NTIA Report 95-319 (3)

Performance Evaluation of Data
Communication Services: NTIA
Implementation of American
National Standard X3.141
Volume 3. Data Extraction

| Martin J. Miles
David R. Wortendyke

U.S. DEPARTMENT OF COMMERCE
Ronald H. Brown, Secretary

Larry Irving, Assistant Secretary
for Communications and Information

August 1995

CONTENTS

FIGURES

TABLES

ABSTRACT

1.

2.

10.

11.

INTRODUCTION

DETERMINE THE PROTOCOL
2.1 Protocol Analyzer
2.2 Manual Operation .
2.3 Schematic Protocol .

DETERMINE ENTITY RESPONSIBILITY .

ASSIGN STATE CODES TO ENTITIES
4.1 Primary States .
4.2 Secondary States .

DRAW THE SESSION PROFILE

Initial Idle State .

Access State . .
User Information Transfer State
Disengagement State

Final Idle State .

L
v wnN =

E THE PROTOCOL FILE
Contents of a Protocol F11e
Schematic Protocol File
Sample Protocol File ,
Create a Protocol File for Each Network

oxo\oxoxg
F R R

MODIFY THE TRANSMITTING PROGRAM .

CREATE THE END USER IDENTIFICATION FILES
8.1 Source End User File
8.2 Destination End User File

CONFIGURE THE PORTS AND CREATE THE CLOCK CALIBRATION FILE .

9.1 Link the Communication Ports .
9.2 Set the Communication Ports
9.3 C(Create the Clock Calibration File

SET THE TIME LIMITS FOR RESPONSES

CONDUCT A TEST . . .
11.1 Synchronize the Clocks . .
11.2 Select the Appropriate runx Command .

iii

0 N NN

10

12
. 12
12

14
18
18
19
20
20

21
21
21
22
26

28

31
31
32

34
34
34
34

37
38

38
39

CONTENTS (Cont’d)

Page

11.3 Start the Test e e e e e e e e e 41

11.4 Example of Data Extractlon Us1ng runxt e e e e e e e e e 42

11.5 Check the Results C e e e e e e e e e 43

11.6 Test the Data Extraction Software e e e e e e e e e e 43

12. PROCESS THE TEST DATA . . . e e e e e e e e e e e e 45
12.1 Consolidate the Extracted Data e e e e e e e e e e e e 45

12.2 Merge the log Files« o oo o o, 46

12.3 Copy the Extracted Data e 47

12.4 Activate a do Shell Seript 47

13. ACKNOWLEDGMENTS v v v v v v e e e e e e 50
14, REFERENCES « o v v v v v v v v e o e e e e e 51
APPENDIX A: ON-LINE DATA EXTRACTION+ + v v v v v v v o 53
APPENDIX B: OFF-LINE DATA EXTRACTION (DATA CONVERSION) 69

Figure

Figure

Figure
Figure

Figure

Figure
Figure
Figure
Figure
Figure

Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

A-5.

A-6a.

A-6b,

A-T7.

A-8.

A-9.

FIGURES

Schematic diagram of a data communication system
and end users.

Structured design diagram of the operator
procedures in data extraction.

Session profile for the schematic protocol.

Schematic protocol file.

Sequence of commands, expected responses, and state codes
at the source user-system interface of the schematic

session profile.

Protocol file for a direct dial network.

'Venn diagram of the major subprograms of xmit net.

Structured design diagram of xmit_net.
Example of a source end user identification file.
Example of a destination end user identification file.

Structured design diagram of on-line data extraction
at the source site.

Pseudorandom, 64-character ASCII data used for transmission
of the user data and stored in data.x at the source site.

Text version of the history.x file produced by show-h.
Text version of the overhead.x file produced by show-h.
Contents of logn.x (renamed 2134logn.x).

Screen display of log.x for access-disengagement tests.

Screen display of log.x for user information transfer
tests.

A portion of the log file generated by the mklog
program. e e e e e e e e e e e e e e

Structured design diagram of on-line data extraction
at the destination terminal.

Text version of the history.r file produced by show-h.

v

Page

15

22

23
24
29
30
32

33

54

55
56
58
59

59

60

61

62

64

Figure

Figure
Figure
Figure
Figure

Figure
Figure

Figure
Figure

Figure

Figure

A-10.

B-1la.

B-1b.

B-4.
B-5.

B-6.

B-7.

B-8.

B-9.

FIGURES (Cont’d)

Text version of the overhead.r file produced by show-o.

Structured design diagram of off-line data extraction
for do or dopre.

Structured design diagram of off-line data extraction
for doqik.

Structure of the source (SUI) and destination user
information (DUI) files.

Format of the source (SUI) and destination user
information(DUI) files.

Example of source user information (SUI) files.
Example of destination user information (DUI) files.

Structure of the source (SO0I) and destination overhead
information (DOI). files.

Format of the source (SO0I) and destination overhead
information (DOI) files.

Example of source overhead information (SOI) file.

Example of destination overhead information (DOI) file.

Page

. 66

70

.71

. 73

. 74
75

76

77

78
. 79

. 80

TABLES

Page
Table 1. Commands and Expected Responses and Their Corresponding
Primary Reference Events 9
Table 2. Combinations of Responsibilities for the Three Entity-
Interface Pairso Lo o o0 11
Table 3. Entity-Interface State Codes13

Table 4. Available runx Commands« « « « « v v « .. 40

vii

PERFORMANCE EVALUATION OF DATA COMMUNICATION SERVICES:
NTIA IMPLEMENTATION OF AMERICAN NATIONAL STANDARD X3.141

VOLUME 3: DATA EXTRACTION

Martin J. Miles and David R. Wortendyke!

The six volumes of this report are:

Volume 1. Overview

Volume 2. Experiment Design
Volume 3. Data Extraction
Volume 4. Data Reduction
Volume 5. Data Analysis
Volume 6. Data Display

This volume explains how to conduct a data communication
session. Specifically, it explains how to determine the commands
and expected responses of a protocol (for access and disengagement
functions), how to determine the responsibility of the participating
entities for producing each reference event, and how to draw a
profile of the session (which demonstrates the flow of information
between the participating entities and across wuser/system
interfaces). It explains how to create a file containing the
commands and expected responses of the protocol, the code that
causes the times at which they cross interfaces to be recorded, and
a code number that indicates the state of the entities at each
interface. This volume also explains how to modify the transmitting
program to agree with the protocol. It explains how to create files
that support the on-line data extraction software. Specifically,
these files are the end user identification files, the clock
calibration file, and the protocol file. This volume then explains
how to execute a shell script that conducts a test, and how to
execute a shell script that processes the test data. '

Key words:

access; communication state codes; disengagement; reference events;
protocol; satellite clock receiver; session profile; user informa-
tion transfer; user/system interfaces

1. INTRODUCTION

The extraction of information from a data communication system requires a

set of hardware and software to access and disengage, terminate connections,

The authors are with the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U.S. Department of Commerce,
Boulder, CO 80303.

transmit and receive user information, and record system-independent interface
events (called reference events) at the user/system interfaces. The data
extraction software is writtenm in the C programming language. Figure 1 is a
schematic diagram of a data communication system, the participating entities,
interfaces, and interface events?.

Figure 2 is a structured design diagram that describes the data extraction
procedure for the experimenter. The activities shown in this diagram correspond
to the sections of this volume.

Section 2 shows how the commands and expected responses (i.e., the
protocol) for the access and disengagement functions can be determined. A
schematic protocol that could serve as a template for others is also discussed.

Section 3 shows that it is necessary to record which participating entities
are responsible for each reference event.

Section 4 shows how to assign a state code to each entity after each
reference event. This code indicates the communication state of the entity and
its responsibility for producing the next reference event at each interface.

Section 5 shows how to draw a profile of the data communication session.

The session profile shows the flow of information among the participating entity-

2Sessions can involve either two-way (duplex) transmission or multiple
pairs if the on-line data extraction procedures are modified:

. Each session is treated as the superposition of two simplex
sessions.
J A given user acts as the source in one session and as the

destination in the other.

J Each interface monitor generates one set of extracted data
files in which the local user acts as the source and another
set in which the local user acts as the destination.

. These sets of extracted data are input to separate data
conversion runs to produce two performance data batches - one
for each direction of transmission.

o The two data batches are then reduced and analyzed in the
usual manner.

| 1
:: DATA COMMUNICATION SYSTEM ‘:

P i
SOURCE DESTINATION

USER-SYSTEM USER-SYSTEM
INTERFACE . INTERFACE
| . . I
| 1
< ¥
Satellite | - Satellite
Clock Clock
Receiver Recsiver
DATA
MEMORY COMMUNICATION i MEMORY
NETWORK

Figure 1. Schematic diagram of a data communication system and end users.

Assign
State

Determine

Entity
Responsibility Cg;ldt?tsie?
(4.3)

(4.4)

Draw

Determine the
the.Protocol Session Codes
(4.2) Profile
(4.5)

C’;Z‘:te file: Modify the
Commands/ Protocol net-aaaa.bbb Transmitting
Responses . Protocol Program
File File (4.7)
(4.6) ‘
Create files: '
End User preface.x Con:uct Process the
Identification preface.r Test Test Data
Files End User (4.11) 4.12)
(4.8) Identification :
Work with files: :g:::;l
the Ports file: clkeal Specified
Create the Clock CIoclgc eIIQ;anmg Per(/c;;;:‘n;‘nce
Calibration File Y (3.5)
(4.9) :
Set Time Limits file header:
For Responses pdn_test.h

(4.10) Time Limits

Figure 2. Structured design diagram of the operator procedures
in data extraction.

interfaces, lists the entity state codes, and shows how the time of occurrence
of reference events are to be recorded. The session profile that matches the
schematic protocol is also shown.

After the session profile is drawn, the protocol file that matches it must
be created. Section 6 shows the schematic protocol file and a sample protocol
file for a direct dial network. It then shows how to create a protocol file.

Section 7 discusses the transmitting program that must also match both the
session profile and the protocol file. It describes its function and provides
hints for modifying it for other protocols.

Section 8 shows how to create files that identify each end user, define
the type of session, and define the type of disengagement.

Section 9 shows how to link and set the communication ports, and how to
calibrate the satellite clock receivers.

Section 10 shows how to set the time limits for responses; these limits are
related to the performance values that are specified as part of the design of the
ekperiment (Volume 2).

Section 11 shows how to conduct a test (called on-line processing). Before
the experiment begins, it is necessary to synchronize the UNIX®™ clock with the
satellite clock receiver.

Then-a test can be conducted by simply typing (at the source computer), a
command such as |

runxt o <network > <opt 1> <opt 2>
for access-disengagement tests, and

runxt u <network > <opt 1> <opt 2>
for user information transfer tests. The options (i.e., opt 1 and opt 2) refer
to levels of variable conditions that are determined in Section 4.2 of Volume 2.

Section 12 shows how to process the test data (called off-line processing).
After the test is completed; the data files must be consolidated in one computer,
and the data processed by typing a command such as

‘ do nnnn
where nnnn is the test number. This single command activates a set of command

files and UNIX"™ utilities that

° convert the data to text files,

. reduce the data to performance data (i.e., times and failures)

(Volume 4),

. ‘analyze the data (Volume 5), and

o create files for various graphs of primary time parameters
(Volume 6).

The on-line software is described in Appendix A, and the off-line software
is described in Appendix B. The appendices contain structured design diagrams
that show the relationship among programs, shell scripts, and other files.

The procedure described in this volume is augmented by a report of the NTIA
experiments (Spies et al., 1988) and a text on the C programming language

(Kernighan and Richie, 1978).

2. DETERMINE THE PROTOCOL
A protocol is a set of rules governing the interaction between pairs of
communicators. For our purposes, a protocol is a sequence of - commands and
expected responses Trequired to ' complete the functions of access and
disengagement. The protocol can be determined from protocol analyzers, manual

.operation, user’s manuals, and experts.

2.1 Protocol Analyzer

Following is an example of using a protocol analyzer:

® Connect a protocol analyzer to the remote computer
communication port.

. Call the remote computer (which is identified by a connect
line) by typing

cu -scccc -1/dev/coml
where cccc is the transmission rate (baud) as set by the super

user, 1 (i.e., "el") indicates the connect line, and /dev/coml
specifies the device at the first communication port.

. Log in to the network.

. Connect to the remote computer.

. Issue anyiéommand (e.g., sys).

. Log out of the computer.

. Log out of the network (if necessary).

. Disconnect from cu by typing the following two characters

2.2 Manual Operation
If a protocol analyzer is not used, simply record all keystrokes and screen
responses provided by the port when accessing the system, logging into it, and

disconnecting from it.

2.3 Schematic Protocol

Reference events are those interface events that are system-independent.
Primary reference events are reference events that define primary performance
parameters (and are given generic names, such as Access Request). A schematic
protocol containing five nonspecified commands and their nonspecified expected
responses is discussed here. It will be used to demonstrate a session profile
and 1its corresponding protocol file. Table 1 1lists the primary data
communication states, primary reference events, and symbols for selected commands
from the source end user (i.e., Cy, .;., Cs) and their expected responses (i.e.,
R,, ..., R;). The primary reference events that result from blocking are not

identified by a symbol.

Table 1. Commands and Expected Responses and Their Corresponding Primary
Reference Events

PRIMARY DATA PRIMARY REFERENCE EVENTS COMMANDS /
COMMUNICATION EXPECTED
STATES/FUNCTIONS - RESPONSES

(Initial) Idle

Access

User Information
Transfer

Disengagement

(Final) Idle

*The number of blocks to be transferred is j=1,..., N.

3. DETERMINE ENTITY RESPONSIBILITY

To define the sequence of events during a data communication session, it
is necessary to identify, after each reference event, the entity (or entities)
‘rasponsible for producing the next reference event.

In the NTIA implementation of ANS X3.141, the participating entities are
the source end user (the application program, xmit net), the system, and the
destination end user (the application program, recv). The three entities define
two interfaces: a source user-system interface and a destination user-system

interface. Arbitrarily call one interface the local interface, and call the

other interface the remote interface. Then there are four entity-interface
combinations:

. local user at the local interface

. system at the local interface

o system at the remote interface

o remote user at the remote interface.

For any entity at either interface, there are two states of responsibility for
producing the next reference event: either the entity is responsible or it is
not., Therefore, there may be 16 combinations of entity-interface
responsibilities: ‘

(responsibility States)(entity-interface combinations) _ 24 = 16.

However, we can make two logical observations that reduce the number of
combinations to six. The first observation is that the remote user cannot be
responsible for the next reference event.’ Hence, there are three remaining

entity-interface combinations:

. local user at the local interface
. system at the local interface
e system at the remote interface.

3The remote user cannot be responsible for producing the next reference
event because a reference event must occur at the remote interface before the
remote user is (can be) responsible for producing a reference event.

10

Now there are eight possible combinations of entity-interface responsibilities:

(responsibility States)(entity—int.erfac«s combinations) _ 23 = 8.

Table 2 lists the three entity-interface pairs and all possible combinations of
responsibility for them. The words "yes" and "no" indicate responsibility and
non-respdnsibility, respectively. The second observation is that the seventh and
eighth combinations canmot exist (as indicated by the lack of shading) because
the user and the system cannot both be responsible for the next reference event
at an interface.

Since the remaining six combinations are not illogical, it is conceivable

that some protocol permits them.

Combinations of Responsibilities for the Three Entity-Interface

Table 2.
: Pairs
LOCAL USER SYSTEM SYSTEM
RESPONSIBLE RESPONSIBLE RESPONSIBLE
AT AT , AT
LOCAL INTERFACE LOCAL INTERFACE REMOTE INTERFACE
1
2
3
4
5
6
7 Yes Yes No
8 Yes Yes Yes "

11

4. ASSIGN STATE CODES TO ENTITIES
NTIA software requires each entity-interface pair to have a code number
that identifies, following each reference event, its primary state (when

knowable) and its secondary state.

4.1 Primary States
An entity can exist in one of three primary states: Idle (before and after
the session), Access-User Information Transfer, and Disengagement. (Because User
Information Transfer does not require a protocol, it is combined with Access for
the purpose of assigning state codes.) Following are the conditions under which
entities exist in the primary states:
. (Initial) Idle State. An entity is in the Idle State if it is
not participating in the communication session. If the
system’s performance time is within the service time, an

entity is responsible for the next reference event, otherwise
it is not responsible.

) Access-User Information Transfer State. An entity is in the
Access-User Information Transfer State if it is involved in
the communication session with the intent to transfer user
information. In this state, an entity may or may not be
responsible for the next reference event.

. Disengagement State. An entity is in the Disengagement State
if it is involved in the communication session with the intent
to terminate involvement without transferring additional user
information.

. (Final) Idle State. As stated above, an entity is in the Idle
state if it is not participating in the communication session.
An entity 1is returned to the Idle State following the
Disengagement Confirmation reference event.

4.2 Secondary States
Within each primary state, an entity has a secondary state. This state is
the state of responsibility for producing the next reference event at a given
interface.
Table 3 lists the entity-interface state codes. The six possible entity-
interface states at the local interface are assigned the numbers 0-5. However,
the entity-interface states of the system at the remote interface are assigned

the numbers 0-1 (indicating the secondary state only) because unpredictable

12

transmission delays render unknowable the primary state of the system at that

interface.

These state codes will be used in the session profile (Section 5) and in

the protocol file (Section 6).

13

Table 3. Entity-Interface State Codes
STATE LOCAL USER SYSTEM SYSTEM
RESPONSIBILITY | RESPONSIBILITY | RESPONSIBILITY
- AT LOCAL AT LOCAL AT REMOTE
Primary Secondary INTERFACE INTERFACE INTERFACE
No
Idle
Yes
No
Access-UIT
Disengage.
Bag Yes

5. DRAW THE SESSION PROFILE
A session profile is .a diagram of the flow of information among the
connected entities during a data communication session. A session profile could
contain the following elements:

. Rectangles. Rectangles contain commands and expected
responses from the entities,.

. Directed Line. Directed line segments connect rectangles and
indicate the flow of information. When a line segment crosses
a user-system interface, an interface event has occurred.

. Entity-Interface State Codes. These three code numbers
indicate the state of each of the three entities (about each
interface) following the preceding reference event. The order
of the three codes at each interface is as follows:

° Source User-System Interface. At the source
user-system interface, the order, from left to
right, is
° source user at source interface,

o system at source interface, and
. system at destination interface.
. Destination User-System Interface. At the

destination user-system interface, the order,
from left to right is

o system at source interface,
. system at destination interface, and
. destination wuser at destination
interface.
. Primary Reference Events. These events may be shown at the
interfaces.

The data communication session begins when the source user issues the first
command while the communication system is in the idle state. Then, from each
command/response rectangle, one or two line segments extend to the next
command/response rectangle(s) (depending upon the responsibilities whose
possibilities are listed in Table 2). This sequence continues until the system

returns to the Idle state. Figure 3 is the schematic session profile

14

| SOURCE USER

SYSTEM

ismw :]
xmit_net

IDLE

v

Wiite (Cy)

- Wiite (C)) o Read (Cy)
Read (Ry) BEE Wiite (R;)

ACCESS REQUEST

DESTINATION USER

o Reaxd (C5) o1
_—_J 2130 Transfer (C,)]
Receive (Co)
Wiile (Rp)
Remove) Transfer (Ry)
e
4 Read (Ry) NEX e (2
s Wate (C c NONORIGINATING
. e 121 ety USER COMMITMENT
ACCESS =3 Receive (C3)
TIME Wiite (C3)
o 2 E
Receive (R3) TERE Wiite (R3)
. Receve (Ry) Transfer (R3)
3 Wiite (Ry)
6 Read (R3)
3 20
7 . . . Wiite (R3) —15 Read (Ry)
ACCESS CONFIRMATION/ 2
START OF
BLOCK TRANSFER
s ,
—— | Wik @eadblock 1) [—Fo—3 Read (read block 1) Read (st block 1) et — { Write (write block 1)
0 block 1 Read (block 1)
Tranwfer (Block 1) Receive (block 1)
wmiuockl) wock |
INPUT | . . .
10 TIME Read (ready) 3] 2 0) Wiite (ready) | ' Wiite (ready) S Read (ready) I —
END OF l
BLOCK TRANSFER
* [}
® []
° .
OUTPUT
TIME
Figure 3. Session profile for the schematic protocol.

15

ISOlﬂuﬂEUSER SYSTEM DESTINATION USER
START 1l1o
xmit net
1 Wiite C)) o Read (Cy)
IDLE l
2 Read (Ry) T o Wiite (R;)
I k//—ACCESSREQUEST
3 Wiite (C) Read) RN
22 Tramster (C) Recaive (Cy)
Wik Ry
Receive (Ry) Transfer (R2)
4 Read Ry) 5 Wiite (R2)
. . NONORIGINATING
’ Wiite (C3) AR Read (C3) USER COMMITMENT
ACCESS Transfer (C3) Reve (C3)
TIME Wit (C
ey 023 Read (C3)
Receive (kg) ERE Wiite (R3)
- Transfer (R3) .
Receive (R3)
6 Read (R3) T35 Wite Ry) l
i Write (R: Read (R3)
’ ACCESS CONFIRMATION/ e Rs) 023 >
START OF
BLOCK TRANSFER
8
— Write (read block 1) 213 1 Read (read block 1) Read (write block 1) N Wiite (write block 1)
9 block 1 Read (block 1)
‘Transfer (block 1) Recaive (lock 1)
Wiite (lock 1) block 1
INPUT . .
10 TIME Read (ready) T) Write (ready) Write (ready) v A Read (ready)
l END OF l
BLOCK TRANSFER
L ®
[] L
. .
OUTPUT
TIME

Figure 3. (cont’d).

Session profile for the schematic protocol.

16

corresponding to the command and expected responses listed in Table 1. Along
with the activities, it shows the primary reference events (except for blocking
events), the state codes of the three entities about each interface; the duration
of the communication states, and the Input Time and Output Time (which appear
equal in duration only because this is a schematic diagram).

Before discussing the schematic session profile further, the entities and

their operations are described.

A, Active Peer Entities

The participating entities are the two end users and the system. End users
are active in one sense: they provide logic (i.e., application program
instructions in RAM cause the system to perform operations). Systems are active
in two senses: they prévide logic (i.e., operating system instructions in ROM
cause the system to perform operations), and they provide the (electric and
magnetic) means to execute instructions from both the end user application

programs and their operating systems. Because logic is provided by both

entities, the schematic session profile portrays both the end users and the

system as active peer entities.

B. Entity Operations

Four types of entity operations are specified in the schematic session
profile: read, write, transfer, and receive. Each operation has an operand that
is either an instruction or user information. The read and write operations
represent user-system interface events as operands that are passed between each
end user and its proximal portion of the system. However, the transfer and
receive operations do not create user-system interface events; they represent
activities within the system. |

A data communication session may require thousands of instructions to be
read or written. Moreover, several stepé (i.e., interface events) are required

4

to complete each of them. However, the schematic session profile shows only

“As CPUs are currently designed, each instruction must be fetched (from
program memory), decoded (by the instruction decoding unit), and executed (by the
timing and control unit). Fetching requires a few program memory-CPU interface
events, and execution requires a few data memory-CPU interface events (if the
instruction has a data operand). ’ '

17

those user-system interface events that are necessary to evaluate performance
(except blocking events).

Since the schematic session profile is intended to be expository, it states
the fact that all instructions are read or written - even if the instruction,
itself, causes the system to read or write, For example, the symbolic
instruction, "read block 1," which causes the system to read block 1, must first
be written by the end user to the system. Hence, this write operation has the
instruction, "read block 1," as its operand, and it is listed in the schematic

session profile as

Write (read block 1).

5.1 1Initial Idle State
5.1.1 Source User-System Interface |
The communication system is initially in the Idle state. After the
application program xmit net is started, it can issue zero or more commands prior
to the Access Request (all commands denoted by C;) and receive corresponding

responses (all responses denoted by R;).

5.1.2 Destination User-System Interface
There is no activity at the destination user-system interface during the

initial idle state.

5.2 Access State

5.2.1 Source User-System Interface

The Access State begins when xmit_net attempts to access the remote
computer by writing the command, C,. In connection-oriented sessions, this
command is the primary reference event, Access Request. After the response, R,
is read at the source user-system interface, the source user invokes the
destination user by writing the command, C;. The application program at the
destination site is called recv. The source user then reads the response, Rj.

The primary reference event, End of Access, occurs when the source user

writes the command to read the first block of user information.

18

5.2.2 Destination User-System Interface

When the command, C;, is detected at the destination user-system interface,
control is transferred from the source computer operating system to the
application program recv. The destination user is committed to participate in
the session; this is the primary reference event, Nonoriginating User Commitment.

In connection-oriented sessions,vuser information is entered only after
this event is confirmed at the source user-system interface (i.e., after R, is
detected).

In connectionless sessions (e.g., message-switched and datagram services),
user information can be entered before the nonoriginating user is committed.

The destination user writes, R;, to the system. The system writes a
response to the destination user.

The next (and last) reference event at this interface during the Access
State is caused when the destination user writes a command to the system to write

the first block of user information to memory.

_ 5.3 User Information Transfer State
5.3.1 Source User-System Interface

The source user writes the command to the system to read block 1. The User
Information Transfer State begins with the Start of Block Transfer for the first
user information block. The system reads block 1 and transfers it to the
destination portion of the system. The system writes "ready" to the source user.
This sequence of "write" commands and their responses is repeated for each of the

N user information blocks that is transferred.

5.3.2 Destination User-System Interface

Receipt of the block at the destination user-system interface is the
primary reference event, End of Block Transfer. It is received when the system
indicates that the block has been written; the destination portion of the system
writes "ready" to the destination user. This sequence of commands and responses
is repeated for each user information block that is received.

The state codes at the destihation‘interféce are 22 only for the first
block because the destination interface does not know if the first block has been

written. The state codes alternate as 23, 32, ... after the first block.

19

5.4 Disengagement State
5.4,1 Source User-System Interface
The Source Disengagement State begins when the source user writes an end-
of-text character, C,. This is the primary reference event, Source Disengagement
Request. After it reads the UNIX*™ prompt, R,, it writes a command, Cs;, to
disengage. The response, Rg;, from the source portion of the system is the
primary reference event, Source Disengagement Confirmation; it marks the end of

Source Disengagement Time.

5.4.2 Destination User-System Interface

Destination Disengagement Time begins when the destination portion of the
system writes "ready" to the destination user. Destination Disengagement Time
ends when the end of the recv program is reached. This is the primary reference

event, Destination Disengagement Confirmation.

5.5 Final Idle State
5.5.1 Source User-System Interface
After Source Disengagement Confirmation, Rg;, is read, the source portion

of the system is returned to the Idle State.

5.5.2 Destination User-System Interface
After the end of the program is. detected (Destination Disengagement

Confirmation), the destination portion of the system is returned to the Idle

State.3

5Throughout this six-volume report, action required of the experimenter is
described in a shaded block.

20

6. CREATE THE PROTOCOL FILE
Protocol files are read by the source end user (the application program,
xmit net). One protocol file exists for each network (and also for each site
that is accessed by a telephone number), and it must agree with the session
profile at the source user-system interface.® |
This section descrlbes the contents of a protocol file, descrlbes both the
schematic protocol f11e ana?a sample protocol file for a direct- d1a1 network and

shows how to create a protocol file.

6.1 Contents of a Protocol File

A protocol file is a text file that contains three types of lines:

Voo
\a

. " Nonexecutable Comment Lines. They have a # in column one and
* can be placed anywhere.
N

. Executable Command/Response Lines. They contain commands on
the left side, the (expected) response on the right, and the
A]A character sequence between them. The A character

represents either the blank character or a tab.

° _Executable Time Stamp and Entity State.Code Lines. These
lines cause the time to be recorded. They have an * in column

one. The * is followed by three digits, the A|A character
sequence, and three more digits.

. The left-hand three digits are the entity state
codes of the three entity-interface
responsibilities about the source interface
following the previous response.

. The right-hand three digits are the entity state
codes of the three entity-interface
responsibilities about . the source interface

following the next command.

6.2 Schematic Protocol File
Figure 4 1is the schematic protocol file. It shows the sequence of

commands, expected responses, and entity state codes at the source user-system

8A network can be defined by a unique combination of pairs of end users,
telephone numbers (e. g., numbers of the public data network at each destination
site), bauds, window sizes, etc. If there is more than one protocol file, the
proper file will be selected by the network argument of the runxt shell script.

21

interface as shown in the schematic session profile. The codes in parentheses
in the session profile are not listed in the protocol file, but are embedded in
xmit net. The minus sign preceding the state codes 231 indicates the end of the

access state.

C AJA R
* 110 AlA 23b
Beginning of access
2 AlA R
* 320 AlA 22}
C; = recv\r A|A R; = READY
* 320 AlA -231
End of access - Beginning of user information transfer
End of user information transfer - Beginning of disengagement
C, = \e AlA R, = %\s
* 540 AlA 450
Cs NI R
End of disengagement

Figure 4. Schematic protocol file.

Figure 5 relates the schematic session profile and the schematic protocol file

to each other:

o Figure 3. Figure 3 is a schematic session profile that shows
time increasing down the user-system interfaces, and the
interface events are numbered along the left margin. Figure
5 shows the source-user interface as an undulating curve and
those interface event numbers are encircled.

. Figure 4. Figure 4 is a schematic protocol file. Figure 5

shows its executable code and state codes within the two
rectangles.

6.3 Sample Protocol File

Figure 6 is a sample protocol file for a direct-dialvnetwork. In this
case, two computers are connected to a public data network by modems. Each
executable line is numbered; this number is not part of the file, but is for
reference only. The commands are listed on the left, and the last few characters
of the expected fesponées are listed on the right. These characters are unique
among all possible expected response character strings. This protocol file
contains no unnecessary time stamps. During a test, each command will be written

to the system, and the response will be compared with the expected response from

22

Figure 5. Sequence of commands, expected responses, and state codes at the
source user-system interface of the schematic session profile.

23

- # Protocol File for Direct Dial From Laramie to Boulder
1 AT&V\Tr AlA OK

2 * 110 AlA 230

3 ATDT9,303-497-2134\r A|A 00

4 \r\d\d AlA ogin:
5 net\r AjA ord:
6 test\r AlA ¥\s

7 * 320 AlA 221

8 recv\r AlA READY
9 * 320 AlA -231
10 # logout sequence

11 \e Ala %\s
12 * 540 AlA 450
13 logout\r AlA RRIER

Figure 6. Protocol file for a direct dial network.

the protocol file. Each command and response will be discussed in the order they

occur in the protocol file.

6.3.1 Preliminary Activities

As stated in Section 5.1, any command/response lines prior to the first

time stamp
(i.e., * 110 | 230)

represent activities that occur prior to the Access State. For example, the

first executable line in the sample protocol file contains the command

AT&V\r’

’The \ followed by a character is an escape sequence that is considered
to be a single character (not two). The following escape sequences may be used
in the protocol file:

\r : carriage return.

\d : delay the command for 2 seconds.
\s : provide a space.

\e : end of text.

24

which requests a listing of parameter settings from a modem. Since this command
is not needed to access the destination site, it is placed before the first time

stamp. The expected response for this command is

OK.®

6.3.2 Access
The second executable line is the mandatory time stamp mentioned above.
The third, fourth, fifth, and sixth lines contain the following command/response

pairs:

ATDT,303-497-2134\r A]A 00

\r\d\d AlA ogin:
net\r AlA ord:
test\r AlA %\s?

A more complete expected response to the fourth line would be
login:
and a more complete expected response to the fifth line would be
password: .

However, the last few unique characters of these strings are sufficient. The

expected response to line six is the UNIX“’prompt (i.e., %), followed by a space

8Three sets of time stamps have been incorporated in the transmitting
application program xmit net. The remainder must be in the protocol file. The
three sets incorporated in the transmitting program are:

° Initial set-up time stamps with the state codes 110 and 110.

. User Information Transfer time stamps which follow the negative
state code at the end of Access. The entity state codes are 231 and
320 for each block transferred and 441 for Source Disengagement
Request.

. End of Disengagement time stamp with entity state codes 110.

It is assumed that the first line in the protocol does not start the Access
function, but is placed there to set parameters in a modem or packet
assembler/disassembler (PAD). The access function should not be started until
after encountering time stamps and a set of entity state codes such as 110 and
230, respectively.

% is the operating system prompt established in the C shell file, .cshre..

25

(i.e., \s). The next command/response line (i.e., line 8) is mandatory. It
invokes the destination user (i.e., the application program recv) which respdnds
with the string READY. The end okaccess is indicated by the negative state
codes, -231.

6.3.3 User Information Transfer
The ninth line, mentioned above as marking the end of Access, is a function
delimiter line. It also serves to start the User Information Transfer function.

User Information Transfer ends with the eleventh executable line:

\e I t\s

The \e (i.e., end of text) character is sent to the destination site, ending the
User Information Transfer function. It also causes the primary reference event,

Source Disengagement Request.

6.3.4 Disengagement
The twelfth executable line is the time stamp line. The thirteenth

executable line contains
logout\r | RRIER

where the command logout is followed by a carriage return (i.e., \r) and the
string RRIER is the last few characters of the expected response to logging out
of the source computer: NO CARRIER is returned by the local modem.

6.4 Create a Protocol File for Each Network

Protocol files are contained in directory usr/met/proto. They are named
net-aaaa.bbb where aaaa identifies the network and bbb identifies the source.
site. (A unique identification is required if the source site is accessed by a
telephone‘number.)' Both the network aaaa and the source site bbb must be defined
in netcodes (as described in Section 4.3.3 of Volume 2).

Each command and its expected response are listed on a line. The command
is listed first (i.e., a set of contiguous characters). This is followed by the
'character sequence A]A (where A is the blank character or tab), and some or all
of the expected response. (A set of unique contiguous characters — usually only

the last three, four, or five.)

26

Command/response lines cannot exceed 75 characters unless MAXLINE is reset.
MAXLINE is in the header file pdn_test.h which is located in directory
usr/net/src/d3a. Additionally, there can be no more than 75 lines unless MAXCMD

is reset in pdn_test.h.

27

7. MODIFY THE TRANSMITTING PROGRAM
The transmitting program, xmit net, is a C program that is located in the
directory /usr/net/src/d3a. It reads the protocol files and must agree with
them. Specifically, xmit net contains a sequence of status statements. They
have the following form: _
status = net_access(city, net, PHASE, &fd netin, &fd netout);
whefe net_access is a C function (contained in the file connect.c), and PHASE is
a dummy argument representing one of the four phases: SET_UP, REWIND, CONTINUE,
and CLEAN UP. |
When a status statement is executed, control passes from xmit net to
net_access. Control then passes from net_access to other subprograms, depending
upon the value of the PHASE argument:
J PHASE = SET UP. When PHASE = SET UP, the protocol file is
interpreted by subprogram parsecmd and stored in an array
called Dialogue. This array contains alternating lines of

commands and expected responses as well as lines having an *
in column one.

. PHASE = REWIND. When PHASE = REWIND,the global wvariable
Response is set to 0 so that Dialogue can be read from the
beginning.

. PHASE = CONTINUE. When PHASE = CONTINUE, subprogram converse

reads a command and its response from the Dialogue array.

CLEAN UP. Finally, when PHASE = CLEAN UP, the file is

. PHASE
closed.

Figure 7 is a Venn diagram that shows the calling relationship among

several important subprograms of xmit net. Figure 8 is a structured design

diagram showing the procedures of xmit net during a test.

28

program: xmit_net

program: net_access
Openz Modem and Communicates
with the Local Loop, the Public Data
Network, the Remote Operating System, etc.

program: parsecmd
(called when PHASE = SET_UP)
Transforms the Protocol Rile

program: converse
(called when PHASE = CONTINUE)

Sends Commands to the Network
and Reads Response

program: trans
Translates

Escape Sequences

to Characters

Figure 7. Venn diagram of the major subprograms of xmit net.

.29

array: Dialogue

file: net-aaaa.bbb Phase = SET_UP
Protocol Reformat ™
File Protocol File

Phase = REWIND
Reset Converse
Pointer to Begin

Access

Phase = CONTINUE
Converse Reads
Dialogue file
Until Timestamp
(Code = 110)

Phase = CONTINUE
Converse Reads
Dialogue file
Until Timestamp
(Code =-231)

Loog Until
All Blocks

Are Read
FOR Statement

Phase = CONTINUE
Converse Reads
Dialogue file
Until Timestamp
(Code = 441)

Phase = CONTINUE
Converse Reads
Dialogue file
Until Timestamp
(Code = 541)

Read Clock

Phase = CLEAN_UP

Close Files

Figure 8. Structured design diagram of xmit net.

30

There is an end user identification file for each end user.

must log in to the home directory of net, and create the file.

8. CREATE THE END USER IDENTIFICATION FILES

by subroutine preface in the C program access.

This file is called preface.x.

follows:
1.

2.

8.1 Soufce End User File

* The first line identifies the experimenter.
The second line is the four-digit test number nnnn which is
assigned by the shell script runumb (it must be 1000 or
greater) .
The third line is Source.
The fourth identifies the type of test.!®

The fifth line is the name of the source site computer.

The sixth line is the name of the destination site computer.

The seventh line contains two digits. The first digit is
either 1 or 2, depending upon whether the session 1is
connectionless or connection-oriented, respectively. The

second digit is either 1 or 2, depending upon whether the
disengagement is independent or negotiated, respectively.

Figure 9 is an example of this file.

0There are two types of tests: user information transfer tests and access-
disengagement tests. However, the word User always appears here. The type of test
'is also entered as an argument when the shelfl script runxt is invoked; it is this
argument that determines that the data extraction software performs correctly -

not the fourth line of the preface.x file.

31

Each end user
They will be read

The seven lines of identification are as

- -
NTIA-ITS (Boulder) |

2260

Source

User

NTIA - crestone
NTIA - eldiente
22

Figure 9. Example of a source end user identification file.

8.2 Destination End User File
This file is called preface.r. The seven lines of identification are as

follows:
1. The first line identifies the experimenter.

2. The second 1line is the four digit test number which is
assigned by the shell script runumb.

3. The third line is Destination.

4, The fourth line identifies the type of test. See the footnote
concerning this line for preface.x.

5. The fifth line is the name of the source site machine.

6. The sixth line is the name of the destination site machine
(called destination identifier).

7. The seventh line contains two digits. The first digit is
. ‘either 1 or 2, depending upon whether the session is
connectionless or connection-oriented, respectively. The

second digit is either 1 or 2, depending upon whether the
disengagement is independent or negotiated, respectively.

Figure 10 is an example of this file.

32

NTIA-ITS (Boulder)
2260 ‘
Destination
User

NTIA - eldiente
NTIA - crestone
22

Figure 10. Example of. a destination end user identification file.

33

9. CONFIGURE THE PORTS AND CREATE THE CLOCK CALIBRATION FILE

9.1 Link the Communication Ports

9.2 Set the Communication Ports
Figure 1 is a schematic diagram showing how the ports are to be connected.
NTIA software assumes the clock receiver is a Kinemetrics True Time™ Model 468

Satellite Receiver.

9.3 Create the Clock Calibration File

The time of each reference event is recorded. However, each recorded time
must be corrected due to the transmission delay between each computer and its
satellite clock receiver. Let T, be the reference event time as reported by the

satellite clock receiver.

34

9.3.1 Response Reference Event Time

After a response is read, a single character is transmitted to the
satellite clock receiver to obtain the time of the reference event, T,. This
transmission requires some. time, say t,. Therefore, the time obtained from the
satellite clock receiver, T,, is later than the reference event time, T,. The

actual time (after) the response is

9.3.2 Command Reference Event Time

Before a command is written, a single character could again be transmitted
to the satellite clock receiver to obtain the time, and adjust it for
transmission time. However, it is simpler to use the previously recorded time,
Ty and adjust it. A number of characters, say k characters, is required to
define the time. They are transmitted to the computer and read individually.?
The required time is t, (which will be approximately k times t;). The actual

time (before) the command is

The C program calibrate corrects the time to within approximately 5 ms. The time
12

must be calibrated only once — before the experiment begins. For example, if

t; = 2 ms and t, = 24 ms, the file is as follows:

2
24,

117t is slower but more reliable to read the characters individually than
as a block.

ZHowever, a clock calibration file must be created whenever there is a
change in hardware or software, such as a change in the serial board, buffer, or
operating system.

35

These times will agree for each end user only if their hardware and software are

identical.

36

©10. SET THE TIME LIMITS FOR RESPONSES
A timeout is a factor of three times a specified primary performance
parameter. There is a timeout value for each primary delay performance parameter
(i.e., Access Time, Block Transfer Time, Destination Disengggement Time, and
Soufce Disengagement Time). To assure that the extraction software is not unduly
suspended awaiting a résponse, another type of "timeout" value should be

specified. It should be longer than the maximum of the above four timeouts.

(The timeout variable is called toutcccc where cccc is the baud.)

37

11. CONDUCT A TEST

When the experiment is designed, some of the variable conditions and levels
necessary to conduct an experiment are defined. Many of the variable conditions
are listed in the default file (Section 4.3 of Volume 2), which is located in
net’'s home directory.'® The performance values are specified in the spi.acd and
spi.xfr files (Section 5 of Volume 2). Although these values are specified for
the preliminary characterization test (Section 6 of Volume 2), perhaps they
should be reconsidered at this time.

During User Information Transfer tests, blocks of characters ‘are

transmitted in a psuedorandom order from the following set of 64 characters:

A-Z, a-z, 0-9, :, and ;.

1.1 Synchronize the Clocks
Once for each experiment, each end user must synchronize the UNIX™ clock
time with the satellite clock time using the C program st (i.e., set time). The

super user must change the ownership and mode of st.

Byariable conditions listed in default are: Source Site, Destination
Site, Block Size, Interblock Delay, Number of Accesses, and Interaccess Delay.
The number of blocks is also listed, but this is considered to be a fixed
condition (due to the precision that is specified).

38

The program st will list the initial satellite clock time, and it indicates that
. the computer clock is set.
v . If they are not synchronized, something is wrong with transmission, the
receiver, the antenna, or even the satellite; a delimiter (e.g., ., #, etc.) will
appear to the right of the time in the first line.

If they are synchronized, the UNIXY® clock is automatically set to the time
‘listed in the second line. ’

The screen will return a message such as

System time = Tue Feb 28 14:04:19 1989
NBS Satellite time = 28 14:04:19
System Time off = 0 seconds.

The discrepancy (i.e., System Time off) is comsidered inconsequential if it is

less than 1 s.

11.2 Select the Appropriate runx Command
Four commands are available to conduct a test: runx, runxt, runxf, and
runxtf;A Although each serves a slightly different function, they use the same
arguments and files. Table 4 is a list of the four commands regarding flow
control and adjustment of the reference event times (for transmission times from

the computer to the satellite clock receiver and back to the computer).

39

Table 4. Available runx Commands

Flow Control
Option

On off

" Adjust Times

“ Do Not Adjust Times

The following discusses the features of these options:

. Examine Test Results Before Reduction. If the runxf or runx
commands are selected, the test data for three primary delay
performance parameters (Access Time, Source Disengagement
Time, and Block Transfer Time) can be examined immediately
after disengagement. However, the reference event times will
not have been adjusted for the transmission delays from the
computer to the satellite clock receiver and back to the
computer (Section 9.3).% This option is an artifact: the
correlation algorithm that checks for bit failures (Volume 4)
was originally quite slow, and these commands allowed this
algorithm to be by-passed; trading accuracy for speed. See
Section 12.4.

° Adjust Times. If the runxtf or runxt commands are selected,
the test data are adjusted for the transmission times to and
from the satellite clock receiver (as they should be).

. Enable Software Flow Control. If the runxtf or runxf commands
are selected, flow control will be implemented. That is, the
software implements xon and xoff — regardless of whether the
network does also. If this option is selected, generally an
even number of characters are recorded at the end of log file
(indicating xon and then xoff). However, xmit net can "panic"
and send an extra xoff.

. Do Not Enable Software Flow Control. If the runxt and runx
commands are selected, flow control will not be implemented
(unless the network implements it).

l4Reference event times preceding a command are increased by t, and those
following a response are decreased by t;. Documentation often refers to these
adjustments as "tweaking".

40

The runxt command is the most cdmmonly used of the four commands, and it

will be used in all further discussion.

11.3 Start the Test

Each test is conducted by invoking a UNIX"™ shell script, such as runxt.

This shell script requires two arguments and allows two more. Specifically, the

arguments are:

Iype of Test. o or u, depending upon whether the test is an
access-disengagement (i.e., overhead) test or a user
information transfer test, respectively.

Network. <network> is the four-letter abbreviation, aaaa
(which also exists in file netcodes). (The network, aaaa,
specified here and the source site, bbb, specified in the
default file ~ uniquely identify the = protocol file,
net-aaaa.bbb.)

Other Arguments. <levels of 0, or Ug> and <levels of Og or Ug>
are two optional arguments consisting of three characters each
(Section 4 of Volume 2). Each argument represents a level of
a variable condition not listed elsewhere. These wvariable
conditions will be used to analyze the data (Volume 5).

The shell script activates the appropriate data extraction software in the source

computer and in the destination terminal.

41

The shell script mover moves the data collected at the destination site

into permanent storage; the data extraction phase is now complete, and the data

at the source site is automatically saved in permanent storage.

11.4 Example of Data Extraction Using runxt
Example: Conduct a user information transfer test from Laramie to Boulder
for the public telephone network through 9600-baud modems. Forty blocks of 512
characters are to be transferred. As an experiment, attempt to reduce the
autocorrelation between blocks by adding a l-second interblock delay.
Solution: Before conducting the test, make sure that all files are

current. Then, do the following:

) Check the preface.x file and the preface.r file.

. Make sure that the values in the spi.acd and spi.kfr files are
appropriate.

. Examine the default file. Before running this test, the

default file would looked like this:

lar source site

bol destination site

512 block size (bytes or chars)
--- xfr info ---

40 number of blocks

0 interblock delay (sec)

--- ovh info ---

21 number of accesses

55 interaccess delay (sec)

Since the default block size and the number of blocks are
identical to those desired for this test, they needn’t be
changed. However, the default interblock delay is 0 s. We
could change this delay to 1 s in the default file, but we
could pass that value to runxt as an optional parameter, -1 1.

42

. Make sure the appropriate protocol file exists. That is,
check the netcodes file to see that the abbreviation lar
exists for Laramie, bol for Boulder, and pt96 for Public
Telephone at 9.6 kbps. Therefore, the protocol file would be
named net-pt96.lar.

. After this information has been checked, conduct the test by
typing

runxt u pt96 -1 1
at the source site. The operator at the source site can
observe the progress of the test via runxt's output to the
monitor.
. When execution of runxt ends, the destination operator logs
into the computer, enters net's home directory (/usr/net), and
invokes the shell script mover by typing

mover.

This completes data extraction of the sample test by moving the data collected

at the destination site into permanent storage.

11.5 Check the Results

Before proceeding, the operator should be as confident as possible that the

test is wvalid.

The character * prompts the UNIX*™ command rm to remove all files from the

/usr/data/3x directory whose names begin with nnnn.

11.6 Test the Data Extraction Software
After critical portions of the data extraction software have been developed

or changed, they should be tested. - The easiest method is to run a test. In

43

order to avoid éaving useless test data, four more run commands are available:
runx.tst, runxt.tst, runxf.tst, and runxtf.tst., They are identical to their
counterparts, runx, runxt, runxf, and runxtf, except that the data are not moved
to permanent storage. Instead, they remain in net’s home directories of both
computers. After such a test, the operator must either save or erase the test

data.

11.6.1 Save Test Data

11.6.2 Erase Test Data

44

12. PROCESS THE TEST DATA
The data from a test may be processed by consolidating the extracted data
from the two computers, merging the log files, copying the extracted data, and

activating a do shell script. -

12.1 Consolidate the Extracted Data

Data from a single test can be processed by consolidating the data into one
computer and activating a comprehensive shell script. However, it is usually
more efficient to consolidate the data after a number of tests, say 10, have been
‘completed. The test data is in usr/data/3x. . The contents of this directory and
the file log (which is in the home directory of net) must be consolidated into
one computer.

The 10 files from on-line data extraction and the data.x file are
consolidated. That is, they are stored in one computer either manually by
transporting magnetic tape or disks‘or electronically by the using the UNIX™®
utility uucp, the public domain utility Kermit, or a network utility such as FTP.
One of three types of programs is then used on the files: merge, show-o, and
~reform.

The following discussion assumes that the data are copied to a diskette,

the diskette is transferred to the disk drive in the computer that is chosen for

data processing, and the data are copied.

45

12.2 Merge the log Files

The files may not be identical.

12.2.1 1log Files Identical

12.2.2 1log Files Not Identical

46

12.3 Copy the Extracted Data
The numbered data files for each test must be copied from a diskette into

the ../data/3x directory with their companion files and the log file (merged into

the existing log file) in the home directory of net.

‘The checksum files (nhhncksm) generétéd at each site can be compared to

verify the integrity of data transfer.

12.4 Activate a do Shell Script
After the data of one or more tests are consolidated into one computer, one
of the do shell scripts processes one test at a time. There are three such shell

scripts:

. do. The shell script do is usually used. Regardless of which
"runx” command was used to conduct the test, a code is passed

47

to do indicating whether the times should be adjusted or
not, 13 This shell script causes the extracted data from each
test to be converted, reduced (Volume 4), and analyzed
(Volume 5). The implementation of this shell script is
described by Figure B-la in Appendix B.

. dogik. The shell script doqik allows the experimenter to view
files of some performance parameters prior to reduction and
analysis. It provides a "quick look" at Access Time, Block
Transfer Time, and Source Disengagement Time. This shell
script is an artifact created because the original algorithm
for detecting bit failures was quite slow, and it was often
desirable to view these performance parameters prematurely
(before adjustments for transmission delays between computer
and satellite clock receiver), particularly Block Transfer
Time. This shell script also knows which "runx" command was
used to conduct the test. dogqik produces the file nnnninfo:

° Access-Disengagement Tests. For access-

disengagement tests, this file contains Access
Time and Source Disengagement Time.

] User Information Tests. For user information
transfer tests, this file contains Block Transfer

Time.

The file nnnninfo can be used by data display software to
produce graphs of these performance parameters. The
implementation of this shell script is described by
Figure B-1b.

° dopre. The shell script dopre processes data for a
preliminary characterization test (Volume 2, Section 6). This
shell script is to be used with runxt or runxtf: It contains
no provision for adjusting times. The implementation of this
shell script is described in Figures D-1 and D-2 of Volume 2.

1340 calls either tweakall or tweaknon, depending upon whether the times
are to be adjusted or not, respectively.

48

49

13. . ACKNOWLEDGMENTS

Many people contributed to this volume. Dwight Melcher, Scott Seebass, Tim
Gardner, Dan Byers, Chris Bogart, Darin Schwartz, John Waber, Margaret H. Morris,
and Rob Reichart - all students working part-time - contributed to many aspects
of this volume, particularly the software. Mike Eubanks, an ITS consultant,
provided é key breakthrough in the design of the network access software. Lorna
L. Kent, Rob Reichart, and D. J. Atkinson drew the structured design diagrams.
Rob Reichart prepared many of the figures and tables in this volume. The authors

are truly indebted to all of these contributors.

50

14, REFERENCES

- ANST (1987), American National Standard for Information Systems - Data
communication systems and services - measurement methods for user-oriented

- performance evaluation, ANSI X3.141-1987 (American National Standards
Institute, Inc., New York, NY)..

ANSI (1983), American National Standard for Information Systems - Data
communication systems and services - user-oriented performance parameters,
ANSI X3.102-1983 (American National Standards Institute, Inc., New York,

NY). :

Kernighan, B.W., and D.M. Richie (1978), The C Programming Language, 228 pp.
(Prentice-Hall, Englewood Cliffs, NJ)

Spies, K.P., D.R. Wortendyke, E.L. Crow, M.J. Miles, E.A. Quincy, and N.B. Seitz

(1988), User-oriented performance communication services: Measurement

. design, conduct, and results, NTIA Report 88-238, August, 294 pp. (NTIS
Order Number PB 89-117519/AS).

51

APPENDIX A: ON-LINE DATA EXTRACTION
The following two sections describe the on-line data extraction for each

end user.

A.1 Source End User
Figure A-1 is a structured design diagram of the on-line data extraction
software as implemented by runxt at the source site. This section describes the

major functions of this software and some files it produces.

A.1.1 The xmit_net Program

Progranlxmit_het reads the source end user identification file (preface.x),
reads the protocol file (net-aaaa.bbb), reads the arguments supplied by runxt,
reads the two delays (resulting from transmission delays to and from the
satellite clock receiver) (file clkcal), transfers a block of pseudorandom bytes,
updates the log.x file, generates and monitors reference events, starts the
destination user application program (recv)®, génerates two binary files of
reference events, and logs out. The five files that it generates are data.x,

history.x, overhead.x, logn.x, and log.x. These files are discussed below.

A. data.x File

This ASCII text file contains a user information block cdnsisting of a set
of 64 characters (A-Z, a-z, 0-9 ; and :) generated in a psuedorandom order. This
file resides in net's home directory in the source computer. Figure A-2 is a

sample data.x file.

B. history.x File

This binary file contains

. the first six lines of preface.x (plus a seventh line that
contains the month, day, and year of the test),

. the type of session,

. the type of disengagement, and

167t sends four values to recv: the number of blocks, the block size, the
number of access attempts, and the test number.

53

s

file: data.x

—— Generated
Bytes
(data)
Jile: history.x file: nnnnhis.x
ﬁle:. clikcal Transfer Transfer
Trailing & Reference Reference
Leading Event Data Event Data
e, (o) (o)
(text)
xenit_net M overnead M overend
‘program: _n erhe €l
. Ici;ead Pref;r.;ul;ile B Reference Reference
* Generate om Bytes Event Data Event Data
* Read Protocol File " (binary) (binary)
* Generate & Monitor
Interface Events
. I;Iep?ld anld Adju.;i Times file: logn.x ﬁleé nnnnl
. ate log.x fi Commands ommands
o Start Host Program & &
Ry Repes Repees
2 file: log (text) (text)
* Number of Blocks Identification
® Network ID: anaa | | " (text)
* Inter Trial Delay file: log.x Jfile: nnnnlog.x
o Level of Variable Narration Narration
Conditions & &
Information Information
(text) (text)
file:
xmt-aaaa.bbb
Combine Protocol with Jile:
Data recv Arguments ; nnnncksm.x
Inserted shell script: Checksums
(text) runumb (text)
Increment Test
‘umber)
\\ shell script: move.xmt
file: preface.x ints
t . e L - End User shell script: movex
net-aaaa. rgumen Identifier ipt: runxt
Protocol from recv (tgx:g shell script:
(text)
(toprogram: recv)

Figure A-1.

Structured design diagram of on-line data extraction at the source site.

OOE2W4Y4YAhEHEEsxssERFFEOGGOu/ /Uoe FORPMOHWaOQnx1TXr26U16m668

daRYrJ4exmliJD; 8EvJB; cw: qbGGvSQ80mRB2N3 ; 1LwBaRzA1172EGkQxAiwOwwO
DVzsfuml8rjH70v4TPcik3aIS1RpRZr26cJj . rP5PXbUcds ; aJyJRtAygqNZLKOGGO
mi ; g¥cnNhikfHj7Zw3 jRSMEl4qyNoRREVK6Ge Lr4K2Wgtee ETFFsBqrEYCBEHkoO
1xmVuPA2dBw6bgVIR2vToRphHZRYD5FGspNhiUFyheEb6I2mKwZfVFCnjPK1QJ14

ivuMox1NpBL32UAp j PqhPbLS13Mnp8TOcKDHVXUHaKS1vLxZv3781dp

PpJYactWvvMAua3Q3vrVmuduW3wrVmeP6XgNCWB5F22sz0TvQ4v7789sqNZzXXMD
eovVHi7Rnpst0ry9a5AVBZZEKOGWz : jY1TuBiweGTFVyXPLNcIhDoTphPK14SH9H
; 1kjfknslr6iJDfgckP5vzUHaSrhv2 jxuskV2oytkNRkZO7He 7p6SvYEdsWPj 6BV
BxSo5qaeFLkwd2hhkfvWnGgT6énive258NWLaa0YQz4bom87FONO ; FXCpLoQxAiYF
qokMppcH72kKYil ; 7N3v73ZV0gBoD7FeTKtxUXEizeGbyH5G2mi fs2LmoUmmMS5 ; 1
'N;mb2QnBr j 3JebVkuF5 : Vh9orsNwgeUFqYmOpRZL6mi PaTLN1Pn5C98sSYruVPz4

Figure A-2. Pseudorandom, 64-character ASCII data used for transmission of the
user data and stored in data.x at the source site.

® the start time.

Then, for each block, it contains

. the record number,
. the number of bytes in the block,
° the start time of the block transfer (i.e., hr, min, sec,

fraction), and

. the end time of the block transfer (i.e., hr, min, sec,
fraction).

Figure A-3 is a text version of this binary file (i.e., nnnnhis.x located in

data/3x)Y. (To read this file, type show-h 1280 nnnnhis.x.)

C. overhead.x File

This binary file contains

. the first six lines of preface.x (plus a seventh line that
contains the month, day, and year),

o the type of session,

171t is produced during data conversion by the show-h program.

55

Historyeinformation files:

UW to NTIA.ITS

Perfor. measur. ID

Run number - 2134

Type — Source

Information ID — User

Source — UW — eldiente
Destination — NTIA - crestone
Mo/Day/Yr - 3/6/89

Session Category : Connection oriented

Disengagement Category : Negotiated
Start time (Hr:Min:Sec) — 14:48:18

Data from file /usr2/net/../data/3x/2134his.x
Record Bytes Start time End time
128 128 14:48:18:431 14:48:18:436
128 128 14:48:18:478 14:48:18:484
128 128 14:48:18:524 14:48:18:704
128 - 128 14:48:18:744 14:48:18:750
128 128 14:48:18:791 14:48:18:973
128 128 14:48:19:013 14:48:19:018
128 128 14:48:19:058 14:48:19:241
128 128 14:48:19:281 14:48:19:287
128 128 14:48:19:327 14:48:19:510
128 128 14:48:19:551 14:48:19:557
128 128 14:48:19:597 14:48:19:779
128 128 14:48:19:819 14:48:19:824
128 128 14:48:19:864 14:48:20:048
128 128 14:48:27:075 14:48:27:080
128 128 14:48:27:121 14:48:27:304
128 128 14:48:27:344 14:48:27:350
128 128 14:48:27:391 14:48:27:572
128 128 14:48:27:612 14:48:27:618
128 128 14:48:27:658 14:48:27:841
128 128 14:48:27:881 14:48:27:886
128 128 14:48:27:927 14:48:28:110
. 128 128 14:48:28:150 14:48:28:155
128 128 14:48:28:195 14:48:28:379
128 128 14:48:28:419 14:48:28:424
128 128 14:48:28:464 14:48:28:648
128 128 14:48:28:688 14:48:28:694
128 128 14:48:28:734 14:48:28:916
128 128 _ 14:48:28:961 14:48:28:966

Figure A-3. Text version of the history.x file produced by show-h.

56

. the type of disengagement, and
. the start time.

Then; for each block, it contains
. the record number,

. the state code of the three entities about the source
user/system interface,

° the code indicating the order of time stamping, and
. the event time (i.e., hr, min, sec, fraction).

Figure A-4 is a text version of this binary file (i.e., nnnnovh.x in data/3x)..

D. 1logn.x File
Figure A-5 is a sample file. This text file is a log of all commands /and
responses. After the files have been moved and the test number prefix added, the

name of this file is changed to nnnnlogn.x.

E. log.x File
This text file contains messages that are sent to the source operator via
the console. Figure A-6a is an example of log.x for access-disengagement tests

and Figure A-6b is an example of log.x for user information transfer tests.

A.1.2 Make a Log Entry

Program mklog uses information from files logn.x and log.x to append one
record per test to the file log. Each line of log contains the test number, the
date, the day of the month and time of day, the three-letter identification of
the source site (bbb), the four-letter identification of the network (aaaa), the
type of test (ovh or xfr), the number of access attempts, the number of blocks
transferred, the block size, the number of seconds between access attempts, the
number of seconds between blocks, and the destination site. Figure A-7 is an
example of the log file. It wili be used by the C program qklog to produce the
log.acc and log.xfr files (for analysis of multiple tests).

57

Overheadeinformation files:

Perfor. measur. ID UW to NTIA.ITS

Run number - 2115
Type — Source
Information ID - User
Source -~ UW - eldiente
Destination ‘ — NTIA - crestone
Mo/Day/Yr - 3/6/89
Session Category : Connection oriented
Disengagement Category : Negotiated
Start time (Hr:Min:Sec) - 13: 7:14
Data from file /usr2/net/../data/a3x/21150vh.x
Record Code Clock Time
1 0110 13:07:14.829
2 0110 13:07:16.049
3 0230 13:07:16.066
4 0320 13:07:55.493
5 0221 13:07:55.510
6 0320 13:07:58.739
7 0441 : 13:07:58.799
8 0540 13:07:59.182
9 0450 13:07:59.237
10 0110 13:08:00.103
11 0110 13:08:00.120
12 0110 13:08:01.046
1 0110 13:09:00.256
2 0110 13:09:01.470
11 0450 13:39:43.755
12 0110 13:39:44.658
1 0110 13:40:44.174
2 0110 13:40:45.386
3 0230 13:40:45.403
4 0320 '13:41:26.443
5 0221 13:41:26.460
6 0320 13:41:29.273
7 0231 ‘ 13:41:29.313
8 0320 13:41:29.716
9 0441 13:41:29.762
10 0540 13:41:30.646
11 0450 13:41:30.663
12 0110 13:41:31.593

Total # times — 240

Figure A-4. Text version of the overhead.x file produced by show-h.

58

crestone 1%

out: recv -t 80 128 1 2134
in: recv —t 80 128 1 2134
READY
out :
in: crestone 2%
out: mover
in: mover

moving net test files to
crestone 3%

..data for test 2134

HJ
NO CARRIER

out: logout
in:

logout

Figure A-5.

Contents of logn.x (renamed 2134logn.x).

. network transmission
Start test 2115 (Satellite time - 13:07:14)

...........

1 blocks of 512 chars to be sent for each of 20 accesses,

Attempt
Attempt
Attempt
Attempt
Attempt
Attempt

Attempt
Attempt
Attempt
Attempt
Attempt
Attempt

open
open
open
open
open
open

open
open
open
open
open
open

o HHH®
oL wWwN

o HH R

15
16
17
18
19
20

13
13:
13:
13:
13:
13:

13

13:
13:
13:
13:
13:

:07:14, Open,

09:00, Open,
10:45, Open,
12:32, Open,
14:18, Open,
16:03, Open,

:31:54, Open,
33:40, Open,
35:26, Open,
37:13, Open,
38:59, Open,
40:44, Open,

10240 characters transmitted
test completed

................

Time stamps have been tweaked with T1 ~

Xmit ¢
Xmit ¢

omplete, Transact.
omplete, Transact.

Xmit complete, Transact.
Xmit complete, Transact.

Xmit ¢
Xmit ¢

Xmit
Xmit
Xmit
Xmit
Zmit
Xmit

Mon

omplete, Transact.
omplete, Transact.

complete, Transact.
complete, Transact.
complete, Transact.
complete, Transact.
complete, Transact.
complete, Transact.

From: lar via:‘
Mon Mar 6 13:07:13 1989

vm96 to:

complete
complete
complete
complete
complete
complete

complete
complete
complete
complete
complete
complete

Mar 6 13:41:29 1989

2 &T2 - 15

bo

~ 10240 total

13
13
13:
13:
13:
13:

13

13:
13:

13

13:

13

1

chars

:07:
:09:

11:
13:
15
16:

:32:
34:
36:
:37:
39:
141

59
43
30
16

:01

50

37
24
11
57
42
29

Figure A-6a. Screen display of log.x for access-disengagement tests.

59

......... network transmission From: lar via: vx96 TO: bol
Start test 2134 (Satellite time - 14:47:33) Mon Mar 6 14:47:34 1989

80 blocks of 128 chars to be sent for each of 1 accesses, —-10240 total chars
Attempt open # 1 14:47:33, Open, Xmit complete, Transact. complete 14:48:28

10240 characters transmitted
test completedMon Mar 6 14:48:30 1989

- Time stamps have been tweaked with Tl - 2 & T2 - 15

Figure A-6b. Screen display of log.x for user information transfer tests.

A.1.3 Add recv’s Arguments
The arguments from the recv application program are added to the protocol file
net-aaaa.bbb. This new protocol file xmt-aaaa.bbb is indicated as the beginning

of the logn.x file in Figure A-5.

A.1.4 Increment the Test Number
The test number is incremented by the shell script movex. movex invokes the

shell script runumb to increment the test number in the preface.x file.

A.1.5 Move the Files and Add the Test Number
The shell script move.xmt moves the files and adds the test number (as a prefix)
to history.x, overhead.x, logn.x, and log.x: they are renamed nnnnhis.x,

nnnnovh.x, nnnnlogn.x, and nnnnlog.x, respectively.

A.1.6 Add the Check Sum
The shell script move.xmt calls the shell script cksum which, adds the check sum
to nnnnhis.x, nnnnovh.x, nnnnlogn.x, and nnnnlog.x. It then creates the

file nnnncksm.x.
A.2 Destination End User

Figure A-8 is a structured design diagram of the on-line data extraction

as accomplished by the destination end user application program recv.

60

211103/06/8912581arvx96xfr 1 20512A55b00bol
211203/06/8912591arvx96xfr 1 80128A55b00bol
211303/06/8913011arvx96xfr 1 80128A55b00bol
211403/06/8913021axrvx96xfr 1160 64A55b00bol
211503/06/8913071arvm960vh20 1512A55b00bol
211603/06/8913451arvx96xfr 1 20512A55b00bol
211703/06/8913461arvx96xfr 1 80128A55b00bol
2118 03/06/89 1348 lar vx96 xfr
2119 03/06/89 1350 lar wvx96 xfr
2120 03/06/89 1353 lar vx96 xfr
2121 03/06/89 1357 lar wvx96 xfr
2122 03/06/89 - 1358 1lar vx9%96 xfr
2123 03/06/89 1400 lar wvx96 xfr
2124 03/06/89 1402 lar wvx96 xfr
2125 03/06/89 1414 lar wvx12 xfr
2126 03/06/89 1417 lar wvx12 xfr
2127 03/06/89 1420 1lar vx12 xfr
2128 03/06/89 1430 1lar wvx19 xfr
2129 03/06/89 1432 lar wvx19 xfr
2130 03/06/89 1433 lar wvx19 xfr
2131 03/06/89 1435 lar wvx19 xfr
2132 03/06/89 1436 lar vx19 xfr
2133 03/06/89 1440 1lar wvx19 xfr
2134 03/06/89 1447 lar vx96 xfr
2135 03/06/89 1448 1lar ~vx96 xfr
2136 03/06/89 1450 lar vx96 xfr
2137 03/06/89 1452 lar vm9%6 ovh 1
2138 03/06/89 1525 lar mc96 xfr
2139 03/06/89 1527 1lar sp96 xfr
2140 03/06/89 1528 1lar sp96 xfr
2141 03/06/89 1530 lar mc96 xfr
2142 03/06/89 1531 lar mc96 xfr
2143 03/06/89 1533 1lar sp96 xfr
2145 03/13/89 0900 bol bakx xfr
2146 03/13/89 0901 bol bakx =xfr
2147 03/13/89 0902 bol bakx =xfr
2148 03/13/89 0913 bol bakx xfr
2149 03/13/89 0914 bol bakx xfr
2150 03/13/89 0917 bol bakx xfr
2151 03/13/89 0920 bol bx19 xfr
2153 - 03/13/89 0925 bol bxl9 xfr
2154 03/13/89 0926 bol bxl9 xfr
2155 03/13/89 0927 bol bx19 xfr

R e e e e DO e e e e e e e e e e e e e e e e e

160
80
160
20
160
20
80
20
160
80
160
20
80
20
160
80
80
160
20
1
20
20
80
80
160
160
80
160
20
20
160
80
80
80
160
20

64
128
64
512
64
512
128
512
64
128
64
512
128
512
64
128
128
64
512
512
512

512

128
128
64
64
128
64
512
512
64
128
128
128
64
512

A55
A55
A55
A55
A55
AS55
A55
A55
A55
A55
A55
A55
A55
A55
A55
A55
AS55
A55
A55
A55
A55
A55
A55
A55
A55

A55

A55
A55
A55
A55
A55
A55
A55
A55
A55
A55

b00
b0l
bO1l
b0ol
b00
b00
b00
b00
b00
b00
b00

b00

b00
bOl
b0l
b0l
b00
b00
b00
b00
b00
b00
b00
b00
b00
b00
b00
b00
b00
b0l
b0l
b0l
b00
b00
b00
b00

bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol

" bol

bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol
bol

Figure A-7. A portion of the log file generated by the mklog program.

61

[4:]

file: log.r file: nnnnlog.r
Narration Narration
file: clkcal & &
Trailing Information Information
& (text) (text)
Leading
Edges of
Clock Times
(text) file: overhead.r file: nnnnovh.r
Overhead Overhead
N\ Reference Reference
program: recv Event Data shell script: Event Data
o Read Preface File (binary) move.rcv (binary) shell script:
® Monitor & Generate ® Move Files cksum)
Interface Events ® Add Test Add
: ﬁ:‘:iif; AL‘::;";:IIM” file: history.r Number file: nnnnhis.r Checksum
Transfer Transfer
Reference Reference
Event Data Event Data
(binary) (binary)
file: data.r file: nnnndata.r
Transferred Bytes Transferred Bytes
(data) (data)
file: preface.r
End User
Identifier
(text)
. file: nnnncksm.r
Checksums
(text)
shell script: runumb
Increment :
Test Number shell script: move.rcv
shell script: mover

Figure A-8. Structured design diagram of on-line data extraction at the host terminal."

A.2.1 recv Program

recv reads the destination end user identification file (preface.r),
generates and monitors reference events, calibrates the satellite clock times
(clkcal), updates the log.r file for each test, passes its arguments to the
protocol file (i.e., net-aaaa.bbb), and generates four files: ldg.r, overhead.r,

history.r, and data.r. These files are described below.

A, log.r File
This text file contains the information shown on the destination terminal’s

console.

B. history.r File

This binary file contains

. the first six lines of preface.r (plus a seventh line that
contains the month, day, and year),

. the type of session,
. the type of disengagement, and
. the start time.

Then, for each block, it contains

. the record number,
. the number of characters in the block,
. the start time of the block transfer (i.e., hr, min, sec,

fraction), and

. the end time of the block transfer (i.e., hr, min, sec,
fraction). '

Figure A-9 is a text version of this binary file (i.e., nnnnhis.r in data/3x).

63

Historyeinformation files:

UW to NTIA.ITS

Perfor. measur. ID

Run number - 2134

Type — Destination
Information ID — User

Source — UW -~ eldiente
Destination - — NTIA — crestone
Mo/Day/Yr - 3/6/89

Session Category : Connection oriented
Disengagement Category : Negotiated

Start time (Hr:Min:Sec) - 14:48:18

Data from file usr2/net/../data/3x/2134his.r

Record Bytes Start time End time
1 128 14:48:18:347 14:48:18.797
2 128 14:48:18:814 14:48:18.931
3 128 14:48:18:948 14:48:19.065
4 128 14:48:19:082 14:48:19.239
5 128 14:48:19:256 14:48:19.373
6 128 14:48:19:390 14:48:19.508
7 128 14:48:19:525 14:48:19.642
8 128 14:48:19:659 14:48:19.776
9 128 14:48:19:793 14:48:19.910
10 128 14:48:19:927 14:48:20.045
11 128 14:48:20:062 14:48:20.179
12 128 14:48:20:196 14:48:20:314
13 128 14:48:20:331 14:48:20:448
14 128 14:48:20:465 14:48:20:583
15 128 14:48:20:600 14:48:20:717
16 128 14:48:20:734 14:48:20:851
17 128 14:48:20:868 14:48:20:986
18. 128 14:48:21:003 14:48:21:120
70 128 14:48:27:991 14:48:28:108
71 128 14:48:28:125 14:48:28:243
72 128 14:48:28:260 14:48:28:243
73 128 14:48:28:394 14:48:28:512
74 128 14:48:28:529 14:48:28:646
75 128 14:48:28:663 14:48:28:780
76 128 14:48:28:797 14:48:28:915
77 128 14:48:28:932 14:48:28:057
78 128 14:48:29:074 14:48:29:183
79 128 14:48:29:200 14:48:29:318
80 ’ 128 14:48:29:335 14:48:29:452

Figure A-9. Text version of the history.r file produced by show-h.

64

C. overhead.r File
This binary file contains

. the first six lines of preface.r (plus a seventh line that
contains the month, day, and year),

. the type of session,
. the type of disengagement, and
. the start time.

Then, for each block, it contains
. the record number,

. the state code of the three entity-interface combinations
about the destination user-system interface and the code
indicating the order of time stamping, and

. the event time (i.e., hr, min, sec, fraction).

Figure A-10 is a text version of this binary file (i.e., overhead.r in data/3x).
Note that the state code of the destination portion of the system is listed first
(i.e., to the left) and the code for the destination end user is listed second;

this order is opposite that in overhead.x. (See Section 5.)

D. data.r File
This ASCII text file contains the psuedorandom characters of data.x as
received by the destination end user. It will be identical to data.x if there

have been no failures.

A.2.2 Increment the Test Number
This is implemented by the shell script mover. It invokes the shell script

runumb to increment the test number in the preface.r file.

A.2.3 Move the Files and Add the Test Number
The shell script move.rcv moves the files and adds the test number (as a
. prefix) to history.r, overhead.r, data.r, and log.r: they are renamed nnnnhis.r,

nnnnovh.x, nnnndata.r, and nnnnlog.r, respectively.

65

Overheadeinformation files:

Perfor. measur. ID — UW to NTIA.ITS

Run number - 2115

Type — Destination
Information ID - User

Source — UW - eldiente
Destination — NTIA - crestone
Mo/Day/Yr - 3/6/89

Session Category : Connection oriented
Disengagement Category : Negotiated

Start time (Hr:Min:Sec) — 13:07:58

Data from file /usr2/met/../data/3x/21150vh.r

Record Code Clock time

1 0023 13:07:58:120
2 0132 13:07:58:620
3 0023 13:07:58:623
4 0022 13:07:58:640
5 0023 13:07:59:545
6 0032 13:07:59:562
7 0045 13:07:59:563
8 0111 13:07:59:607
1 0023 13:09:43:091
2 0132 13:09:43:143
3 0023 13:09:43:146
4 0022 13:09:43:163
5 0023 13:09:44:090
6 0032 13:09:44:107
7 0045 13:09:44:109
8 0111 13:09:44:153
1 0023 13:11:30:114
2 0132 13:11:30:166
1 0023 13:41:29:111
2 0132 13:41:29:163
3 0023 13:41:29:166
4 0022 13:41:29:183
5 0023 13:41:30:082
6 0032 13:41:30:099
7 0045 13:41:30:100
8 0111 13:41:30:144

Total # times — 160

Figure A-10. Text version of the overhead.r file produced by show-o.

66

A.2.4 Add the Check Sum
The shell script move.rcv calls the shell script cksum which adds the
check sum to nnnnlog.r, nnnnhis.r, nnnnovh.r, and nnnndata.r. It then creates

the file nnnncksm.r.

67

APPENDIX B: OFF-LINE DATA EXTRACTION (DATA CONVERSION)

The off-line data extraction results in a set of ASCII text files of
reference event times. Figure B-1 is a two-part structured design diagram
depicting this procedure. Figure B-la is a diagram of the shell script do which
accomplishes all proéessing of a test. Figure B-1b is a diagram of the shell
script doqik‘which omits reduction and analysis software to produce "quick"
estimates of three performance parameters without adjustments for delays reading
the satellite clock receiver: Access Time and Source Disengagement Time (from
access-disengagement tests) and Block Transfer Time (from user information
transfer tests).

The files produced by do, the data.x file, and the specification files,

spi.acd and spil.xfr, are input to data reduction processing.

B.1 Consolidate the Files
The ten files from on-line data extraction and the data.x file are
consolidated. That is, they are stored in one computer either manually by
transporting magnetic tape or disks, or electronically by using the UNIX™™
utility uuep, the public domain utility Kermit, or a network utility such as FTP,
Then one of four types of programs are used on the files: merge, show-o, show-h,

and reform.

B.2 Merge User Information and Transfer Reference
Event Data and Reformat

For each end user, program merge has two functions:
. It merges transfer reference event data and user information.

. It reformats the two files of merged data from binary to text.

B.2.1 SUI File

The source transfer information file (data.x) and the transfer reference
event data (nnnnhis.x) are merged and reformatted to create the text file, SUI
(i.e., source user information data). It obtains the block transfer start time
and the block size from nnnnhis.x. It then extracts the transmitted ASCII

characters from data.x.

69

0L

Jile: datax
Generated Bytes
(data) -
ls: SUL
User
Information |-—>
Data
ftect)
file: info-hx
Rcfm‘crt
Event Data
(text)
file: info-0.x
Reference
Event Data
Jile: SOX
et |
ftwct)
. Consolidats Files .
il pnnnclams fie. Trangor o 5 [file; paoncksmx
or by UUCP)
|file: nnancksm.r
i | Destindion Overhead |5
Information
ﬁhj;,mn!wr ftet)
—> &
Information file: info-o.r
Reference
Sile: nnnn:;h.r Evm(‘:g)ata
—> Rei
E'(,,'"‘D ‘7‘ file: info-hr
inary, 1{ :f'""f"
Tm’ Event Data
R >
g
(binary) Y7
\fils: nnnndata.r program: mesge v
> Trastomd Trangired D™ | >
. Data
(data) tet)
shell script: door dopre*

Térynﬁmbwychaumﬁuﬁmhn
Figure B-la. Structured design diagram of off-line data extraction for do or dopre.

1L

file: nunnhis.x
it

Event Data

file: nnnnevh.x
Owerhead

Figure B-1b.

Consolidate Files

(i.e., Transfer to
One Computer

arially
or by UUCF)

5

tweaknon

fils: ovhxt
(binary)

tweaknon

file: ovhxt
(binary)

shell .rcriﬁt:

tweaknon

Jile: ovhxt
(binary)

Y

file: nnnndata.r.
Transferred

Bytes

(data)

Structured design diagram of off-line data extraction for doqik.

These characters are converted to machine-independent ASCII characters by
dividing the binary representation of the transmitted characters into a sequence
of 15-bit strings.

The structure of this file is shown in Figure B-2. If necessary, the last
string in the block is completed with binary zeros. Each string is regarded as
the binary representation of a decimal integer, where the bit of the lowest index
is the most significant bit. TheAuser information block is thus mapped into a
sequence of decimal integers in the range 0-32,767. The digits for each decimal
integer are stored in SUI. Figure B-3 shows the format of SUI and DUI. An

example of the SUI file is shown in Figure B-4.

B.2.2 DUI File 7

Similarly, the received transfer information file (data.r) and the transfer
kreference event data (nnnnhis.r) ére merged and reformatted to create the text’
file DUI (destination user information data). An example of the DUI file is

shown in Figure B-5.

B.3 Convert the Transfer Reference Event and
Overhead Information into Text Data

Program show-h reads the binary transfer reference event files (nnnnhis.x
and nnnnhis.r) and prints the text user information times.
Program show-o reads the binary overhead reference event files (nnnnovh.x

and nnnnovh.r) and prints the overhead information in text format.

B.4 Reformat the Overhead Reference Event Data
Program reform reformats the files nnnnovh.x and nnnnovh.r and produces the
files SOI and DOI, respectively. These files contain some preface information,
followed by a sequence of overhead reference event data lines. Figure B-6
portrays the structure of SOI and DOI. Figure B-7 lists the detailed format of
the SOI and DOI files. Examples of the SOI and DOI files are shown in Figures
.B-8 and B-9, respectively.

72

PREFACE DATA
(PART 1)
PREFACE DATA
(PART 2)
PREFACE DATA
(PART 3)
PREFACE DATA
(PART 4)

BLOCK HEADER RECORD

USER INFORMATION RECORD

: L DATA FOR FIRST
USER INFORMATION BLOCK
[)

USER INFORMATION RECORD

BLOCK TRAILER RECORD

BLOCK HEADER RECORD

USER INFORMATION RECORD

o -\ DATA FOR LAST
° USER INFORMATION BLOCK
® .

USER INFORMATION RECORD

BLOCK TRAILER RECORD

END-OF-HISTORY RECORD

Figure B-2. Structure of the source (SUI) and destination user
information (DUI) files. ’

73

L

CHARACTER
FIELD

EDIT

CONTENT:!
DESCRIPTOR} s

PREFACE DATA (PART 1)

JCHARACTER EDIT

CONTENTS
FIELD DESCRIFTOR

12 l

PREFACE DATA (PART 1)

PREFACE DATA (PART 2):

A32 |FILE DESCRIPTOR

1-32 I AR IFILE DESCRIPTOR

164 l A64]BATCH IDENTIFIER

PREFACE DATA (PART 2):

PREFACE DATA (PART 3):

1-64 [Ast IBATCHIDENTIFIER

PREFACE DATA (PART 3):
1-32 A32 SOURCE USER IDENTIFIER
3364 A32 DESTINATION USER IDENTIFIER
PREFACE DATA (PART 4):
1-4 " " YEAR)
S [| e
812 1 DAY
1316 " HOURS
T [[| oo eor.
21-28 F8.0 SECONDS

BLOCK HEADER/TRAILER RECORD:

132 A32 |SOURCE USER IDENTIFIER

3364 A32 | DESTINATION USER IDENTIFIER
PREFACE DATA (PART 4):
1-4 14 YEAR
REFERENCE TIME (DATE AT
MONTI

58 " ONTH_ | ORIGINATING USER SITE)

o12 14 DAY
1316 14 HOURS

REFERENCE TIME (LOCAL TIME-OF-
17.20 " MINUTES | 1av AT ORIGINATING USER SITE)
2128 F8.0 SECONDS
BLOCK HEADER/TRAILER REGORD:

1-8 F8.0 IBLOCK INDEX

T Feo |INTTIAL BIT INDEX

17:24 Feo |BLOCKSIZE (BITS)

EVENT TIME FOR START OF BLOGK INPUT
2540 D180 1SECONDS AFTER REFERENCE TIME
T Dreo |EVENT TIME FOR START OF BLOCK TRANSFER
- SECONDS AFTER REFERENCE TIM

USER INFORMATION RECORD:

18 F80 - |BLOCKINDEX
o-16 £8.0 INITIAL BIT INDEX
17-24 F8.0 BLOCK SIZE (BITS)
25.40 Di60 |EVENT TIME FOR END OF BLOCK TRANSFER

SECONDS AFTER REFERENCE YiM|

USER INFORMATION RECORD:

-5 15 USER INFORMATION FIELD
5-10 15 USER INFORMATION FIELD
.
.
.

1 1
76-80 l 15 l USER INFORMATION FIELD

END-OF-HISTORY RECORD:

1-8 F8.0 ZERO OR A NEGATIVE NUMBER
9-16 © F8.0 ZERO
17-24 F8.0 ZERO
25-40 D16.0 ZERO

-5 15 USER INFORMATION FIELD
6-10 15 USER INFORMATION FIELD
[]
[
[}
[l]
76-80 l 15 IUSER INFORMATION FIELD
END-OF-HISTORY RECORD:
1-8 F8.0 ZERO OR A NEGATIVE NUMBER
9-18 F80 ZERO
17-24 F8.0 ZERO
25-40 D16.0 ZERO
41-56 D160 ZERO

a. Source User Information File

Figure B-3.

b. Destination User Information File

Format of the source (SUI) and destination user information (DUI)

files.

SOURCE USER INFORMATION

UW to NTIA.ITS . L2134
UW — eldiente NTIA . crestone
89 3 6 00 00 00.000

1. 1. 1024. 53298.4310+0 53298.4310+0

0616804428166209587089052083700720167050886804433118870184706698187130321012359
091120750126346226211057167130834612360111841947611727007890889918632278181742
. 1397003470032080552505010104491918427953134770436623762237221009280452827620-26
0912123956271750127027282022490727015120978720632108310923819017237530270227473
15392231332711830579000
: 1. 1. 1024 53298.4310+0 53298.4310+0
2. 1025. ' 1024. 53298.4780+0 53298.4780+40
08747057882785422230250271885704206203420669805144279491311002634198890944021082
1461703480269571002100426167371757825441474906226202650951108715260530734819531
061792090035010504615051209210736269871309206797274702949421138197650277613425
15527071241901621860229620757306372133870644323005032442158908754066050125029253
1142520625105091406700
2. 1025. 1024. 53298.4780+0 53298.4780+0
3. 2049. 1024. 53298.5240+0 53298.5240+0
13500069972013801104304898025427844264540733703229190852999100834086810939417461
08995237720250901685108032601719082251420936906994283950982912850035132166419308
10405069250311405190111300866909394216021361105020192710925310834116612167429755
1067421709192090517300939238932786810010630805085035580529921298259131765215187
101612171228333057171024000
3. 2049. 1024. 53298.52404+0 53298.5240+0

79. 79873. 1024. :53308.7340+0 . 53308.7340+0
07581232581966114055065391864921140175101323323252017102653310819013572580830258
13628075162801025382316912090907332274821013921017099660086907090260091866222352
13595042451851101334311471779719084195631528203226033411392712987146212013611934
13499064761808701253149470141224754208580670507131099902979631345166210324817264
097832159802093055241228800000000000000000000000000000000006000000000000000000000

79. 79873. 1024. 55308.7340+0 53308.7340+0

80. 80897. 1024. 55308.9610+0 53308.9610+0
14519232511179001158816825188610581026988075792138828358303732116916797012461746
09010217782830301365169390970519086252090924220940198850573506546127252423428013
09882201721069514038044981784901252271870952222677198222160310706229442940629299
10043200110920263891930615809093961951014004215281088917635026911454901650144515
1066823709109540195508192000

80. - 80897. 1024. 53308.9610+0 53308.9610+0

=1. 0. 0. 0.0000+0 0.0000

Figure B-4. Example of source user information (SUI).files.

75

DESTINATION USER INFORMATION :
UW to NTIA.ITS 2134

UW — eldiente NTIA . crestone
89 3 6 00 00 00.000
1. 1. 1024, 53298.7970+0

06168044281866209587089052083700720167050886804433118870184706698187130321012359
09112075012634622621105716713083461236011184194761172700789088991863227818188742
13979034700320805525050101044919184279531347704366263762237221009280452827629026
09121239562717501270272820224907270152120978720632108310923819017237530270227473
1539223133271183057900

1. 1. 1024. 52309/7970+0

2. 1025. 1024. 53298.9310+0
08747057882785422230250271885704206203420669805144279491311002634198890944021082
14617034802695710021004261673717578254441474906226202650961108715260530734819531
061703480269571002100426150512092107387269871309067972747029421138197650277613425
155270712419016218602296207573063721338706443230050324421589087540660501250295253
11425206251050914067000

2. 1025. 1024. 53309.9320+0

79. 79873. 1024.53309.3180+0
075812322581966114055065918649211401751013233232520171026533108190125728082025844
136280751628010253823169120909073322748210139210170996600869070902600918662222352
135950424518511013343114717797190841956315282032603341139271462120136139341359545
134990647618087012531494701412247542085806705071310999029796313451662103241726555
09783211598020930552412288000

79. 79873. 1024. 53309.3180+0

80. 80897. 1024. 55309.4520+0
145192325111790015881682251886105810269880759213882835830373211691679701246174633
090102177828303013651693909705190862509092422094019885057350654612725242342801333
098822072106951440380449817849012522718709522226771982221603107062294429406292299
100432303011092026389193061580909396195101400421528108891763502691145490165014411
'106682370910940195508192000
0000

80. 80897. 1024. 53309.4540+0
-1. 0. 0. 0.0000+0
Figure B-5. Example of destination user information (DUI) files.

76

PREFACE DATA
(PART 1)

PREFACE DATA
(PART 2)

PREFACE DATA
(PART 3)

PREFACE DATA
(PART 4)

INITIAL STATE RECORD

 EVENT RECORD

EVENT RECORD

END-OF-HISTORY RECORD

Figure B-6. Structure of the source (SOI) and destination
overhead information (DOI) files.

77

8L

cHARACTER| eom cHaracTER| EOIT
CONTENTS s
FIELD |DESCRIPTOR FELD | DESCRIPTOR CONTENT
PREFACE DATA (PARTT 1): : PREFACE DATA (PART 1):
1-32 I A32 lF|LE DESCRIPTOR 1-32 | A2 JFN.E DESCRIPTOR
PREFACE DATA (PART 2): PREFACE DATA (PART 2):
164 | A4 [BATCHIDENTIFER 1-64 —[) lBATcH IDENTIFIER
PREFACE DATA (PART 3): PREFACE DATA (PART 3):
132 A32 |sourck USERIDENTIFIER 1-32 A32 |SOURCE USER IDENTIFIER
33.64 A32 | DESTINATION USER IDENTIFIER 3364 A32 | DESTINATION USER IDENTIFIER
PREFACE DATA (PART 4): PREFACE DATA (PART 4):
4 M CATEGORY CODE FOR DATA GOMMUNICATION 14 " CATEGORY CODE FOR DATA COMMUNICATION
SESSION SESSION
P " CATEGORY CODE FOR INITIAL DISENGAGEMENT oo " CATEGORY GODE FOR INITIAL DISENGAGEMENT
ATTEMPT IN SESSION ATTEMPT IN SESSION
9-12 18 POINTER TO ORIGINATING USER 912 14 POINTER TO ORIGINATING USER
13-16 in YEAR 13-16 14 YEAR
REFERENCE TIME (DATE AT y REFERENCE TIME (DATE AT
1720 " MONTH 1 GRIGINATING USER SITE) 1720 1 MONTH. | GRIGINATING USER SITE)
21-24 1] DAY 21-2¢ 4 DAY
2528 14 HOURS 2528 " HOURS
- oo REFERENGE TIME (LOCAL TIME-OF- REFERENCE TIME (LOCAL TIME-OF-
28 14 DAY AT ORIGINATING USER SITE) 2832 " MINUTES | Ay AT ORIGINATING USER SITE)
33.40 8.0 SECONDS 33-40 F8.0 SECONDS
INITIAL STATE RECORD: INITIAL STATE REGORD:
" " TNITIAL GOMMUNICATION STATE GODE FOR T " INITIAL COMMUNICATION STATE CODE FOR
SOURGE USER DESTINATION HALF-SYSTEM
o8 T TNITIAL COMMUNICATION STATE GODE FOR 58 " TNITIAL COMMUNIGATION STATE GODE FOR
SOURGE HALF-SYSTEM DESTINATION USER
EVENT RECORD:) EVENT RECORD:
116 D160 |EVENT TIME (SECONDS AFTER REFERENGE TIME) 1-16 DI6O | EVENT TIME (SECONDS AFTER REFERENCE TIME)
1720 18 COMMUNICATION STATE CODE FOR SOURCE USER 17-20 14 REMOTE INTERFACE EFFECT CODE
21-24 N COMMUNICATION STATE CODE FOR SOURCE 2124 1 COMMUNICATION STATE CODE FOR DESTINATION
HALF-SYSTEM HALF-SYSTEM
25-28 " REMOTE INTERFACE EFFECT CODE 25-28 N Sgg‘;dUNlOAT'ON STATE CODE FOR DESTINATION
END-OF-HISTORY RECORD: END-OF-HISTORY RECORD:
1-16 D160 | A NEGATIVE NUMBER 1-16 D160 |ANEGATIVE NUMBER
17-20 “ ZERO . 17-20 14 ZERO
21-24 1] ZERO i 21-24 14 ZERO
2528 N ZERO 2528 1 ZERO
a. Source Overhead Information File b. Destination Overhead Information File

Figure B-7. Format of the source (SOI) and destination overhead information (DOI) files.

SOURCE OVERHEAD INFORMATION

UW to NTIA.ITS 2115
UW — eldiente NTIA - crestone
2 2 89 3 6 00 00 00.00
1 1
000047234.829D+0 1 1 0
000047236 .049D+0 1 1 0
000047236 .066D+0 2 3 0
000047275.493D+0 3 2 0
000047275.510D+0 2 2 0
000047278.739D+0 3 2 0
000047278.779D+0 2 3 0
000047279.182D+0 3 2 0
000047279.237D+0 4 4 0
000047280.103D+0 5 4 0
000047280.120D+0 4 5 0
000047281.046D+0 1 1 0
000047340.256D+0 1 1 0
000047341 .470D+0 1 1 0
000047341 .487D+0 1 3 0
000047380.478D+0 3 2 0
000047380.495D+0 2 2 0
000047383.286D+0 3. 2 0
000047383.326D+0 2 3 0
000047383.729D+0 3 2 0
000047383.776D+0 3 3 0
000047384.651D+0 5 3 0
000047384 .668D+0 4 5 0
000047385.594D+0 1 1 0
000049244 .174D+0 1 1 0
000049245 .386D+0 1 1 0
000049245.829D+0 2 3 0
000049245.403D+0 3 2 0
000049286 .443D+0 2 2 0
000049286 .460D+0 3 2 1
000049289.273D+0 2 3 0
000049289.313D+0 3 2 1
000049289.716D+0 4 4 0
000049289 .762D+0 5 4 0
000049290.646D+0 4 5 0
000049291.593D+0 1 1 0
—1.000D+0 0 0 0
Figure B-8. Example of source overhead information (SOI) file.

79

SOURCE OVERHEAD INFORMATION

UW to NTIA.ITS 2115
UW — eldiente NTIA — crestone '

2 2 1 89 3 6 00 00 00.00

1 1
000047278.120D+0 0 2 3
000047278.620D+0 1 3 2
000047278.623D+0 0 2 3
000047278 .640D+0 0 2 2
000047279.545D+0 0 2 3
000047279.562D+0 0 3 2
000047279.563D+0 0 4 5
000047279.607D+0 1 1 1
000047383.143D+0 0 2 3
000047383.146D+0 1 3 2
000047383.163D+0 0 2 3
000047383.090D+0 0 2 2
000047384.090D+0 0 2 3
000047384.107D+0 0 3 2
000047384.109D+0 0 4 5
000047384.153D+0 1 1 1
000049244 .174D+0 0 2 3
000049245 .386D+0 1 3 2
000049245.829D+0 0 2 3
000049245.403D+0 0 2 2
000049286 .443D+0 0 2 3
000049286 .460D+0 0 3 2
000049289.273D+0 0 4 5
000049289.313D+0 1 1 1
000049289.716D+0 0 2 3
000049289.762D+0 1 -3 2
000049290.646D+0 0 2 3
000049291.593D+0 0 2 2
000047384 .090D+0 0 2 3
000047384.107D+0 0 3 2
000047384.109D+0 0 4 5
000047384.153D+0 1 1 1

-1.000D+0 0 0 0

Figure B-9. Example of destination overhead information (DOI) file.

80

FORM NTIA-29 U.S. DEPARTMENT OF COMMERCE
(4-80) NAT'L. TELECOMMUNICATIONS AND INFORMATION ADMINISTRATION

BIBLIOGRAPHIC DATA SHEET

1. PUBLICATION NO. 2. Gov't Accession No. 3. Recipient’'s Accession No.
95-319 (3)
4. TITLE AND SUBTITLE 5. Publication Date
Performance Evaluation of Data Communication Services:| Ayqgust 1995
NTIA Implementation of American National Standard 6. Performing Organization Code
X3.141, Volume 3. Data Extraction NTIA/ITS.N3 "
7. AUTHOR(S) 9. Project/Task/Work Unit No.

Martin J. Miles and David R. Wortendyke

8. PERFORMING ORGANIZATION NAME AND ADDRESS
National Telecommunications and Information Admin.
Institute for Telecommunication Sciences 10. Contract/Grant No.
325 Broadway
Boulder, CO 80303

11. Spons.oring Organization Name am.i Address 12. Type of Report and Period Covered
National Te]ecommun1gat1ons and Information Admin.
Herbert C. Hoover Building

14th and Constitution Avenue, NW 13.
Washington, DC 20230

.14. SUPPLEMENTARY NOTES

15. ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature
survey, mention it here.) .

This volume explains how to conduct a data communication session.
Specifically, it explains how to determine the commands and expected
responses of a protocol (for access and disengagement functions), how to
determine the responsibility of the participating entities for producing
each reference event, and how to draw a profile of the session (which
demonstrates the flow of information between the participating entities
and across user/system interfaces). It explains how to create a file
containing the commands and expected responses of the protocol, the code
that causes the times at which they cross interfaces to be recorded, and
a code number that indicates the state of the entities at each interface.
This volume also explains how to modify the transmitting program to agree
with the protocol. It explains how to create files that support the on-
line data extraction software. Specifically, these files are the end
user identification files, the clock calibration file, and the protocol
file. This volume then explains how to execute a shell script that
conducts a test, and how to execute a shell script that processes the
test data.

Key words: access; communication state codes; disengagement; reference
: events; protocol; satellite clock receiver; session profile;
user information transfer; user/system interfaces

17. AVAILABILITY STATEMENT 18. Security Class. (This report) 20. Number of pages.
A unumiTen. \ Unclassified 38
19. Security Class. (This page) 21. Price:

D FOR OFFICIAL DISTRIBUTION.
Unclassified

*U.5, GOVERNMENT PRINTING OFFICE: 1995-676-490/25108

