program qklog to produce the

log.acc and log.xfr files (for analysis of multiple tests).

57

Overheadeinformation files:

Perfor. measur. ID
Run number
Type
Information ID
Source
Destination
Mo/Day/yr
Session Category
Disengagement Category
Start time (Hr:Min:Sec)

Data from file

- UW to NTIA. ITS
- 2115
- Source
- User
- UW - e1diente
- NTIA - crestone
- 3/6/89
: Connection oriented
: Negotiated
- 13: 7:14

/usr2/net/ .. /data/a3x/21150vh.x

Record Code Clock Time

1
2
3
4
5
6
7
8
9

10
11
12

1
2

0110
0110
0230
0320
0221
0320
0441
0540
0450
0110
0110
0110
0110
0110

13:07:14.829
13:07:16.049
13:07:16.066
13:07:55.493
13:07:55.510
13:07:58.739
13:07:58.799
13:07:59.182
13:07:59.237
13:08:00.103
13:08:00.120
13:08:01.046
13:09:00.256
13: 09: 01.470

11 0450
12 0110

1 0110
2 0110
3 0230
4 0320
5 0221
6 0320
7 0231
8 0320
9 0441

10 0540
11 0450
12 0110

Total # times - 240

13:39:43.755
13:39:44.658
13:40:44.174
13:40:45.386
13:40:45.403
13:41:26.443
13:41:26.460
13:41:29.273
13:41:29.313
13:41:29.716
13:41:29.762
13:41:30.646
13:41:30.663
13:41:31.593

Figure A-4. Text version of the overhead.x file produced by show-h.

58

crestone 1%

out:
in:

READY

recv -t 80 128 1 2134
recv -t 80 128 1 2134

out:
in: crestone 2%

out: mover
in: mover

moving net test files to .. data for test 2134
crestone 3%

out:
in:

logout
logout

HJ
NO CARRIER

Figure A-5. Contents of logn.x (renamed 21341ogn.x) .

......... network transmission From: lar via: vm96 to: bol
Start test 2115 (Satellite time - 13:07:14) Mon Mar 6 13:07:13 1989

1 blocks of 512 chars to be sent
Attempt open # 1 13:07:14, Open,
Attempt open # 2 13:09:00, Open,
Attempt open # 3 13:10:45, Open,
Attempt open # 4 13:12:32, Open,
Attempt open # 5 13:14:18, Open,
Attempt open # 6 13:16:03, Open,

for each of 20 accesses, - 10240 total chars
Xmit complete, Transact. complete 13:07:59
Xmit complete, Transact. complete 13:09:43
Xmit complete, Transact. complete 13:11:30
Xmit complete, Transact. complete 13:13:16
Xmit complete, Transact. complete 13:15:01
Xmit complete, Transact. complete 13:16:50

Attempt open # 15 13:31:54, Open, Xmit complete, Transact. complete 13:32:37
Attempt open # 16 13:33:40, Open, Xmit comp1E~te, Transact. complete 13: 34: 24
Attempt open # 17 13:35:26, Open, Xmit complete, Transact. complete 13:36:11
Attempt open # 18 13:37:13, Open, Xmit complete, Transact. complete 13:37:57
Attempt open # 19 13:38:59, Open, Xmit complete, Transact. complete 13:39:42
Attempt open # 20 13:40:44, Open, Xmit complete, Transact. complete 13:41:29

10240 characters transmitted
test completed Mon Mar 6 13:41:29 1989

Time stamps have been tweaked with T1 - 2 & T2 - 15

Figure A-6a. Screen display of log.x for access-disengagement tests.

59

TO:
1989

......... network transmission From: lar via: vx96
Start test 2134 (Satellite time - 14:47:33) Mon Mar 6 14:47:34

bol

80 blocks of 128 chars to be sent for each of 1 accesses, -10240 total chars
Attempt open # 1 14:47:33, Open, Xmit complete, Transact. complete 14:48:28

10240 characters transmitted
test comp1etedMon Mar 6 14:48:30 1989

Time stamps have been tweaked with T1 2 & T2 - 15

Figure A-6b. Screen display of log.x for user information transfer tests.

A.l.3 Add recv's Arguments

The arguments from the recv application program are added to the protocol file

net-aaaa.bbb. This new protocol file xmt-aaaa.bbb is indicated as the beginning

of the logn.x file in Figure A-5.

A.l.4 Increment the Test Number

The test number is incremented by the shell script movex. movex invokes the

shell script runumb to increment the test number in the preface.x file.

A.l.5 Hove the Files and Add the Test Number

The shell script move.xmt moves the files and adds the test number (as a prefix)

to history.x, overhead.x, logn.x, and log.x: they are renamed nnnnhis. x,

nnnnovh.x, nnnnlogn.x, and nnnnlog.x, respectively.

A.l.6 Add the Check Sum

The shell script move.xmt calls the shell script cksum which, adds the check sum

to nnnnhis. x , nnnnovh. x, nnnnlogn. x, and nnnnlog .x.

file nnnncksm.x.

A.2 Destination End User

It then creates the

Figure A-8 is a structured design diagram of the on-line data extraction

as accomplished by the destination end user application program recv.

60

211103/06/8912581arvx96xfr 1 20512A55bOObo1
211203/06/8912591arvx96xfr 1 80128A55bOObo1
211303/06/8913011arvx96xfr 1 80128A55bOObo1
211403/06/8913021arvx96xfr 1160 64A55bOObo1
211503/06/8913071arvm96ovh20 1512A55bOObo1
211603/06/8913451arvx96xfr 1 20512A55bOObo1
211703/06/8913461arvx96xfr 1 80128A55bOObo1
2118 03/06/89 1348 1.ar vx96 xfr 1 160 64 ASS bOO bo1
2119 03/06/89 1350 1ar vx96 xfr 1 80 128 ASS b01 bo1
2120 03/06/89 1353 1ar vx96 xfr 1 160 64 ASS b01 bo1
2121 03/06/89 1357 1ar vx96 xfr 1 20 512 ASS b01 bo1
2122 03/06/89 1358 1ar vx96 xfr 1 160 64 ASS bOO bo1
2123 03/06/89 1400 1ar vx96 xfr 1 20 512 ASS bOO bo1
2124 03/06/89 1402 1ar vx96 xfr 1 80 128 ASS bOO bo1
2125 03/06/89 1414 1ar vx12 xfr 1 20 512 ASS bOO bo1
2126 03/06/89 1417 1ar vx12 xfr 1 160 64 ASS bOO bo1
2127 03/06/89 1420 1ar vx12 xfr 1 80 128 ASS bOO bo1
2128 03/06/89 1430 1ar vx19 xfr 1 160 64 ASS bOO bo1
2129 03/06/89 1432 1ar vx19 xfr 1 20 512 ASS bOO bo1
2130 03/06/89 1433 1ar vx19 xfr 1 80 128 ASS bOO bo1
2131 03/06/89 1435 1ar vx19 xfr 1 20 512 ASS b01 bo1
2132 03/06/89 1436 1ar vx19 xfr 1 160 64 ASS b01 bo1
2133 03/06/89 1440 1ar vx19 xfr 1 80 128 ASS b01 bo1
21~4 03/06/89 1447 1ar vx96 xfr 1 80 128 ASS baa bo1
2135 03/06/89 1448 1ar vx96 xfr 1 160 64 ASS baa bo1
2136 03/06/89 1450 1ar vx96 xfr 1 20 512 ASS baa bo1
2137 03/06/89 1452 1ar vm96 ovh 12 1 512 ASS baa bo1
2138 03/06/89 1525 1ar mc96 xfr 1 20 512 ASS baa bo1
2139 03/06/89 1527 1ar sp96 xfr 1 20 512 ASS baa bo1
2140 03/06/89 1528 1ar sp96 xfr 1 80 128 ASS baa bo1
2141 03/06/89 1530 1ar mc96 xfr 1 80 128 ASS bOO bo1
2142 03/06/89 1531 1ar mc96 xfr 1 160 64 ASS baa bo1
2143 03/06/89 1533 1ar sp96 xfr 1 160 64 ASS baa bo1
2145 03/13/89 0900 bo1 bakx xfr 1 80 128 ASS baa bo1
2146 03/13/89 0901 bo1 bakx xfr 1 160 64 ASS baa bo1
2147 03/13/89 0902 bo1 bakx xfr 1 20 512 ASS bOO bo1
2148 03/13/89 0913 bo1 bakx xfr 1 20 512 ASS b01 bo1
2149 03/13/89 0914 ho1 bakx xfr 1 160 64 ASS b01 bo1
2150 03/13/89 0917 bo1 bakx xfr 1 80 128 ASS b01 bo1
2151 03/13/89 0920 bo1 bx19 xfr 1 80 128 ASS baa bo1
2153 03/13/89 0925 bo1 bx19 xfr 1 80 128 ASS bOO bo1
2154 03/13/89 0926 bo1 bx19 xfr 1 160 64 ASS bOO bo1
2155 03/13/89 0927 bo1 bx19 xfr 1 20 512 ASS bOO bo1

Figure A-7. A portion of the log file generated by the mklog program.

61

file: nnnnclcsm.l'
Checksums

(text)

file: nnnnhls.r
Transfer
Reference

Event Data
(binary)

file: nnnnlog.r
Narration

4<
Information

(text)

file: nnnnovb.r
Overhead
Reference

Event Data
(binary)

file: nnnndata.r
Transferred Bytes

(data)

shell script:
move.rev

• Move Files
• Add Test

Number

file: log.r
Narration

4<
Information

(text)

file: hlstory.r
Transfer
Reference

Event Data
(binary)

file: overhead.r
Overhead
Reference

Event Data
(binary)

file: data.r
Transferred Bytes

(data)

file: preface.r
End User
Identifier

(text)

program: recv
• Read Preface File
• Monitor 4< Generate

Interface Events
• Read 4< A4just Times
• Update Log File

file: dlccal
Trailing

4<
f.eQding
Edges of

Clock Times
(text)

C1'
I')

shell script: runwnb
Increment

Test Number shell script: move.rev

shell script: mover

Figure A-B. Structured design diagram of on-line data extraction at the host terminal.

A.2.l recvProgram

recv reads the destination end user identification file (preface. r) ,

generates and monitors reference events, calibrates the satellite clock times

(clkcal), updates the log.r file for each test, passes its arguments to the

protocol file (Le., net-aaaa.bbb), and generates four files: log.r, overhead.r,

history.r, and data.r. These files are described below.

A. log.r File

This text file contains the information shown on the destination terminal's

console.

B. history.r File

This binary file contains

• the first six lines of preface.r (plus a seventh line that
contains the month, day, and year),

• the type of session,

• the type of disengagement, and

• the start time.

Then, for each block, it contains

• the record number,

• the number of characters in the block,

• the start time of the block transfer (1. e., hr, min, sec,
fraction), and

• the end time of the block transfer (1. e., hr, min, sec,
fraction).

Figure A-9 is a text version of this binary file (i.e., nnnnhis.r in data/3x).

63

History-information files:

Perfor. measur. ID
Run number
Type
Information ID
Source
Destination
Mo/DayjYr
Session Category
Disengagement Category
Start time (Hr:Min:Sec)

-uw to NTIA. ITS
- 2134
- Destination
- User
- UW - e1diente
- NTIA - crestone
- 3/6/89
: Connection oriented
: Negotiated
- 14:48:18

Data from file /usr2/net/ .. /data/3x/2134his.r
Record Bytes Start time End time

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

70
71
72
73
74
75
76
77
78
79
80

128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128
128

128
128
128
128
128
128
128
128
128
128
128

14:48:18:347
14:48:18:814
14:48:18:948
14:48:19:082
14:48:19:256
14:48:19:390
14:48:19:525
14:48:19:659
14:48:19:793
14:48:19:927
14:48:20:062
14:48:20:196
14:48:20:331
14:48:20:465
14:48:20:600
14:48:20:734
14:48:20:868
14:48:21:003

14:48:27:991
14:48:28:125
14:48:28:260
14:48:28:394
14:48:28:529
14:48:28:663
14:48:28:797
14:48:28:932
14:48:29:074
14:48:29:200
14:48:29:335

14:48:18.797
14:48:18.931
14:48:19.065
14:48:19.239
14:48:19.373
14:48:19.508
14:48:19.642
14:48:19.776
14:48:19.910
14:48:20.045
14:48:20.179
14:48:20:314
14:48:20:448
14:48:20:583
14:48:20:717
14:48:20:851
14:48:20:986
14:48:21:120

14:48:28:108
14:48:28:243
14:48:28:243
14:48:28:512
14:48:28:646
14:48:28:780
14:48:28:915
14:48:28:057
14:48:29:183
14:48:29:318
14:48:29:452

Figure A-9. Text version of the history.r file produced by show-h.

64

C. overhead.r File

This binary file contains

• the first six lines of preface.r (plus a seventh line that
contains the month, day, and year),

• the type of session,

• the type of disengagement, and

• the start time.

Then, for each block, it contains

• the record number,

• the state code of the three elltity- interface combinations
about the destination user-sys'tem interface and the code
indicating the order of time stamping, and

• the event time (i.e., hr, min, sec, fraction).

Figure A-IO is a text version of this binary file (i.e., overhead.r in data/3x).

Note that the state code of the destination portion of the system is listed first

(i.e., to the left) and the code for the destination end user is listed second;

this order is opposite that in overhead.x. (See Section 5.)

D. data.r File

This ASCII text file contains the psuedorandom characters of data.x as

received by the destination end user. It will be identical to data.x if there

have been no failures.

A.2.2 Increment the Test Number

This is implemented by the shell script mover. It invokes the shell script

runumb to increment the test number in the preface.r file.

A.2.3 Hove the Files and Add the Test Number

The shell script move.rcv moves the files and adds the test number (as a

prefix) to history. r, overhead. r, data. r, and log. r: they are renamed nnnnhis . r,

nnnnovh.x, nnnndata.r, and nnnnlog.r, respectively.

65

Overheadeinformation files:

Perfor. measur. ID
Run number
Type
Information ID
Source
Destination
Mo/Day/Yr
Session Category
Disengagement Category
Start time (Hr:Min:Sec)

- UW to NTIA.ITS
- 2115
- Destination
- User
- UW - e1diente
- NTIA - crestone
- 3/6/89

Connection oriented
: Negotiated
- 13:07:58

Data from file /usr2/net/ .. /data/3x/21150vh.r
Record Code Clock time

1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
1
2

1
2
3
4
5
6
7
8

Total # times

0023
0132
0023
0022
0023
0032
0045
0111
0023
0132
0023
0022
0023
0032
0045
0111
0023
0132

0023
0132
0023
0022
0023
0032
0045
0111

- 160

13:07:58:120
13:07:58:620
13:07:58:623
13:07:58:640
13:07:59:545
13:07:59:562
13:07:59:563
13:07:59:607
13 :09: 43: 091
13:09:43:143
13:09:43:146
13:09:43:163
13:09:44:090
13:09:44:107
13:09:44:109
13:09:44:153
13 :11 : 30: 114
13: 11: 30: 166

13:41:29:111
13:41:29:163
13:41:29:166
13:41:29:183
13:41:30:082
13:41: 30: 099
13:41:30:100
13:41:30:144

Figur~ A-10. Text version of the overhead.r file produced by show-o.

66

A.2.4 Add the Check Sum

The shell script move. rev calls the shell script cksum which adds the

check sum to nnnnlog.r, nnnnhis.r, nnnnovh.r, and nnnndata.r. It then creates

the file nnnncksm.r.

67

APPENDIX B: OFF-LINE DATA EXTRACTION (DATA CONVERSION)

The off-line data extraction results in a set of ASCII text files of

reference event times. Figure B-1 is a two-part structured design diagram

depicting this procedure. Figure B-la is a diagram of the shell script do which

accomplishes all processing of a test. Figure B-lb is a diagram of the shell

script doqik which omits reduction and analysis software to produce "quick"

estimates of three performance parameters without adjustments for delays reading

the satellite clock receiver: Access Time a~Ld Source Disengagement Time (from

access-disengagement tests) and Block Transfer Time (from user information

transfer tests).

The files produced by do, the data.x file, and the specification files,

spi.acd and spi.xfr, are input to data reduction processing.

B.1 Consolidate the Files

The ten files from on-line data extraction and the data.x file are

consolidated. That is, they· are stored in one computer either manually by

transporting magnetic tape or disks, or electronically by using the UNIXtm

utility uucp,the public domain utility Kermit, or a network utility such as FTP.

Then one of four types of programs are used on the files: merge, show-o, show-h,

and reform.

B.2 Merge User Information and Transfer Reference
Event Data and Reformat

For each end user, program merge has two functions:

• It merges transfer reference event data and user information.

• It reformats the two files of merged data from binary to text.

B.2.1 SUI File

The source transfer information file (data.x) and the transfer reference

event data (nnnnhis.x) are merged and reformatted to create the text file, SUI

(i.e., ~ource ~ser information data). It obtains the block transfer start time

and the block size from nnnnhis .x. It then extracts the transmitted ASCII

characters from data.x.

69

Jih:SVI
~U,.
h(omuIIiort

DtItII

jiU:DUI
DatbultiortU,.

))001 h(omuIIiort
DtItII

...u..-....· _ ..__•

jiU:SOI

) .I&>r,;~

progrtDIl:-.
Mug_ ..
R-tomult

DaJIl

C_UdtlUPllu
(I. ... TrtlftJf/_rto
OM COIItpIIUr

M-mly
orbyWCP)

-...J
o

*forprw1btlbuuy c1umu:tmztdiort WI

Figure B-la. Structured design diagram of off-line data extraction for do or dopre.

-...J
to-"

CClMolidtIUPilu
(i. ... Tran.r/erto
One CompIIt6r

MIDIIIIl1ly
orbyUUCP)

ft,.:~
Transfer

Rqermc.
EwntDaIJI

(hiruuy)

~t:
or

t1ftU:DOD

~t:

or
t1ftU:DOD

~~t:
or

t1ftU:DOD

I hlllCrlpt:...... I
hlllCrlpt: deqIk

fIr.: DIIIIIIIIlto
lflod: Tran.r/er

7't1fw
(tIild)

Figure B-lb. Structured design diagram of off-line data extraction for doqik.

These characters are converted to machine-independent ASCII characters by

dividing the binary representation of the transmitted characters into a sequence

of IS-bit strings.

The structure of this file is shown in Figure B-2. If necessary, the last

string in the block is completed with binary zeros. Each string is regarded as

the binary representation of a decimal integer, where the bit of the lowest index

is the most significant bit. The user information block is thus mapped into a

sequence of decimal integers in the range 0-32,767. The digits for each decimal

integer are stored in SUI. Figure B-3 shows the format of SUI and DUI. An

example of the SUI file is shown in Figure B-4.

B. 2 . 2 DUI File

Similarly, the received transfer information file (data. r) and the transfer

reference event data (nnnnhis.r) are merged and reformatted to create the text'

file DUI (destination user information data). An example of the DUI file is

shown in Figure B-S.

B.3 Convert the Transfer Reference Event and
Overhead Information into Text Data

Program show-h reads the binary transfer reference event files (nnnnhis.x

and nnnnhis.r) and prints the text user information times.

Program show-o reads the binary overhead reference event files (nnnnovh.x

and nnnnovh.r) and prints the overhead information in text format.

B.4 Reformat the Overhead Reference Event Data

Program reform reformats the files nnnnovh.x and nnnnovh.r and produces the

files SOl and DOl, respectively. These files contain some preface information,

followed by a sequence of overhead reference event data lines. Figure B-6

portrays the structure of SOl and DOl. Figure B-7 lists the detailed format of

the SOl and DOl files. Examples of the SOl and DOl files are shown in Figures

B-8 and B-9, respectively.

72

PREFACE DATA
(PART 1)

PREFACE DATA
(PART 2)

PREFACE DATA
(PART 3)

PREFACE DATA
(PART 4)

BLOCK HEADER RECORD

USER INFORMATION RECORD

••
•

USER INFORMATION RECORD

BLOCK TRAILER RECORD

••
•

BLOCK HEADER RECORD

USER INFORMATION RECORD

••
•

USER INFORMATION RECORD

BLOCK TRAILER RECORD

END-OF-HISTORY RECORD

DATA FOR FIRST
USER INFORMATION BLOCK

DATA FOR LAST
USER INFORMATION BLOCK

Figure B-2. Structure of the source (SUI) and destination user
information (DUI) files.

73

'-J
of:-

CHARACTER EDrr
CONTENTS

FIELD DESCRIPTOR

PREFACE DATA (PART 1):

1-32 A32 FILE DESCRIPTOR

PREFACE DATA (PART 2):

1-64 A64 BATCH IDENTIFIER

PREFACE DATA (PART 3):

1-32 A32 SOURCE USER IDENTIFIER

33-64 A32 IDESTINATION USER IDENTIFIER

PREFACE DATA (PART 4):

1-(14 YEAR

5-8 14 MONTH
REFERENCE TIME (DATE AT
ORIGINATING USER srrE)

~12 14 DAY

13-16 14 HOURS

17-20 14 MINUTES
REFERENCE TIME (LOCAL TIME-QF-
DAY AT ORIGINATING USER SITE)

21-28 F8.0 SECONDS

BLOCK HEAOEMRAILER RECORD:

1-8 F8.0 BLOCK INDEX

~16 F8.0 lNmAl BIT INDEX

17·24 F8.0 BLOCK SIZE (BITS)

25-40 016.0 ~VE~l'~~h~~~11:~~~C~L~~)tNPUT

.1-56 016.0 E~'h"6J~~~~:R~~~~~:N~~Oii~~RANSFER

USER INFORMATION RECORD:

1-5 15 USER INFORMATION FIELD

6-10 15 USER INFORMATION FIELD

•••
76-80 15 IUSER INFORMATION FIELD

END-OF·HISTORY RECORD:

1-8 F8.0 ZERO OR A NEGATIVE NUMBER

9-16 F8.0 ZERO

17·24 F8.0 ZERO

25-40 016.0 ZERO

41-56 016.0 ZERO

a. Source User Information File

k;HARACTER EDIT
CONTENTS

FIELD DESCRIPTOR

PREFACE DATA (PART I):

1-32 T A32 FILE DESCRIPTOR

PREFACE DATA (PART 2):

I-Sot I M4 BATCH IDENTIFIER

PREFACE DATA (PART 3):

1-32 I A32 SOURCE USER IDENTIFIER

33-64 I A32 IDESTINATiON USER IDENTIFIER

PREFACE DATA (PART 4):

1-4 14 YEAR

5-8 14 MONTH
REFERENCE TIME (DATE AT

ORIGINATING USER srrE)
9-12 14 DAY

13-16 14 HOURS

17·20 14 MINUTES
REFERENCE TIME (LOCAL TIME-QF·
DAY AT ORIGINATING USER SITE)

21-28 F8.0 SECONDS

BLOCK HEADERITRAILER RECORD:

1-8 F8.0 BLOCK INDEX

~16 F8.0 INITIAL BIT INDEX

17·24 FS.O BLOCK SIZE (BrrS)

25-40 016.0 "s"E~"6NTJ~~~R~fF~~:~~~Ir.~SFER
USER INFORMATION RECORD:

1-5 15 USER INFORMATION FIELD

5-10 15 USER INFORMATI.ON RELD

••. •
76-80 15 USER INFORMATiON FIELD

END·OF·HISTORY RECORD:

1-8 F8.0 ZERO OR A NEGATIVE NUMBER

9-16 F8.0 ZERO

17-24 F8.0 ZERO

25-40 016.0 ZERO

b. Destination User Information File

Figure B-3. Format of the source (SUI) and destination user information (DUI) files.

SOURCE USER INFORMATION
UW to NTIA.ITS .2134
UW - e1diente NTIA . crestone

89 3 6 00 00 00.000
1. 1., 1024. 53298.4310+0 53298.4310+0

0616804428166209587089052083700720167050886804433118870184706698187130321012359
091120750126346226211057167130834612360111841947611727007890889918632278181742
1397003470032080552505010104491918427953134770436623762237221009280452827620-26
0912123956271750127027282022490727015120978720632108310923819017237530270227473
15392231332711830579000

1. 1. 1024 53298.4310+0 53298.4310+0
2. 1025. 1024. 53298.4780+0 53298.4780+0

08747057882785422230250271885704206203420669805144279491311002634198890944021082
1461703480269571002100426167371757825441474906226202650951108715260530734819531
061792090035010504615051209210736269871309206797274702949421138197650277613425
15527071241901621860229620757306372133870644323005032442158908754066050125029253
1142520625105091406700

2. 1025. 1024. 53298.4780+0 53298.4780+0
3. 2049. 1024. 53298.5240+0 53298.5240+0

13500069972013801104304898025427844264540733703229190852999100834086810939417461
08995237720250901685108032601719082251420936906994283950982912850035132166419308
10405069250311405190111300866909394216021361105020192710925310834116612167429755
1067421709192090517300939238932786810010630805085035580529921298259131765215187
101612171228333057171024000

3. 2049. 1024. 53298.5240+0 ~3298.5240+0

79. 79873. 1024. 53308.7340+0 53308.7340+0
07581232581966114055065391864921140175101323323252017102653310819013572580830258
13628075162801025382316912090907332274821013921017099660086907090260091866222352
13595042451851101334311471779719084195631528203226033411392712987146212013611934
13499064761808701253149470141224754208580670507131099902979631345166210324817264
0978321598020930552412288000

79. 79873. 1024. 55308.7340+0 53308.7340+0
80. 80897. 1024. 55308.9610+0 53308.9610+0

14519232511179001158816825188610581026988075792138828358303732116916797012461746
09010217782830301365169390970519086252090924220940198850573506546127252423428013
09882201721069514038044981784901252271870952222677198222160310706229442940629299
10043200110920263891930615809093961951014004215281088917635026911454901650144515
1066823709109540195508192000

80. 80897. 1024. 53308.9610+0 53308.9610+0
-1. O. O. 0.0000+0 0.0000

Figure B-4. Example of source user information (SUI) files.

75

DESTINATION USER INFORMATION
UW to NTIA.ITS 2134
UW - e1diente NTIA . crestone

89 3 6 00 00 00.000
1. 1. 1024. 53298.7970+0

06168044281866209587089052083700720167050886804433118870184706698187130321012359
09112075012634622621105716713083461236011184194761172700789088991863227818188742
13979034700320805525050101044919184279531347704366263762237221009280452827629026
09121239562717501270272820224907270152120978720632108310923819017237530270227473
1539223133271183057900

1. 1. 1024. 52309/7970+0
2. 1025. 1024. 53298.9310+0

08747057882785422230250271885704206203420669805144279491311002634198890944021082
14617034802695710021004261673717578254441474906226202650961108715260530734819531
061703480269571002100426150512092107387269871309067972747029421138197650277613425
155270712419016218602296207573063721338706443230050324421589087540660501250295253
11425206251050914067000

2. 1025. 1024. 53309.9320+0

79. 79873. 1024.53309.3180+0
075812322581966114055065918649211401751013233232520171026533108190125728082025844
136280751628010253823169120909073322748210139210170996600869070902600918662222352
135950424518511013343114717797190841956315282032603341139271462120136139341359545
134990647618087012531494701412247542085806705071310999029796313451662103241726555
09783211598020930552412288000

79. 79873. 1024. 53309.3180+0
80. 80897. 1024. 55309.4520+0

145192325111790015881682251886105810269880759213882835830373211691679701246174633
090102177828303013651693909705190862509092422094019885057350654612725242342801333
098822072106951440380449817849012522718709522226771982221603107062294429406292299
100432303011092026389193061580909396195101400421528108891763502691145490165014411
'106682370910940195508192000
0000

80. 80897.
-1. O.

Figure B-5.

1024. 53309.4540+0
O. 0.0000+0

Examp1e of destination user information (DUI) fi1es.

76

PREfACE DATA

(PART 1)

PREfACE DATA
(PART 2)

PREfACE DAtA
(PART 3)

PREfACE DATA

(PART 4)

INITIAL STATE RECORD

EVENT RECORD

••
•

EVENT RECORD

END-Of-HISTORY RECORD

Figure B-6. Structure of the source (SOl) and destination
overhead information (DOl) files.

77

-...J
00

CHARACTER EDIT
CONTENTS

FIELD DESCRIPTOR

PREFACE DATA (pART 1):

1-32 A32 FILE DESCRIPTOR

PREFACE DATA (PART 2):

1-&1 A&I BATCH IDENTIFIER

PREFACE DATA (PART 3):

1-32 A32 SOURCE USER IDENTIFIER

33-64 A32 DESTINATION USER IDENTIFIER

PREFACE DATA (PART 4):

1·4 14 CATEGORY CODE FOR DATA COMMUNICATION
SESSION

So8 14 CATEGORY CODE FOR INITIAL DiSENGAGEMENT
ATIEMPT IN SESSION

9-12 14 POINTER TO ORIGINATING USER

13-16 14 YEAR

17-20 14 MONTH
REFERENCE TIME (DATE AT
ORIGINATING USER SITE)

21-24 14 DAY

2So28 14 HOURS

29-32 14 MINUTES
REFERENCE TIME (LOCAL TlME-OF-
DAY AT ORIGINATING USER SITE)

33-40 F8.0 SECONDS

INITIAL STATE RECORD:

1·4 14 INITIAL COMMUNICATION STATE CODE FOR
SOURCE USER

So8 14 INITIAL COMMUNICATION STATE CODE FOR
SOURCE HALF-SYSTEM

EVENT RECORD:

1·16 016.0 EVENT TIME (SECONDS AFTER REFERENCE TIME)

17-20 14 COMMUNICATION STATE CODE FOR SOURCE USER

21-24 14 COMMUNICATION STATE CODE FOR SOURCE
HALF·SYSTEM

2So28 14 REMOTE INTERFACE EFFECT CODE

END·OF-HISTORY RECORD:

1-16 016.0 A NEGATIVE NUMBER

17-20 14 ZERO

21-24 14 ZERO

2So28 14 ZERO

a. Source Overhead Information File

CHARACTER EDIT
CONTENTS

FIELD DESCRIPTOR

PREFACE DATA (PART 1):

1·32 A32 FILE DESCRIPTOR

PREFACE DATA (PART 2):

1-64 A64 BATCH IDENTIFIER

PREFACE DATA (PART 3):

1-32 A32 SOURCE USER IDENTIFIER

33-64 A32 DESTINATION USER IDENTIFIER

PREFACE DATA (PART 4):

1-4 14 CATEGORY CODE FOR DATA COMMUNICATION
SESSION

So8 14 CATEGORY CODE FOR INITIAL DISENGAGEMENT
ATIEMPT IN SESSION

9-12 14 POINTER TO ORIGINATING USER

13-16 14 YEAR

17-20 14 MONTH
REFERENCE TIME (DATE AT

ORIGINATING USER SITE)

21-24 14 DAY

25-28 14 HOURS

29-32 14 MINUTES
REFERENCE TIME (LOCAL TIME.QF·
DAY AT ORIGINATING USER SITE)

33-40 F8.0 SECONDS

INITIAL STATE RECORD:

1-4 14 INITIAL COMMUNICATION STATE CODE FOR
DESTINATION HALF-SYSTEM

So8 14 INITIAL COMMUNICATION STATE CODE FOR
DESTINATION USER

EVENT RECORD:

H6 016.0 EVENT TIME (SECONDS AFTER REFERENCE TIME)

17-20 14 REMOTE INTERFACE EFFECT CODE

21-24 14 COMMUNICATION STATE CODE FOR DESTINATION
HALF-SYSTEM

2So28 14 COMMUNICATION STATE CODE FOR DESTINATION
USER

END.QF-H ISTORY RECORD:

1-16 016.0 A NEGATIVE NUMBER

11·20 14 ZERO

21-24 14 ZERO

2So28 14 ZERO

b. Destination Overhead Information File

Figure B-7. Format of the source (SOI) and destination overhead information (DOI) files.

SOURCE OVERHEAD INFORMATION
UW to NTIA. ITS 2115
UW - eldiente NTIA - crestone

2 2 1 89 3 6 00 00 00.00
1 1

000047234. 829D+0 1 1 0
000047236.049D+0 1 1 0
000047236.066D+0 2 3 0
000047275.493D+0 3 2 0
000047275.510D+0 2 2 0
000047278.739D+0 3 2 0
000047278. 779D+0 2 3 0
000047279. 182D+0 3 2 0
000047279.237D+0 4 4 0
000047280.103D+0 5 4 0
000047280. 120D+0 4 5 0
000047281.046D+0 1 1 0
000047340. 256D+0 1 1 0
000047341.470D+0 1 1 0
000047341.487D+0 1 3 0
000047380.478D+0 3 2 0
000047380.495D+0 2 2 0
000047383.286D+0 3 ·2 0
000047383. 326D+0 2 3 0
000047383. 729D+0 3 2 0
000047383. 776D+0 3 3 0
000047384. 651D+0 5 3 0
000047384. 668D+0 4 5 0
000047385.594D+0 1 1 0

000049244. 174D+0 1 1 0
000049245. 386D+0 1 1 0
000049245. 829D+0 2 3 0
000049245.403D+0 3 2 0
000049286.443D+0 2 2 0
000049286.460D+0 3 2 1
000049289. 273D+0 2 3 0
000049289. 313D+0 3 2 1
000049289. 716D+0 4 4 0
000049289. 762D+0 5 4 0
000049290. 646D+0 4 5 0
00004929'1. 593D+0 1 1 0

-1.000D+0 0 0 0

Figure B-8. Example of source overhea.d informa.tion (SOl) file.

79

SOURCE OVERHEAD INFORMATION
UW to NTIA.ITS 2115
UW - eldiente NTIA - crestone

2 2 1 89 3 6 00 00 00.00
1 1

000047278.l20D+0 0 2 3
000047278.620D+0 1 3 2
000047278. 623D+0 0 2 3
000047278. 640D+0 0 2 2
000047279. 545D+0 0 2 3
000047279. 562D+0 0 3 2
000047279. 563D+0 0 4 5
000047279.607D+0 1 1 1
000047383.l43D+0 0 2 3
000047383.l46D+0 1 3 2
000047383.163D+0 0 2 3
000047383.090D+0 0 2 2
000047384.090D+0 0 2 3
000047384.107D+0 0 3 2
000047384.109D+0 0 4 5
000047384.153D+0 1 1 1

000049244.174D+0 0 2 3
000049245.386D+0 1 3 2
000049245. 829D+0 0 2 3
000049245.403D+0 0 2 2
000049286.443D+0 0 2 3
000049286.460D+0 0 3 2
000049289. 273D+0 0 4 5
000049289. 313D+0 1 1 1
000049289. 716D+0 0 2 3
000049289.762D+0 1 3 2
000049290. 646D+0 0 2 3
000049291. 593D+0 0 2 2
000047384.090D+0 0 2 3
000047384.107D+0 0 3 2
000047384.109D+0 0 4 5
000047384.153D+0 1 1 1

-l.OOOD+O 0 0 0

Figure B-9. Example of destination overhead information (DO!) file.

80

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

FORM NTIA-29
(4-80)

U.S. DEPARTMENT OF COMMERCE
NAT'L. TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO.

95-319 (3)

2.. Gov't Accession No. 3. Recipient's Accession No.

4. TITLE AND SUBTITLE 5. Publication Date

Performance Evaluation of Data Communication Services: Auqust 1995
NTIA Implementation of American National Standard 6. Performing Organization Code

X3.141, Volume 3. Data Extraction NTIA/ITS.N3
7. AUTHOR(S) 9. ProjecVTask/Work Unit No.

Martin J. Miles and David R. Wortendyke
8. PERFORMING ORGANIZATION NAME AND ADDRESS

National Telecommunications and Information Admin.
Institute for Tel ecommuni cati on Sci ences 10. ContracVGrant No.

325 BroadvJay
Boulder, CO 80303

11. Sponsoring Organization Name and Address 12. Type of Report and Period Covered

National Telecommunications and Information Admin.
Herbert C. Hoover Building
14th and Constitution Avenue, NW 13.

Washington, DC 20230
14. SUPPLEMENTARY NOTES

15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature
survey, mention it here.) .

This volume explains how to conduct a data communication session.
Specifically, it explains how to determine the commands and expected
responses of a protocol (for access and disengagement functions)~ how to
determine the responsibility of the participating entities for producing
each reference event, and how to draw a profile of the session (which
demonstrates the flow of information between the participating entities
and across user/system interfaces). It explains how to create a file
containing the commands and expected responses of the protocol, the code
that causes the times at which they cross interfaces to be recorded, and
a code number that indicates the state of the entities at each interface.
This volume also explains how to modify the transmitting program to agree

. with the protocol. It explains how to create files that support the on­
line data extraction software. Specifically, these files are the end
user identification files, the clock calibration file, and the protocol
file. This volume then explains how to execute a shell script that
conducts a test, and how to execute a shell script that processes the
test data.

Key words: access; communication state codes; disengagement; reference
events; protocol; satellite clock receiver; session profile;
user information transfer; user/system interfaces

17. AVAILABILITY STATEMENT

)(] UNLIMITED.

o FOR OFFICIAL DISTRIBUTION.

18. Security Class. (This report)

Unclassified
19. Security Class. (This page)

Unclassified

20. Number of pages

88
21. Price:

*U.S. GOVERNMENT PRINTING OFFICE: 1995-676-490/25 108

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

