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PREFACE

This work was performed by the Institute for Telecommunication Sciences, Boulder, Colorado for
the National Communications System's Office of Standards and Technology under reimbursable
order No: DNCR066007.

Programming language software, plotting software, and operating systems are mentioned in this
report to adequately explain the content of the report and to allow readers to both understand and
build upon this work. In no case does such identification imply recommendation or endorsement
by the National Telecommunications and Information Administration, nor does it imply that the
software and systems mentioned are necessarily the best available for this application.
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SOFTWARE IMPLEMENTATION OF A WIDEBAND
HF CHANNEL TRANSFER FUNCTION

David A. Sutherland Jr.*

This report presents an analytic model implemented as the computer program of the
transfer function ofa wideband HF channel model for use in a hardware simulator.
The transfer function is the basic input to the hardware simulator. The mathematical
basis of the program and the propagation model is presented. Parameters that
characterize the skywave paths of a particular HF ionospheric condition are inputs
to the program. The program code is listed and documentation is provided.
Graphical verification using spectrally averaged scattering functions indicates that
the transfer function program performs well and should find use as both an
engineering tool and as thebasis for a new standard propagation model.

Key words: channel transfer function; HF channel model; HF propagation; scattering function;
widebandHF

1. INTRODUCTION

Research for and development of a wideband high-frequency (HF) radio channel simulator in
hardware has been in progress for several years at the Institute for Telecommunication Sciences
(ITS), see, for example, Hoffmeyer and Nesenbergs [1], Vogler et al. [2], and Vogler and Hoffmeyer
[3-5]. The need for such a simulator has been driven by the renewed interest in the HF band. In
particular, the HF radio band is the primary band for emergency backup communications by both
amateur radio operators and Government radio systems. Thus, the HF band is important to National
Security or Emergency Preparedness (NS/EP) telecommunications systems.

The HF band is characterized by widely variable conditions depending on variations in long-term
solar effects (the sunspot cycle) on the ionosphere, diurnal variations in the skywave channel, fading
characteristics, man-made (ignition) and natural (lightning) noise, and interference due to the
crowded worldwide spectrum. These variable characteristics ofthe channels in the HF band make
it desirable to test radio systems and subsystems in the laboratory rather than incur the costs and
complexity ofactual point-to-point and network tests. For example, low-power spread spectrum and
frequency-hopping systems may be effective in mitigating the harsh HF environment. Wideband
simulation may be useful in testing the effectiveness of these systems in the laboratory, see, for
example, Redding and Weddle [6]. Narrowband simulation, since it is usually limited to less than
12 kHz, is clearly insufficient in this regard.

*The author is with the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U.S. Department of Commerce, 325
Broadway, Boulder, CO 80303.



Unfortunately, HF channel simulation has mostly depended on narrowband simulators. The most
widely recognized narrowband model is the Watterson model given in Watterson, Juroshek, and
Bensema [7]. The Watterson model, although widely used, is extremely restricted, as Watterson
himself made quite clear. The limitations include bandwidths less than 12 kHz, negligible delay
dispersion, and a single skywave path. The Watterson model is also limited to channels with
stationary behavior in delay and in frequency. As a result, hardware simulators depending on the
Watterson model are valid only for bandwidth-limited, stable, and stationary channels. Hence, there
is an ongoing need for a much wider bandwidth simulation model that more closely models the
ionospheric effects ofdispersion and multipath seen over HF channels. This is even more important
now that digital signal-processing (DSP) technology is being developed and improved to handle the
extreme effects seen over an HF channel.

This report describes an analytic model, implemented in a computer program, that supports such a
desired wideband HF channel simulator with a I-MHz bandwidth. The HF channel simulator in
hardware emulates several aspects of an HF time-varying channel: Doppler shift, Doppler spread,
delay spread, and delay offset. Future versions ofthe wideband simulator will also include noise and
interference effects based on the models described in Lemmon and Behm [8,9].

The C language program runs on a personal computer (PC) in either the Windows 3.1 or the
Windows 95 operating systems. It implements the discrete transfer function of the HF channel in
question. The discrete transfer function is the basic input for the hardware simulator. Input for the
program are the parameters that characterize each of the skywave paths of the HF channel being
modeled plus additional parameters that specify numerical conditions for the computing run. The
output consists of two ASCII files. The first is a listing of all the input parameters and all the
computing parameters used by the program. The second output file is the transfer function. It
consists ofthe complex Fourier coefficients that characterize the transfer function at each sampling
point in time.

This report is divided into two parts. Part I (consisting of Sections 2 - 4) contains background
information for the channel model and information on the transfer function. Section 2 is a
description ofthe HF channel model. Section 3 provides the mathematical basis for the calculation
of the transfer function. Section 4 presents graphical verification of the software by means of
scattering functions.

Part II (consisting of Sections 5 - 7) contains the program listing and the documentation. Section
5 discusses and explains specific aspects of the program such as special techniques and random
number generation. Section 6 is a user's guide that explains details ofthe input and output files and
tells how to run the program. Section 7 contains the program documentation and the program code.

Summary and reference sections follow. An appendix with the code listing of the program used to
produce the data for the scattering functions of Section 4 is also included.
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PART I. TECHNICAL AND BACKGROUND INFORMATION

2. THE PROPAGATION MODEL

This wideband HF channel model is given as the impulse response function

N

h(t;r:) = L hn(t;r:) ,
n= I

(1)

where the independent variables are time t and delay 't', and hnCt,'t') is the impulse response for one
ofN different ionospheric propagation paths (reflecting ionospheric layers) indexed by n. For each
path n,

(2)

where PnC't') is the delay power profile, Dn(t,'t') is the deterministic phase function, and l/InCt,'t') is a
stochastic modulating function.

For the nth propagation path, the delay power profile is given by

where

't' - 't'
x= __c+l,

/).

(3)

(4)

A is the maximum received power, a is the shape parameter, 't'c is the mean delay at the center
frequency (which fixes the delay offset), /). = 't'c - 't'[ (which serves as a scale parameter), 't'[ is the point
in delay such that, for (3), Pn('t'[) == 0, and r(·) is the gamma function defined as

r(y) = f sY - Ie -sds ,

s=o

3
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for y a positive integer. Equation 3 describes a form ofthe gamma probability distribution function.
See Law and Kelton [10, p. 332] for details on the gamma distribution. An example delay power
profile is shown in Figure 1 where AjI is the receiver threshold, a~ is the delay spread at AjI' and ac

is the rise time to 'tc relative to AjI with the restriction that

The restriction is necessary for the existence of't/.
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Figure 1. Delay power profile.

The deterministic phase function is given by

(6)

(7)

whereis is the Doppler shift at 'tc and b is the slope or rate of change of Doppler shift with respect
to 't. The dependence of phase on delay is the "slant" phenomenon described in the literature, see,
for example, Wagner et al. [11].
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The stochastic modulating function Wn(t,'t) is a set of random processes that models the effects of
the constantly changing electron density in the ionospheric-reflecting layers that cause random
variations in the received signals over HF channels. In this model, the processes will exhibit
exponential autocorrelation in time as well as Rayleigh fading, a widely accepted characteristic of
HF propagation, see Davies [12, pp. 242-245]. The random processes used in this model are
described more completely in the next section.

The channel-scattering function relates the delay spread, the delay offset, the Doppler shift, and the
Doppler frequency spread. It also provides a graphical method to display the signal energy
distribution. The delay spread characterizes the phase variation of a received signal, while the
Doppler shift and the Doppler spread characterize frequency variation. The scattering function
S('t,ID) is the Fourier transform of the autocorrelation function of the impulse response given by

S('t,fJ = J R('t,lit)e -i2rcfDt1tdlit ,

t1t=-oo
(8)

where ID is the Doppler frequency, lit is the autocorrelation time lag, and R('t,lit) IS the
autocorrelation function of the impulse response given by

R('t,lit) = Co J h *('t,t)h('t,t + lit)dt ,
t=-oo

(9)

(10)

where Co is a normalizing constant and • denotes complex conjugation, see Proakis [13, pp.
461-463]. For the Doppler spread having an exponential shape,

S('t,ID) = P('t) . Of _ I
B

) e i2rc¢Jo ,
Of + 12rr.(ID

where

(11)

<1>0 is a phase term, and 0fis a function of the Doppler spread half-width 0D given by

(12)

and where

5



(13)

More detailed explanations and descriptions of the model are given in Mastrangelo et al. [14]. The
set of reports by Vogler and Hoffmeyer [3-5] also describes the development of the model. The
scattering function, or ambiguity function, has been used to describe random channels in sonar and
radar research as well as in HF radio. See Baggeroer [15] for an example or Middleton [16] for a
general treatment.
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3. THE TRANSFER FUNCTION

This section describes the discrete form of the transfer function of the channel model for
implementation in a computer program. For this reason, the general mathematical definitions given
in the previous section are rewritten in discrete form and are written to correspond with the
functions, procedures, computations, and input parameters of the program. The channel transfer
function is the discrete Fourier transform ofthe superimposed impulse responses given by (1) ofeach
separate path with time held fixed.

The discrete form of the impulse response in terms of time t and delay 't is given by

h - rp iTJk,m
k,m - V.. k ck,m e , (14)

where the symbols and functions are explained in detail below. The independent variables delay 't
and time t are indexed by the integers k, rn = 0, 1,2, ... , respectively. The discrete forms are defined
as 'tk ='to + kA 't and tm =to + rnA t where A 't, the delay increment, and A t, the sampling interval,
are arbitrary, but dependent on the hardware simulator's update rate, memory capacity, and
bandwidth limitations.

The first factor, under the radical of(14), is the discrete form ofthe delay power profile given by (3).
Hence, Pk determines how the impulse response behaves as a function of delay 't and is given by

P = Ae a[In(g)+ I-g]
k '

(15)

where A is the power at the expected value ofdelay 'tc associated with the center frequency, ex is the
delay spread shape factor, In is the natural logarithm function, and g is given by

g = (16)

where I is the largest k such that, for (15), P, = 0, and (], = 'tc - 't" which is the rise time or A from
(3) and (4). The parameters ex and 't, are functions of the received signal threshold Aft, the overall
delay spread (]" and (],. The iterative method for computing ex and 't, is discussed in the program
documentation on page 20. The convenient formula in (15) is derived by taking the natural
logarithm of a normalized version of (3), raising the simplified expression of the normalization to
the power of e, and then multiplying by A. The normalization of (3) is obtained by taking the ratio
ofPn('tk) to Pn('tc)'
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The last two factors of (14) describe the shape of the Doppler spread. The exponential factor is the
deterministic phase function mentioned in (2) and given by (7). In the argument of the exponent,

(17)

wherej; is the Doppler shift at 'tc , and b is the rate of change ofthe Doppler shift between 'tL and

'tc ' or

b (18)

where hL is the Doppler shift at the lower end of the delay spread 'tL. Equation 17 is a linear
approximation to the relationship between delay and Doppler shift. The relationship is obtained
from a truncated Taylor series expansion; see section 2.1.3 in Vogler and Hoffmeyer [4]. In this
program, the constant part of the Taylor's expansion, 21t<Po, given in Vogler and Hoffmeyer [5], is
set to zero, i.e., <Po = 0; however, this factor can be allowed to vary and may be used as a correction
factor. This relationship is responsible for the slanted ridges seen in scattering function measurement
and is often referred to as "slant."

The factor ck,m represents the stochastic modulating function from (2) and is used to model the
variation in the received signals observed over HF channels. The generation of these sequences in
kand m is accomplished by the following single-pole infinite impulse response (IIR) filtering process
on the complex random sequence Pm

Ck,m = (1 - A) Pm + ACk,m-l '

where Ck,_l = 0 for an initial condition and

(19)

(20)

where the factor afis given by (12). As a result, the ck,m's, with k held fixed, will have the desired
exponential autocorrelation in the time direction.

The real and imaginary parts of the sequence Pm are independent and identically distributed (lID)
Gaussian sequences with common mean 0 and common variance 1. This is equivalent to the
bivariate Gaussian process of the Watterson model which accounts for long-term fading statistics
following a Rayleigh distribution, see Watterson [7].
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4. VERIFICATION

Program verification is accomplished by a graphical technique. The purpose of this verification is
to ensure that the program's output fairly represents the expectations ofthe model in terms of both
the input parameters and the computed parameters. The scattering function (8) relates the delay
spread, the delay offset, the Doppler shift, and the Doppler spread. The scattering function is the
Fourier transform of the autocorrelation function of the impulse response. The magnitude of the
scattering function IS( r;!D) I is used as the basic graphical verification tool.

Table 1 presents the input data used to obtain scattering functions for demonstration ofverification.
The input parameters are the path distance D, the center frequency Ie, the penetration frequency1;,
the layer thickness 0, the height ofmaximum electron density ho, the amplitude A, the delay spread
0" the part of the delay spread below the mean delay °c' the Doppler spread half width °D' the
Doppler shift at the mean delayIs, and the Doppler shift at the lower end of the delay spread IsL .
Delay spreads are limited to less than 800 /.lS since this is a practical limitation for the channel
simulator in hardware. This data is from the same set as used by Vogler and Hoffmeyer [4,5] which
was obtained from Wagner, Goldstein, and Meyers [17], Basler et al. [18], and Wagner and
Goldstein [19]. The reader may consult these sources for descriptions ofthe channel and techniques
used to obtain the input parameters and the measured scattering functions. True validation of the
transfer function must wait for the development of the hardware HF channel simulator. The input
parameters that can be verified from the contour plots ofthe spectral averages at the -3-dB level are
the Doppler spread 20D,the delay spread Op the Doppler shift at the mean delayIs, and the Doppler
shift at the lower end of the delay spreadlsL •

Table 1. Model Input: Skywave Path Parameters

Path D Ie 1;, (J ho A (Jt (Je (JD h hL
(km) (MHz) (MHz) (km) (km) (Jls) (Jls) (Hz) (Hz) (Hz)

I 126.0 5.5 13.0 30.0 265.0 1.0 70.0 34.0 0.05 0.2 0.1

2 126.0 5.5 13.0 28.0 270.0 1.0 20.0 9.0 0.05 -0.1 0.0

3 126.0 5.5 13.0 28.0 271.5 1.0 30.0 14.0 0.1 0.05 -0.05

4 88.0 2.8 5.87 30.0 240.0 0.25 350.0 170.0 5.0 1.1 0.8

In addition to the input parameters, several computed parameters may also be verified: the mean
delay 't'c' the slant (the ratio of the Doppler frequency to the mean delay), and the lower and upper
ends of the delay spread, 't'L and 't'u respectively. The mean delay is computed from the effective
reflection height and the great circle distance between transmitter and receiver. The effective
reflection height is a function of the input parameters Ie,1;, 0, and ho , see p. 53 in the program
documentation. This calculation depends on a hyperbolic secant-squared (sech2

) model ofelectron
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density, see Budden [20, p. 156]. The verification parameters for the paths in Table 1 that can be
verified are given in Table 2.

Figures 2 - 13 contain sequential data of the averaged spectrum at particular points in delay. A
surface is fitted over the data points for purposes of illustration. The contour plots are taken from
the fitted surfaces. The scales in delay may seem inconsistent since the tick marks (and grid lines)
in delay represent one of the data sequences. The delay value at that point in the graph is rounded
from the actual value.

Table 2. Verification Parameters

Path 20D 0< Is IsL 'c slant 'u 'L
(Hz) (IlS) (Hz) (Hz) (Ils) (Hz/IlS) (IlS) (Ils)

1 0.1 70.0 0.2 0.1 1,831 0.0029 1,867 1,797

2 0.1 20.0 -0.1 0.0 1,863 -0.0111 1,874 1,854

3 0.2 30.0 0.05 -0.05 1,872 0.0071 1,888 1,858

4 10.0 350.0 1.1 0.8 1,637 0.0018 1,817 1,467

The first three paths in Tables 1 and 2 are from the ordinary mode and two extraordinary modes from
I-hop F-layer returns measured over a quiet 126-km path in California in the winter, see Wagner et
al. [11].

One difficulty in studying the scattering function is in the stochastic construction of the impulse
response. This makes it impossible to graphically measure parameters such as Doppler spread from
the scattering function graphs, even with a quiet channel, as shown in Figure 2. Above the -3.1-dB
level there is little energy exhibited in the scattering function as seen in Figure 3. This is all located
in the small area at approximately 0.18 Hz and 1,810 IlS. The -3-dB level is where the important
parameters are displayed and graphically measured. The choice oflevel for verification is arbitrary,
but in this model the input parameters are based at the -3-dB level. For example, the Doppler spread
is measured at the mean delay, which, in this case, is 1,831 IlS. As can be seen, there is no spectral
energy at that point.

Smoothing techniques to rectify this problem do not suffice since there is no guarantee that the
smoothed spectrum obtained from one stochastically constructed impulse response is representative
of the true spectrum. Another possibility is to sample for a longer duration, but this will bring
computing time and memory issues into play. Therefore, a spectral averaging technique is used to
obtain a useable spectrum. Figures 4 and 5 appear more reasonable for obtaining visual verification.
These figures are the average of 80 "runs" or the average of 80 separately constructed scattering
functions. The program for the numerical construction ofthe spectrally averaged scattering function

10
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is nearly identical to the transfer function program. The spectral averaging program is listed in the
Appendix with documentation that describes the differences between the two programs.

The difficulty with spectral averaging is that it may take many computer runs to obtain a suitable
average, especially for some ionospheric conditions, e.g., spread-F, which is defined as the
phenomenon that is observed on ionograms displaying a wide range of echo pulse delay near the
critical frequencies of the F layer, see, for example, Davies [12, p. 153].

Consider the first channel displayed in Figures 4 and 5. Notice that the averaged scattering function
displayed in Figure 5, although considerably smoothed over that in Figure 3, still has some
raggedness at the knife edge of the surface. For our purposes it still suffices for verification.

In Figure 4, the Doppler spread at the mean delay, t c = 1,831 /lS, measured across the -3-dB contour
is approximately 0.06 Hz, which is smaller than expected by a factor oftwo-thirds. The delay spread
across the -3-dB contour is also shorter than expected since the contours do not reach the upper end
of the delay spread t u , although the -3-dB contour is close to the lower end of the delay spread t L •

We estimated the slope of the line through the long axis of the -3-dB contour to be 250 /ls/Hz or
0.004 HzI/ls, which is reasonably close to the predicted slant. It is believed that the discrepancies
are due to the general filter design. The filter is a single pole IIR filter. Although the filter itself is
a function ofthe sampling rate and the Doppler spread halfwidth, it may be insufficient for accurate
modeling of anyone channel. Such discrepancies can be mitigated by design of digital filters to
more carefully model a particular channel. This may be difficult since the raw data necessary may
not be attainable due to the rapidly changing nature of the ionosphere.

The most noticeable discrepancy is that the Doppler shift at t c is about 0.05 Hz larger than expected.
The discrepancy in Doppler shift is also noticeable at t L and appears to be the same offset as at t c '

The shift appears to be constant through delay. This is also likely to be an effect caused by filtering.
In this case, however, the effect may be mitigated by introducing a shift which is constant through
delay. This constant shift term was mentioned in Section 3 as an arbitrary phase factor that had been
set to zero. This is part of the deterministic phase function (7) which now becomes

(21)

For path 2, there is even better graphical agreement with the parameters as seen in Figures 6 and 7.
The mean delay t c = 1,863 /lS appears to cut the center of the -3.0-dB contour and intersects there
with the expected Doppler shift; however, the maximum indicated by the -0.5-dB contour is at
1,860 /lS and -0.05 Hz. The -3.0-dB contour extends approximately 16 /lS, smaller than the 20-/ls
spread expected. The graphically measured slope of the line through the long axis of the -3.0-dB
contour is -123.81 /ls/Hz, which gives an estimated slant of -0.008 HZ//ls; this is close to the
expected slant of -0.0111 HzI/ls. The Doppler spread at the mean delay is about 0.07 Hz, smaller
than the 0.1-Hz spread expected at t c' The computed spectral average ofscattering functions for this
path is in fair agreement with the parameters without the discrepancies noted above for path 1.
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Figures 8 and 9 display the scattering function for path 3. There is a constant offset in Doppler
frequency as seen before in path 1. The shift is about 0.04 Hz. The mean delay 'tc = 1,872 /lS,
touches the bottom of the -1.0-dB contour. The -3.0-dB contour extends for approximately 27 /lS,
which is short of the 30 /lS expected. The -3.0-dB level is very close to 'tu == 1,888 /lS, but
'tL= 1,858 /lS is lower than the bottom edge of the -3.0-dB contour. Except for the shift in Doppler
frequency the spectrally averaged result for this path is in fair agreement with the verification
parameters.

An additional verification feature is the ability ofthe spectral average results to distinguish between
separate paths. Figures 10 and 11 combine paths 1-3 into the actual observed situation of one
ordinary mode and two extraordinary modes. Figure 10 shows two major divisions ofenergy. It is
difficult to see the three paths on the three-dimensional rendering, but it is interesting to note that
when the graphing software is "painting" the surface on the computer screen the three paths are
dramatically distinct. The contour plot in Figure 11 clearly indicates the presence of three paths as
the contours in the upper middle of the figure show two sections with distinctly different slopes.

Figures 12 and 13 present an intense spread-F situation over an 80-km Alaskan path, see Wagner and
Goldstein [19]. The scattering function is the average of 160 runs. The mean delay of 1,637 /lS
appears to split the center of the contours. There is not enough resolution to clearly see the
indication ofslope, although the Doppler frequency at the mean delay looks reasonable; hence, there
appears to be no unexpected offset in Doppler frequency as seen in two of the paths above. The
Doppler spread appears to be about halfofwhat is expected. The extent ofthe delay is about 65 /lS
short ofthe expected 350 /lS. There appears to be good agreement with the verification parameters,
but this situation probably requires more runs in order to obtain a smoother spectral average.

The model appears to agree well with the input and calculated parameters. An exception is the
unexpected offset in overall Doppler frequency seen with two ofthe verification paths. This appears
to be a function of the filter parameter Agiven by (20). This parameter is itself a function of the
sampling rate and the Doppler spread. This is a result ofthe general design ofthe model. The model
is designed for a wide range of applications. To more carefully model a path with a particular
ionospheric situation, it may be necessary to tailor the filter design to the situation. The filtering
effect is also believed to be responsible for the delay shapes being shorter than expected. Another
consideration is that it may be necessary to design the delay power profile (3) and (15) for the
specific situation. The alternative is that the general model may need to be more complicated to fit
more cases.
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PART II. THE TRANSFER FUNCTION PROGRAM

5. TECHNICAL ASPECTS OF THE PROGRAM

This section discusses special techniques used in the design of the transfer function program. The
larger data structures and the more complex or detailed routines are explained or justified. More
details can be found in the documentation'section, Section 7.

5.1. Random Number Generation

The assumption that long-term channel-fading characteristics follow a Rayleigh distribution requires
two separate sequences from independent, normal distributions that have common zero mean and
common unit variance. The polar method is used to generate two such sequences, see Law and
Kelton [10, p. 491]. In tum, the polar method requires two separate sequences from independent
uniform distributions on the interval (0,1) as input. To ensure independence, this program includes
two different pseudorandom number generators that are each composites of several different linear
congruential uniform random number generators (LCG).

The difficulty with a single LCG, which sometimes is used as input for the polar method, is that the
normal distributions obtained may not be independent, see Brately, Fox, and Schrage [21, p. 223].
Example output sequences from the polar method, when plotted against one another, fall on a spiral!
Clearly, these are not independent number streams.

5.2. Complex Number Arrays

An array ofcomplex numbers is represented by an array ofreal numbers, that is, an array offloating
point numbers. The even indices ofthe array, beginning with 0, indicate the real part ofthe complex
number, whil~ the odd indices indicate the imaginary part. The array elements with indices °and
1 are the real and imaginary part of the first complex number, respectively; the array elements with
indices 2 and 3 are the second complex number, etc. The size of these arrays is driven by the
channel simulation hardware requirements.

The random number input to the computation of the impulse response is held in a dynamically
allocated array of floating point numbers. Stepping through this array is accomplished by pointer
arithmetic. One section of this array is maintained for each ionospheric path. Dynamic memory is
used since the program will support from one to three skywave paths. Hence, up to three separate
segments ofthe array will be necessary. The array is used as both input and output for a digital filter.
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5.3. Fast Fourier Transform

The fast Fourier transform (FFT) algorithm used returns the complex Fourier coefficients into the
input array, hence only one array is necessary. The length of the input array is doubled by zero
padding. This padding provides interpolation and helps avoid "wrap-around" effects.

5.4. Computation of 1:{ and a

The parameters 1:{ and a must be calculated iteratively since the equation for the gamma distribution
has no closed form unless a is an integer. The computation of 1:{ is accomplished by a bisection
algorithm since the function being evaluated is not continuous. The presence ofa natural logarithm
in the function can produce complex results, see Section 7.4.4. The bisection algorithm is used since
two estimates that lead to a result with the desired tolerance can be quickly found while avoiding the
discontinuities. The shape parameter a is calculated directly from

lnsva = ------
InZL + 1 - ZL

where Sv is given by (13) and

see Vogler and Hoffmeyer [5, p. 32].

5.5. Data Structures

(22)

(23)

The first ofthe major data structures is a single element array containing one structure that holds all
input and computed parameters that apply to all the paths. There is also an array of structures that
holds all the input and calculated parameters particular to each sky wave path.
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6. USER'S GUIDE

This section provides instructions to use the program. Several topics are discussed including input
and output, and running the program under various environments.

6.1. The Input File

An input file contains a variable number of parameters depending on the number of ionospheric
paths in the HF channel situation under consideration. The parameters are listed in order and
separated by delimiters such as carriage return and line feed (CR-LF). The input files are ASCII files
that consist of two types of information: data used by the program in the computing run and data
descriptive of each path. The first five items in an input file are the "computing"4ata and are read
into a single element array of type compute (see the documentation in Section 7). The italics here
indicate a variable in the program while bold indicates a structure. Where a real number is indicated,
a decimal point is required, for example, 326.0. The first five input elements are:

slices - an integer that indicates the number of time slices or samples in the time direction.
The program computes the Fourier coefficients for a complete impulse response for
each sample point.

delta t - a real number that indicates the length of the sampling interval. This is given in
microseconds for consistency with the units ofthe other time values in the input file.
In Vogler and Hoffmeyer [5], this is indicated by the symbol ~.

afl- a real number that indicates the receiver threshold. This is generally taken to be the half
amplitude point (the 3-dB point).

paths - an integer that indicates the number of ionospheric paths modeled. The upper limit
is three paths.

seed - an integer in the range 1 - 30,268, inclusive, that is used to initialize the random
number seeds for the two uniform random number generators.

The parameters that follow serve to characterize the individual skywave paths. These parameters
are all elements of the structure ray-path. For each path or layer, there are eleven parameters:

path_Distance - a real number that indicates the point-to-point distance, in kilometers, along
the great circle between sender and receiver.

centeryeq - a real number that indicates the center frequency, in megahertz, of the
transmitting radio system.
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penetrateJreq - a real number that indicates the penetration frequency, in megahertz, ofthe
reflecting layer. Above this frequency there is no ionospheric reflection possible for
this layer. The penetration frequency is generally higher than the maximum useable
frequency (MUF) for the most highly ionized layer.

thick_scale - a real number that indicates the thickness, in kilometers, ofthe reflecting layer.

maxD_hgt - a real number indicating the height, in kilometers, of the maximum electron
density of the layer.

peak_amplitude - a real number that indicates the maximum power A ofthe signal.

sigma_tau - a real number equal to the delay spread, in microseconds, at the halfpower point
(3dB) Aft.

sigma_c - a real number that indicates the rise time, in microseconds, of the impulse
response with respect to the lower end of the delay spread 1"L •

sigma_D - a real number that gives the Doppler spread, in Hertz, at the half power point
(3dB) Aft.

ids - a real number that gives the Doppler frequency, in Hertz, indicating the Doppler shift
at the mean delay 1"c •

idl - a real number that equals the Doppler frequency, in Hertz, indicating the Doppler 'shift
at the lower end of the delay spread 1"L •

If the last two parameters are equal,idl = ids, then the transfer function will not be characteristic of
the slant phenomenon. Slant characterizes Doppler frequency dependence on delay. This aspect of
the channel is modeled as a linear relationship, see section 2.1.3. pp. 15-16 in Vogler and Hoffmeyer
[4].

The input files can be generated with any editor that can save files in ASCII format. Examples of
input files are given in Table 3. File 1 is an example input file for a situation with one layer. File
2 shows an example input file for two layers.
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Table 3. Example Input Files

File 1 Parameter File 2

512 slices 512

1,000,000 delta_t 500,000

0.5 aft 0.5

1 paths 2

1 seed 1

126.0 path_Distance 88.0

5.5 centeryeq 5.3

13.0 penetrateJreq 7.07

30.0 thick scale 20.0

265.0 maxD_hgt 225.0

1.0 peak_amplitude 0.8

70.0 sigma_tau 80.0

35.0 sigma_c 39.2

0.05 sigma_D 0.12

0.2 fds -0.05

0.1 fdl -0.05

path_Distance 88.0

centeryeq 5.3

penetrateyeq 5.56

thick_scale 26.0

maxD_hgt 228.0

peak_amplitude 1.0

sigma_tau 240.0

sigma_c 117.8

sigma_D 0.15

fds -0.05

fdl -0.05
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6.2. The Output Files

6.2.1. The Transfer Function

This output file contains the complex Fourier coefficients that define the transfer function. The
coefficients are written to the file as real floating point numbers without exponent and with a space
between each field. There are 8,192 coefficients written for each time slice. Between the transfer
functions for each time slice, a line feed is included; however, this should generally be seen as white
space. The 8,192 coefficients represent 4,096 complex numbers with the real and imaginary parts
alternating. The first number in the list is the real part ofthe first complex coefficient and the second
number is the corresponding imaginary part, and so forth.

The present version ofthe HF channel hardware simulator expects coefficients for 299 time slices.
Since the output file will be large, it is recommended that the transfer function software be run on
the same machine driving the hardware simulator. Alternately, a network supporting large file
transfers is recommended.

6.2.2. The Parameter Listing

This output file lists the parameters used by the program. All the input file parameters, as well as
the important derived parameters are written to this file. The derived parameters are listed here in
terms of their variable name in the program.

The computing parameters contained in the structure compute and derived by the program are as
follows:

delta_tau - the delay interval in microseconds.

big_el - the earliest of the tau_l values for the layers in microseconds. If that value is
negative, then big_el is set to 0.0 IlS.

The following are the parameters computed for each layer contained in structure rayyath which
are derived by the program:

tau_c - the mean delay associated with the carrier frequency, in microseconds.

sigmaJ - value used to determine the Doppler spread shape.

sIp - the slope of the linear relationship between the delay and the Doppler shift. The units
are Hertz / microseconds.

tau_L - left end of the delay spread, in microseconds.
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tau_U - right end of the delay spread, in microseconds.

tau_I-location parameter for the delay function in microseconds. This is not necessarily the
same for every layer.

alpha - shape parameter for the delay power profile.

sigma_I - the rise time of the impulse response with respect to tau_I in microseconds.

lambda - exponential autocorrelation factor through time, for random input stream
construction.

6.3. Running the Program

This section describes how to run the program in Windows 95 or Windows 3.0 / 3.1. It is assumed
that the executable file, LEWS.EXE, is in the directory to which the output files will be written.
The program writes the transfer function output file by appending to the file given on the command
line. Hence, if the file name listed on the command line already exists, then the transfer function
coefficients will be appended to that file. The program opens a new file for the parameter listing
output file. Therefore, if the file name listed on the command line already exists, that file will be
overwritten and all contents lost. The command line to start the program consists of the executing
file, the input file, and the two output files:

< LEWS.EXE INPUT]ILENAME FIRST_OUTPUT]ILENAME SECOND_OUTPUT]ILENAME>

where FIRST_OUTPUT]ILENAME indicates the parameter listing output file and < > encloses the
characters to'be typed.

6.3.1. Windows 95

The executing program and the input file should be available in the same directory to which the
output files will be written. Click the start button on the task bar. Click on Run from the start menu.
Type the full command line, including the path to the directory (the browse capability may also be
utilized). For example, type:

<D:\BORLANDC\BIN\LEWS.EXE INPUT.931 OUTPUTA.931 OUTPUTB1.931 >.

Click OK or hit the return key.

6.3.2. Windows 3.1 /3.0

The executing program and the input file should be available in the same directory to which the
output files will be written. From the program manager, click on File (or type Alt-F). Then click Run
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(or type R). Type the full command line, including the path to the directory (the browse capability
may also be used). For example, type:

< C:\BORLANDC\BIN\LEWS.EXE INPUT.931 OUTPUTA.931 OUTPUTB1.931 >.

Click OK or hit the return key.

6.4. Modifying the Program

The program may also be run directly from Borland C++ 3.1 using the standard procedures in the
environment. This procedure is recommended if changes to the source code are made. Other C
compiler/environments may also be used.

The program is written with the following constraints, limitations, and options:

-Target is a Windows 3.0 and above executable file.
-Large memory model.
-Full floating point is enabled.
-Source code is Borland C++ without objects.
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7. CODEANDDOCUMENTATION

This program is a C program that ran on a main frame computer or a workstation, and has been
updated and translated into a Borland C program capable ofrunning under Windows 3.1 or Windows
95 on a PC. Attention has been given to make the code self-documenting. The program was
developed under a C++ environment; however, no object-oriented code is involved.

7.1 Purpose and General Description

The program is an implementation of the transfer function for an HF propagation model developed
and described in Vogler and Hoffmeyer [3-5]. The program reads a data file containing parameters
that are descriptive ofthe several paths or rays ofan HF radio skywave channel. The program writes
the complex Fourier coefficients that define the channel transfer function to a file that will be used
in a wideband HF channel simulator in hardware. The model simulates the time-varying
characteristics of the HF channel and, in particular, models delay spread, delay offset, Doppler
frequency shift and spread, and the relationship between delay and Doppler. The transfer function
simulates the influence of the HF channel medium upon the transmitted signal. In the future, the
hardware simulator will also include models for noise and interference described in Lemmon and
Behm [8,9].

The program is a windows executing code with command line

< LEWS FILE1 FILE2 FILE3 >

where LEWS.EXE is the executing code file, FILE1 is the input file, FILE 2 is the output file for
input and computed parameters, and FILE3 is the output file for the complex Fourier coefficients
defining the transfer function.

The source code for the program is in four files, which are compiled separately and linked together
to form the executing code: LEWl.CPP, LEW2.CPP, LEW3.CPP, LEW4.CPP.

The documentation is organized as follows: The documentation for a function or a file's list of
global variables, defines, and includes, etc. will be immediately followed by the listing of that
function's code. When documentation refers to code, the following conventions are used: The
names of constants and files are indicated by all caps as in MAXLAYERS; bold indicates both
default and defined data types and functions, for example comp_arrays; and variables are in italics,
e.g., peak_amplitude.
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7.2. Project File LEW1.CPP

The file LEWl.CPP contains the main program.

Defines:

MAXLAYERS - the maximum number of reflecting layers (or reflected rays seen by the
receiver) in the ionosphere that the program will handle.

Structures:

ray-path - structure that contains all input and computed variables characteristic ofa path.
.path_Distance (D) - float, point-to-point distance, in kilometers, between the

transmitter and the receiver, used to compute tau_c, read from input data.
.center_freq (fc) - float, the center frequency, in Hertz, used to compute tau_c, read

from input data.
.penetrate_Ireq (J;J - float, the penetration frequency, in Hertz, used to compute

tau_c, read from input data. The penetration frequency must be greater than
the center frequency, since frequencies above this point will not be reflected.
The penetration frequency is above the maximum useable frequency (MUF).
IfpenetrateJreq is less than centerJreq, an error message is generated.

.thick_scale (0) - float, thickness scale factor, indicates the thickness ofthe reflecting
layer in kilometers, used to compute tau_c, read from input data.

.maxD_hgt (ho) - float, maximum electron density height in the layer, used to
compute tau_c, read from input data.

.peak_amplitude (A) - float, the amplitude at the mean delay 'te , read from input data.

.sigma_tau (0-r = 'tu - 'tL) - float, the delay spread, read from input data.

.sigma_c (oe = 'te - 'tL) - float, the partial delay spread, distance between 'te, the point
ofpeak amplitude and the lower value ofthe delay spread 'tL , read from input
data. Essentially, 0e is the rise time to 'te ofthe impulse response with respect
to 'tL •

.sigma_D (OD) - float, the Doppler spread half-width at 'te , read from input data.
fds (Is) - float, the Doppler shift at 'te , read from input data.
fdl (IsL) - float, the Doppler shift at 'tL' read from input data.
.tau_c ('te) - double, expected delay associated with the carrier frequency, calculated

from input data in big_c.
.sigma_I (of) - double, used to determine the Doppler shape, computed in

comp_arrays.
.slp (b) - double, the slope or "slant" of the linear relationship between delay and

Doppler, computed in comp_arrays.
.tau_L ('tL = 'te - oe) - double, left end of the delay spread at the half power point

Aft, computed in comp_arrays.
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.tau_ U ('t'u = 't'L + 0't) - double, right end of the delay spread, at the halfpower point
Aft, computed in comp_arrays.

.tau_I ('t',), double, location parameter for the delay function, computed in little_el.
This is not necessarily the same for every layer nor is it necessarily at zero
delay for this model.

.alpha (a) - double, shape parameter for the delay function, computed in
comp_arrays.

.sigma_l (0, = 't'c - 't',) - double, the rise time of the impulse response with respect to
't', .

.lambda (A) - double, exponential autocorrelation factor through time for random
input streams.

compute - structure that contains all the variables specific to the computations or not
specific to an individual path.
.layers - integer, the number of reflective ionospheric layers or the number of

reflected rays, read from input data.
.slices - integer, number oftime slices, read from input data.
.seed - integer, primary seed for random number generation, between°and 30,268

inclusive, read from input data file.
.deltaJ (ilt)- float, the sampling interval or the real time step, read from input data.
.af! (Aft) - float, the receiver threshold from input data.
.delta_tau (il't') - double, delay step, computed in comp_arrays.
.big_el- double, the least or earliest ofthe tau_l values for the layers, determined in

comp_arrays.

String type:

STRING - used for handling file names of input and output files.
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#include <stdio.h>

#define MAXLAYERS 3

typedef struct rayyath
{

float path_Distance, Center_freq, penetrate_freq, thick_scale, maxDjlgt;
float peak_amplitude, sigma_tau, sigma_c, sigma_D, fds, fdl;
double tau~c, sigma_f, sIp, tau~L, tau_D, tau_I, alpha, sigma_I, lambda;

};

typedefstructcompute
{

int layers, slices, seed;
float delta_t, afl;
double delta_tau, big_el;

};

typedef char *STRING;
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7.2.1. Function void main

Description:

The main function calls functions init and doit and also handles file names input from the
command line. Main is in the file LEWI.CPP.

Parameters:

argc - integer, indicates the number of parameters on the command line; for this program
there are four.

argv - array ofpointers to the string arrays ofthe parameters, argv[I] points to the input file,
argv[2] points to the first output file, argv[3] points to the second output file argv[O]
points to the file with the executable code. Example command line for execution:
LEWS FILEl.DAT FILE2.DAT FILE3.DAT

Structures:

p - an array of size MAXLAYERS of ray_path.
c - a one element array of compute.

Functions called:

init - type void, initialization procedure, reads and checks data from input file, writes
parameter output file. Main passes argc by value, and STRING argv[l], c - an array
of compute, andp - an array of raY.Jlath by reference. These arrays are initialized
here. Init is in LEW2.CPP.

doit - type void, the procedure that accomplishes everything but input/output. Main passes
c, the single element array ofcompute, andp, an array of raY.Jlath, and STRINGs
argv[2] and argv[3], by reference. Doit is in LEW3.CPP.
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void main(int argc, char *argv[])
{

/* Function prototypes */

extern void init(int, STRING, compute[], ray--path[]);
extern void doit(compute[], ray--path[], STRING, STRING);

/* Structures */

struct ray--path p[MAXLAYERS];
struct compute c[l];

/* Code */

init(argc, argv[l], c, p);

doit(c, p, argv[2], argv[3]);

} /* End of main */
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7.3. Project File LEW2.CPP

This file contains the code that reads and checks the input data and prints the output files.

Includes:

STDIO.H
STDLIB.H

Defines:

MAXLAYERS - the maximum number of reflecting layers (or reflected rays seen by the
receiver) in the ionosphere that the program will handle.

DATA - the number of real data points in the output data streams. Two successive data
points represent a complex number. The first is the real part and the second is the
imaginary part.

Structures:

ray-path - structure that contains all input and computed variables characteristic ofa path.
The elements of ray-path are given on p. 28.

compute - structure that contains all the variables specific to the computations or not
specific to an individual path. The elements of compute are given on p. 29.

String type:

STRiNG - used for handling file names of input and output files.

Files:

innyfile - pointer to the input file.
datyfile - pointer to the first output file. This file will contain all the input and computed

parameters.
bigfile - pointer to the second output file. This file will contain the transfer function.
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#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MAXLAYERS 3
#define DATA 4096

typedef struct ray-'path
{

float path_Distance, center_freq, penetrate_freq, thick_scale, maxD_hgt;
float peak_amplitude, sigma_tau, sigma_c, sigma_D, fds, fdl;
double tau_c, sigma_f, sIp, tau_L, tau_D, tau_I, alpha, sigma_I, lambda;

};

typedef struct compute
{

int layers, slices, seed;
float delth, afl;
double delt, big_el;

};

typedef char *STRING;

FILE *innyfile, *datyfile, *bigfile;
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7.3.1. Function void init

Description:

This function is called by main. Init opens the input file and calls input_data to read all the
data into the variables and to check the data for compatibility with the model and for
preventing division by zero, logarithms of nonpositive numbers, etc. Note that delta t is
multiplied by 10-6

• This is done to place delta_t in the proper units of seconds. -For
consistency, all times are input in microseconds. Init finishes by closing the input file. Init
is in the file LEW2.CPP.

Variables passed to init:

arg_num - integer, the number of arguments in the command line, 4.
inny - STRING, the name of the input file.
ci - compute, structure containing the computation parameters.
pi - ray_path, structure containing the path parameters.

Functions called:

input_data - reads data from the input file and checks some input data. Init passes ci, a
single element array of compute, and pi, an array of ray-path, by reference.
Input_data is in LEW2.CPP.

exit - termination library function, requires STDLIB.H.
fopen -library function that opens files, requires STDIO.H.
fclose - library function that closes files, requires STDIO.H.
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void init(int arg_num, STRING inny, struct compute ci[l], struct ray-.path pi[MAXLAYERSD
{

/* Function Prototype */

void input_data(compute[], ray-'path[]);

/* Code */

if(arg_num !=4)
{

printf("\n Error in function init! \n");
printf("\n Is command line correct?: lews infile outfilel outfile2 \n");
printf("\n Program will terminate! \n");
exiteD);

}

if ((innyfile = fopen(inny," r")) ==NULL)
{

printf("\n Error in function init! \n");
printf("\n Input file cannot be opened! \n");
printf("\n Terminating program! \n");
exiteD);

}

input_data(d, pi);

d[D].delta_t *= 1.DE-6;

if (fclose(innyfile) == EOF)
{

printf("\n Error in function init! \~");

printf("\n Cannot close the input file! \n");
printf("\n Terminating program \n");
exiteD);

}

return;

} /* End of init */
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7.3.2. Function void input_data

Description:

Input_data reads data from the file specified by the second argument on the command line.
This function also checks input data values to prevent data that would violate the model and
that would cause run time errors due to division by zero, logarithms ofnonpositive numbers,
square roots of negative numbers, etc. Input_data also checks that the pseudorandom
number generator seed is in the proper range. The input file has already been opened by init
and the input file name is a global variable.

Variables passed to input_data:

cii - compute, structure containing the computation parameters, an array of length 1.
pii - ray-path, structure containing the path parameters, an array oflength MAXLAYERS.

Local variable:

j - integer, used to count through the layers of the input data file.

Functions called:

fscanf -library function reads from files, requires STDIO.H.
printf -library function prints to the executing window, requires STDIO.H.
exit -library termination function, requires STDLIB.H.
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void input_data(struct compute cii[l], struct rayyath pii[MAXLAYERSD
{

/* Variable */

intj;

/* Code */

fscanf(innyfile, "%d%fOiOfOiOd%d", &cii[O] .slices, &cii[O] .delta_t, &cii[O] .aft,
&cii[O].layers, &cii[O].seed);

for G= 0; j < cii[O].layers; j++)
{

fscanf(innyfile, "%fOiOfOiOfOlofOiOfOiOfOlofO/ofOiOfOlofO/of', &piiO].path_Distance,
&pii0],center_freq, &pii0].penetrate_freq, &piiD].thick_scale,
&piiO].maxD_hgt, &piiO].peak_amplitude, &piiO].sigma_tau,
&piiO].sigma_c, &piiO].sigma_D, &piiD].fds, &piiO].fdl);

/* Input data checking */

if (piiO].peak_amplitude == 0.0)
{

printf("\n Error in function input_data! ");
printf("\n Division by zero coming! ");
printf("\n Peak_amplitude, A, must be greater than O!");
printf("\n Program will terminate! ");
printf("\n Correct the input file! ");
exit(O);

}

if ((piiO].sigma_c == 0.0) II (piiO].sigma_c >= (piiO].sigma_tau / 2)))
{

printf("\n Error in function input_data! ");
printf("\n Division by zero warning! ");
printf("\n Sigma_c must be greater than 0 and less than half sigma_tau! ");
printf("\n Program will terminate! ");
printf("\n Correct the input file! ");
exit(O);

}
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if ((cii[O].afl <= 0.0) " (cii[O].afl >= 1.0))
{

printf("\n Error in function input_data! ");
printf("\n Square root of a negative number warning! ");
printf("\n Afl must be between 0 and I! ");
printf("\n Program will terminate! ");
printf("\n Correct the input file! ");
exit(O);

}

if (piiO].penetrate_freq <= piiD].center_freq)
{

printf("\n Error in function input_data! ");
printf("\n Penetration frequency must be greater than the");
printf(" center frequency! ");
printf("\n Program will terminate! ");
printf("\n Correct the input file! ");
exit(O);

}

if ((cii[O].seed < 1) II (cii[O].seed > 30268))
{

printf("\n Error in function input_data! ");
printf("\n The seed must be between 1");
printf("\n and 30268 inclusive! ");
printf("\n Program will terminate!"');
printf("\n Correct the input file! ");
exit(O);

}

}

return;

} /* End of input_data */
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7.3.3. Function void outl

Description:

This function is called by comp_arrays and prints the input and calculated parameters for
the computing run and all input and computed parameters for each layer to the file specified
by the third argument on the command line. Essentially, outl prints out all of the elements
of the arrays cdco and pdco. Outl is in file LEW2.CPP.

Variables passed to outl:

cdco - structure of type compute.
pdco - structure of type ray-path.
daoutl - STRING, output file name.

Local variable:

i-integer, counts through the number oflayers.

Functions called:

fopen - library function, opens file for printing, requires STDIO.H.
printf - library function, prints to screen, requires STDIO.H.
fprintf -library function, prints to file, requires STDIO.H.
fclose - library function, closes file, requires STDIO.H.
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void out! (struct compute cdco[l], struct ray-path pdco[MAXLAYERS], STRING daout!)
{

/* Variable */

int i;

/* Code */

if ((datyfile = fopen(daout1,"W ")) == NULL)
{

printf("\n Error in function out! !");
printf("\n First output file cannot be opened! ");
printf("\n Terminating Program! \n");
exit(O);

}

fprintf(datyfile,"\n Computing Parameters \n");
fprintf(datyfile,"\nInput parameters\n");
fprintf(datyfile,"\n slices = %d", cdco[O].slices);
fprintf(datyfile,"\n delta_t = %f', cdco[O].delta_t);
fprintf(datyfile,"\n aft = %f', cdco[O].aft);
fprintf(datyfile,"\n layers = %d", cdco[O].layers);
fprintf(datyfile,"\n seed = %d", cdco[O].seed);
fprintf(datyfile,"\n\nComputed parameter\n");
fprintf(datyfile,"\n delta_tau = %If', cdco[O].delta_tau);
fprintf(datyfile,"\n big_el = %If', cdco[O].big_el);
fprintf(datyfile,lI\n\n Individual Path Data \n");

for (i = 0; i < cdco[O].layers; i++)
{

fprintf(datyfile,"\n Layer %d \n", i + 1);
fprintf(datyfile,"\n Input parameters \n");
fprintf(datyfile,"\n path distance = %f', pdco[i].path_Distance);
fprintf(datyfile,"\n center frequency = %f', pdco[i].center_freq);
fprintf(datyfile,"\n penetration frequency = %f', pdco[i].penetrate_freq);
fprintf(datyfile,"\n Thickness scale factor = %f', pdco[i].thick_scale);
fprintf(datyfile,"\n Height ofthe maximum density = %f', pdco[i].maxD_hgt);
fprintf(datyfile,"\n peak amplitude= %f', pdco[i].peak_amplitude);
fprintf(datyfile,"\n sigma_tau = %f', pdco[i].sigma_tau);
fprintf(datyfile,"\n sigma_c = %f', pdco[i].sigma_c);"
fprintf(datyfile,"\n sigma_D = %f', pdco[i].sigma_D);
fprintf(datyfile,"\n fds = %f', pdco[i].fds);
fprintf(datyfile,"\n fdl = %f\n", pdco[i].fd1);
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fprintf(datyfile,"\n Computed parameters \n");
fprintf(datyfile,"\n tau_c = %If', pdco[i].tau_c);
fprintf(datyfile,"\n sigma_f= %If', pdco[i].sigma_f);
fprintf(datyfile,"\n sIp = %If', pdco[i].slp);
fprintf(datyfile,"\n tau_L = %If', pdco[i].tau_L);
fprintf(datyfile,"\n tau_U = %If', pdco[i].tau_U);
fprintf(datyfile,"\n tau_l = %If', pdco[i].tau_l);
fprintf(datyfile,"\n alpha = %If', pdco[i].alpha);
fprintf(datyfile,"\n sigma_l = %If', pdco[i].sigma_l);
fprintf(datyfile,"\n lambda = %It\n", pdco[i].lambda);

} /* End of i loop. */

if (fclose(datyfile) == EOF)
{

printf("\n Error in function out! !");
printf("\n Cannot close the first output file! ");
printf("\n Terminating program! \n");
exit(O);

}

} /* End of outl */
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7.3.4. Function void outit

Description:

This function prints the complex coefficients of the transfer function to the file specified by
the fourth argument in the command line. The complex numbers are represented by a list of
floats that are successively real and imaginary. The white space separator is the space
character. Outit appends the list ofcomplex coefficients for each time slice to the same file.
Separate time slices are separated by an extra line. Outit is in file LEW2.CPP.

Parameters passed to outit:

dat - array of float, the complex number array.
daout2 - STRING, the large file name.

Local variables:

q - integer, counts through dat.

Functions called:

fopen - library function, opens file for printing, in this case for appending to file, requires
STDIO.H.

printf -library function, prints to screen, requires STDIO.H.
fprintf -library function, prints to file, requires STDIO.H.
fclose - library function, closes file, requires STDIO.H.
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void outit(float dat[2 * DATA], STRING daout2)
{

/* Variable */

int q;

/* Code */

if ((bigfile = fopen(daout2,"a")) == NULL)
{

printf("\n Error in function outit! \n");
printf("\n Second output file cannot be opened! \n");
printf("\n Terminating program! \n");
exit (0);

}

for (q = 0; q < 2 * DATA; q++)
fprintf(bigfile, "%If ", dat[q]);

fprintf(bigfile,"\n ");

if (fclose(bigfile) == EOF)
{

prirttf("\n Error in function outit! \n");
printf("\n Cannot close the second output file! \n");
printf("\n Terminating program! \n");
exit(O);

}

} /* End of outit */
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7.4. Project File LEW3.CPP

This file contains the major computation ofthe program except for the FFT and the impulse response
code.

Includes:

STDIO.H -library file containing the input/output routines.
STDLIB.H - standard library file needed for exit function.
MATH.H - library file containing the math functions.

Defines:

MAXLAYERS - the maximum number of reflecting layers (or reflected rays seen by the
receiver) in the ionosphere that the program will handle.

DATA - the number of real data points in the output data streams. Two successive data
points represent a complex number. The first is the real part and the second is the
imaginary part.

TWOPI - definition of21t = 6.28318530717959.
C - speed of light in kmllls, C = 0.299792458.

Structures:

ray-path - structure that contains all input and computed variables characteristic of a path.
The elements of ray-path are given on p. 28.

compute - structure that contains all the variables specific to the computations or not
specific to an individual path. The elements of compute are given on p. 29.

String type:

STRING - used for handling file names of input and output files.

Global variables:

cdat - array of float of size 2 x DATA, holds the impulse response data in the first half (up
to DATA) for each layer at a particular time slice, the second half is zero padding.
Later cdat holds the complex coefficients of the FFT for printing to the output files.
This is usually a structure of real variables, but it is used in this program as a
complex structure. A consecutive pair offloats in cdat represent a complex number,
the first number of the pair (the even index) represents the real part and the second
(the odd index) is the imaginary part.
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seed] - long integer, random number seed for the Wichmann-Hill generator, initialized in
comp_arrays, calculated and updated in ranl.

seed2 -long integer, random number seed for the Wichmann-Hill generator, initialized in
comp_arrays, calculated and updated in ranl.

seed3 -long integer, random number seed for the Wichmann-Hill generator, initialized in
comp_arrays, calculated and updated in ranl.

seed4 - long integer, random number seed for L'Ecuyer's generator, initialized in
comp_arrays, calculated and updated in ran2.

seed5 - long integer, random number seed for L'Ecuyer's generator, initialized In

comp_arrays, calculated and updated in ran2.
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#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#define MAXLAYERS 3
#define DATA 4096
#define TWOPI 6.28318530717959
#define C 0.299792458

typedefstructray-path
{

float path_Distance, center_freq, penetrate_freq, thick_scale, maxD_hgt;
float peak_amplitude, sigma_tau, sigma_c, sigma_D, fds, fdl;
double tau_c, sigma_f, sIp, tau_L, tau_V, tau_I, alpha, sigma_I, lambda;

};

typedef struct compute
{

int layers, slices, seed;
float delta_t, afl;
double delta_tau, big_el;

};

typedef char *STRING;

/* Global Variables */

long seed1, seed2, seed3, seed4, seed5;

float cdat[2 * DATA];

47



7.4.1. Function void doit

Description:

This function is called by main. Doit first calls comp_arrays to compute all necessary
values for the model. Then it calls slicedo to make the transfer function for each time slice.
Doit is in file LEW3.CPP.

Variables passed to doit:

cd - array of compute, structure containing the computation parameters.
pd - array of ray_path, structure containing the path parameters.
daty - STRING containing the name of the first output file.
daty2 - STRING containing the name of the second output file.

Functions called by doit:

comp_arrays - computes all the derived parameters from the input parameters. Doit passes
cd, a single element array ofcompute andpd, an array ofray_path both by reference
and also passes daty, a STRING containing the name ofthe first output file from the
command line. Comp_arrays is in file LEW3.CPP.

slicedo - computes the transfer function for each time slice. Doit passes cd, a single element
array of compute and pd, an array of ray-path by reference, and also passes daty2,
a STRING containing the name of the second output file from the command line.
Slicedo is in file LEW3.CPP.
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void doit(struct compute cd[!], struct ray-path pd[MAXLAYERS], STRING daty,
STRING daty2)

{
/* Function prototypes */

void comp_arrays(compute[], ray-path[], STRING);
void slicedo(compute[], ray-path[], STRING);

/* Code */

comp_arrays(cd, pd, daty);

slicedo(cd, pd, daty2);

return;

} /* End of doit */
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7.4.2. Function void comp_arrays

Description:

Comp_arrays is called by doit and computes all the derived parameters that define each
layer. The path parameters computed are sigmaJ, lambda, tau_V, tau_L, sIp, and alpha
which are parameters in the structure ray_path. The computing parameters that are
calculated are big_el and delta_tau. Delta_tau is the largest tau_V less big_el divided by
one fourth DATA. Comp_arrays also initializes the random number seeds seedl, seed2,
seed3, seed4, and seed5 by invoking the individual generators making up the Wichmann-Hill
and L'Ecuyer's composite generators, see functions ranI and ran2 below. Comp_arrays
calls big_c to compute the parameter tau_c. Comp_arrays calls little_el to compute the
parameter tau_I. Finally, this function calls outl to output the input and computed
parameters for each layer and for the input and calculated computation parameters to a file.
Comp_arrays is in file LEW3.CPP.

Parameters passed to comp_arrays:

cdc - array of compute, structure containing the computation parameters.
pdc - array of ray_path, structure containing the path parameters.
datoutl - STRING, contains the name of the first output file.

Local variables:

sv - double, the ratio of the receiver threshold to the amplitude.
Z_I - double, convenient holder for computing alpha, corresponds to (23).

k - integer, indexes the skywave paths or the reflective layers.

Functions called:

sqrt - library function takes the square root of a real non-negative number, requires
MATH.H.

log - library function takes the natural logarithm of a positive real number, requires
MATH.H.

bifLc - type double, computes the value tau_c for each path, passes cdc andpdc, returns
computed value of tau_c. Big_c is in file LEW3.CPP.

little_el- type double, function that computes the value tau_l for each path, passes tau_c,
tau_L, and tau_V, returns tau_I. Little_el is in file LEW3.CPP.

outl - type void, outputs computing and path information for each layer to file, passes cdc,
pdc, and datoutl, the file name character string. Outl is in file LEW2.CPP.
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void comp_arrays(struct compute cdc[I], struct ray-path pdc[MAXLAYERS], STRING
datoutl)

{
1* Function Prototypes *1

double big_c(ray-path[], int);
double little_el(float, double, double);
extern void out! (compute[], ray-path[], STRING);

1* Local Variables *1

int Ie;
double sv, Z_l, big_V;

1* Initialize random number generator seeds *1

seedl = (171 * cdc[O].seed) % 30269;
seed2 = (172 * seedl) % 30307;
seed3 = (170 * seed2) % 30323;
Ie = seed3 152774;
seedS = 40692 * (seed3 - k * 52774) - k * 3791;

if (seedS < 0)
seedS += 2147483399;

k = seedS 153668;
seed4 = 40014 * (seedS - k * 53668) - k * 12211;

if (seed4 < 0)
seed4 += 2147483563;

1* Compute the layer parameters *1

for (k = 0; k < cdc[O].layers; k++)
{

sv = cdc[O].afl;
pdc[k].sigma_f= TWOPI * pdc[k].sigma_p * sv 1sqrt(1.0 - sv * sv);
pdc[k].lambda = exp(-cdc[O].delta_t * pdc[k].sigma_f);

1* Note that sv can't equall above *1

pdc[k].tau_c = big_c(pdc, k); -
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pdc[k].slp = (pdc[k].fds - pdc[k].fdl) / pdc[k].sigma_c;
pdc[k].tau_L = pdc[k].tau_c - pdc[k].sigma_c;
pdc[k].tau_U = pdc[k].tau_L + pdc[k].sigma_tau;

pdc[k].tauJ = little_el(pdc[k].tau_c, pdc[k].tau_L,
pdc[k].tau_U);

Z_l = (Pdc[k].tau_L - pdc[k].tau_l) / (Pdc[k].tau_c - pdc[k].tau_l);
pdc[k].alpha = (log(sv)) / (log(Z_l) + 1 - Z_l);
pdc[k].sigma_l = pdc[k].tau_c - pdc[k].tau_l;

} /* End ofk-loop */
/* Compute big_eland delta_tau */

big_U = 0.0;
cdc[O].big_el = 100000.0;

for (k = 0; k < cdc[O].layers; k++)
{

if (Pdc[k].tau_U > big_U)
big_U = pdc[k].tau_U;

if (pdc[k].tau_l < cdc[O].big_el)
cdc[O].big_el = pdc[k].tau_l;

}

if (cdc[O].big_el < 0.0)
cdc[O].big_el = 0.0;

cdc[O].delta_tau = (big_U - cdc[O].big_el) / (DATA / 4);

outl (cdc, pdc, datoutl);

return;

} /* End of comp_arrays */
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7.4.3. Function double big_c

Description:

This function, called by comp_arrays, calculates and returns the value of tau_c, the mean
delay for the center frequency, centerJreq, from the equation

(24)

where c is the speed of light (C in the program), D is the point-to-point distance between
transmitter and receiver (path_Distance), and he is the effective reflection height
(effective_height) given in Budden [20, p. 156] by

~
. 2(ho)

1,2 ~ h ) smh-
he = a In .L - 1 si ~ + a - 1

f} a 1,2
C L - 1

f;

(25)

where a is the thickness scale factor (thick_scale), hois the height ofthe maximum electron
density (maxD_hgt) , /p is the penetration frequency (penetrateJreq), and.fc is the center
frequency (centerJreq).

The first equation is an application of the Pythagorean Theorem while the second is an
evaluated integral expression for the effective reflection height in a hyperbolic secant squared
(sech2

) electron density model. The functions are In, the natural logarithm, and sinh, the
hyperbolic sine. Big_c is in file LEW3.CPP.

This method of determining 'tc differs from the method presented in Vogler and Hoffmeyer
[5, p. 6]. There, the method used to find 'tc requires an iterative scheme. The method above
is a direct calculation of the effective reflection height followed by a direct calculation for
the mean delay of the center frequency.

Parameters passed to big_c:

pdcb - array of ray_path, structure containing the path parameters.
t - integer, the index of the current path.
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Parameter returned to comp_arrays:

tau_c, 't'c - mean delay for the center frequency.

Local variables:

campi - double, ratio of the penetration frequency to the center frequency, convenient
variable to avoid divisions.

camp2 - double, square root of the quantity (campi x campi - 1), convenient variable to
avoid unnecessary calculations.

camp3 - double, holds the hyperbolic sine of the height of the maximum electron density
divided by the thickness scale factor, convenient variable to avoid recalculation.

effective_height - double, the effective reflection height ofthe layer.

Functions called by big_c:

sqrt - library function takes the square root of a real non-negative number, requires
MATH.H.

log - library function takes the natural logarithm of a positive real number, requires
MATH.H.

sinh - library function takes the hyperbolic sine of a real number, requires MATH.H.
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double big_c(struct ray.-path pdcb[MAXLAYERS], int t)
{

/* Variables */

double comp1, comp2, comp3, effective_height;

/* Code */

compI = pdcb[t].penetrate_freq / pdcb[t].center_freq;
comp2 = sqrt((compI * compI) - 1);
comp3 = sinh(pdcb[t].maxD_hgt / pdcb[t].thick_scale);
effective_height = pdcb[t].thick_scale * Iog(sqrt(comp2) * comp3 +

sqrt((l / comp2) * comp3 * comp3 - 1));
return((2 / C) * sqrt(effective_height * effective_height +

pdcb[t].path_Distance * pdcb[t].path_Distance /4));

} /* End ofbig_c */
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(26)

7.4.4. Function double little el

Description:

Little_el is called by comp_arrays. Little_el finds the value of tau_I that zeros the function

!(T:/) = In( T:L - T:/ J + T: u - T:L

T: u - T:/ T:c - T:/

where In is the natural logarithm function. Equation 26 is a form of the equation
In ZL - ZL = In Zu - Zu from Vogler and Hoffmeyer [5, p. 32], but (26) is written in terms of
the delay values. Note that ZL is given by (23) and that

Z =u (27)

The function (26) is derived by evaluating (3) at the delay parameters T:L , T: u, and T:c,

see Figure 1. Since PnCT:L) = Pn(T:U)'

which when simplified yields (26). Little_el is in file LEW3.CPP.

(28)

A bisection method was used to compute T:, because (26) is complex valued when T:, is
between T:L and T: u ' For values ofT:, greater than T:u , (26) increases without bound as T:,
approaches T:u from the right; the function approaches 0 asymptotically from above as T:,
increases. Thus, there is no value in this range that will zero the function (26), see Figure 14.
To the left of T:L' the function decreases without bound as T:, approaches T:L ; however, (26)
approaches 0 asymptotically from above. This implies that (26) crosses the x-axis, achieves
zero value, to the left of T:L , see Figure 15. The variable T:, is a location parameter for the
impulse response. For delay greater than T:" the delay power is positive otherwise the delay
power IS zero.

ANewton-Raphson method can result in evaluations in the complex part, which fail, or can
throw successive approximations into the areas where the function approaches zero unless
the initial guess is lucky. A bisection method was used to avoid those problems by keeping
successive approximations in the "good" zone.
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Figure 14. Horizontal and vertical asymptotes of function (26) above 1:u .
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Figure 15. Horizontal and vertical asymptotes of function (26) below 1:L' Inset: Zero
crossing and function maximum illustrated at finer scale.
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Other fixed point methods, such as the secant method, may also be used.
approximations are found by searching for two points between 'tL and

Initial

(29)

which is the point at which (26) achieves its maximum value to the left of 'tL' The evaluation
of (26) at the two points sought will have opposite sign. The bisection algorithm takes these
two values and determines a value that zeros (26) with a tolerance ofless than 0.0000001.
The bisection method used is an implementation of the one given in Burden and Faires
[22, pp. 28-33].

Parameters passed to little_el:

tau_c - float, delay associated with the carrier frequency for the current layer.
tau_L ('tL = 'tc - ac) - double.
tau_U ('tv = 'tL + aT) - double.

Parameter returned to comp_arrays:

searchpoint = tau_l - location parameter for the delay function, represents a location·
parameter for the delay shape. The values of tau_l for the different layers are not
necessarily the same.

Local variables:

searchpoint - double, holds various approximations for the variable tau_l. The final
approximation of tau_l is returned to comp_arrays.

negative_arg - double, holds approximation in bisection method that causes the function
value to be negative, not necessarily itself negative.

positive_arg - double, holds approximation in bisection method that causes the function
value to be positive, not necessarily itself positive.

holdval - double, convenient temporary variable.
halfdif - double, holds value in bisection algorithm that is used to keep from doing more

than one division.

m - integer, counts passes through loops in little_el, compared to preset values to provide
convenient stopping criteria for infinite loops, for example.
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Functions called by little_el:

funvalue - computes and returns the value of (26). Little_el passes tau_L, tau_U, tau_c,
and searchpoint (or positive_arg) to evaluate (26) at searchpoint, the current
approximation to tau_f.

pow - library function returns x to the power of y, xY, where x and y are type double.
Requires MATH.H.
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double little_el(float tau_c, double tau_L, double tau_V)
{

/* Function prototy~e */

double funvalue(double, double, float, double);

/* Variables */

intm;
double searchpoint, negative_arg, positive_arg, holdval, halfdif;

/* Code */

searchpoint = (positive_arg + tau_L) / 2;

/* Get two estimates for bisection algorithm */

if ((holdval = funvalue(tau_L, tau_V, tau_c, searchpoint)) < 0)
negative_atg = searchpoint;

else
if (holdval > 0)
{

positive_arg = searchpoint;

while (1)
{

searchpoint = (searchpoint + tau_L) / 2;

if ((holdval = funvalue(tau_L, tau_V, tau_c, searchpoint)) > 0)
positive_arg = searchpoint;

else
if (holdval < 0)
{

negative_arg = searchpoint;
break;

}
else

retum(searchpoint); /* Holdval = 0 */
}

}
else retum(searchpoint); /* Holdval = 0 */
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/* bisection algorithm with two appropriate estimates */

for (m = 1; m <= 100; m++)
{

halfdif = (negative_arg - positive_arg) / 2;
searchpoint = positive_arg + halfdif;

if (((holdval = funvalue(tau_L, tau_D, tau_c, searchpoint)) == 0)"
(halfdif< 0.0000001))

return(searchpoint);

if((holdval * funvalue(tau_L, tau_D, tau__c, positive_arg)) > 0)
positive_arg = searchpoint;

else
negative_arg = searchpoint;

}
printf("\n Error in function little_el!");
printf("\n Bisection for tau_l failed after 100 iterations!");
printf("\n Stopping program! ");
exit(O);

} /* End of little el */

61



7.4.5. Function double funvalue

Description:

Funvalue is called by little_el and returns the value (double) of (26). Funvalue is located
in file LEW3.CPP.

Parameters passed to funvalue:

c - float, corresponds to tau_c, passed by value.

L - double, corresponds to tau~, passed by value.
U - double, corresponds to tau_U, passed by value.
point - double, corresponds to tau_I, passed by value.

Parameter returned to little el:

The value of (26) evaluated at point - double.

Functions called by funvalue:

log - library function returns the natural logarithm of a real positive number, requires
MATH.H.
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double funvalue(double L, double D, float c, double point)
{

/* Code */

retum(log((L - point) / (D - point)) + ((D - L) / (c - point)));

} /* End of funvalue */
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7.4.6. Function void slicedo

Description:

This function is called by doit. Slicedo starts by initializing a block ofdynamic memory for
the exponential autocorrelated random number streams that are used to compute the impulse
response. There are DATA floats for each layer in the allocated block, enough for the
computation of the nonzero padded portion of the impulse response array. Slicedo calls
rvgexp to compute these number streams. For each time slice, slicedo calls imp to compute
the impulse response by computing and superimposing the impulse responses for each
reflective layer, then calls little_four to compute the FFT ofthe impulse response, then calls
outit to print the complex Fourier coefficients to file. Finally, slicedo frees the allocated
dynamic memory block. Slicedo is in file LEW3.CPP.

Parameters passed to slicedo:

cds - array of compute, structure containing the computation parameters.
pds - array of ray_path, structure containing the path parameters.
datout2 - STRING, contains the output file name, passed to outit.

Global variables used:

cdat - array of float of size 2 x DATA, holds the impulse response data in the first half (up
to DATA) for each layer at a particular time slice, second half is zero padded, later
holds the complex coefficients of the FFT for printing to the output files, although
this is a structure of real variables it is used in this program as a complex structure.
A consecutive pair of floats in this array represents a complex number, the first
number ofthe pair (the even index) represents the real part and the second (the odd
index) is the imaginary part. Cdat is initialized here in slicedo.

Local variables:

timex - double, value oftime for each time slice.

. n - integer, counts the time slices.
o - integer, counts through initialization of cdat, reused to count through layers in

determining impulse response for a time slice.

front ~ pointer to a float,points to the first position of the dynamic block of floats, this is
the location of the block.

starter - pointer to a float, points to the next starting place of the dynamic block, the place
where the values for the impulse response for the next layer start.

nextest - pointer to float, points to the next starting place, is returned by rvgexp by reference.
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Functions called by slicedo:

rvgexp - pointer to a float, creates and updates the random number array that has
exponential autocorrelation in time. Slicedo passes n, lambda, and starter. Rgvexp
returns a pointer to float, the next starting place in the dynamic array for subsequent
layers. Rgvexp is in the file LEW3.CPP.

malloc -library function that allocates dynamic memory for the large random number arrays,
needs STDLIB.H.

printf - prints a file, needs STDIO.H.
exit - library termination function, needs STDLIB.H.
free -library function that unallocates dynamic memory, needs STDLIB.H.
outit - prints the coefficients of the FFT to file, slicedo passes the complex array of

coefficients, cdat, and the name of the output file, datout2. Outit is in the file
LEW2.CPP.

imp - type void, creates the superimposed impulse response layer by layer for each time
slice. Slicedo passes the data array cdat, cds, pds, starter, timex, and n. Imp is in
the file LEW4.CPP.

little_four - type void, computes the FFT on the impulse response. Slicedo passes cdat,
DATA (a global constant), and a +1 (indicates the direction ofthe FFT). Little_four
returns the data array, cdat, which now contains the complex Fourier coefficients.
Little four is in the file LEW4.CPP.
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void slicedo(struct compute cds[l], struct ray--path pds[MAXLAYERS], STRING datout2)
{

/* Function prototypes */

float * rvgexp(int, double, float *);
extern void little_four(float[], int, int);
extern void outit(float[], STRING);
extern void imp(float[], ray--path[], compute[], float *, double, int);

/* Variables */

int n, 0;
float *front, *starter, *nextest;
double timex;

/* Code */

if ((front = (float*) malloc(cds[O].layers * DATA * sizeof(float))) == NULL)
{

printf("\n Error in function slicedo!");
printf("\n Not enough memory to allocate!");
printf("\n Terminating program!");
exit(O);

}

for (n = 0; n < cds[O].slices; n++)
{

for (0 = 0; 0 < 2 * DATA; 0++)
cdat[0] = 0.0;

/* Provides initialization for each slice and O-padding */

timex = n * cds[O].delta_t;

for (0 = 0; 0 < cds[O].layers; 0++)
{

if(o == 0)
starter = front;

else
starter = nextest;

nextest = rvgexp(n, pds[o].lambda, starter);
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imp(cdat, pds, cds, starter, timex, 0);

} /* End of layers loop */

/* fast fourier xform */

little_four(cdat - 1, DATA, 1);

outit(cdat, datout2);

} /* End of slices loop */

free(front);
return;

} /* End of slicedo */
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7.4.7. Function pointer to float rvgexp

Description:

Rvgexp is called by slicedo. This function initializes and updates a dynamically allocated
random floating point array that represents a complex array, which has exponential
autocorrelation from time slice to time slice, see (19) in Section 3. The memory block for
the array is initialized and freed in slicedo. The array is just large enough for the required
data points in the impulse response function, imp, for each time slice. The array is updated
for the next time slice with the current value for each float in the array used to compute the
next value at that position. The autocorrelation quality is in the time direction, not in the
delay direction. Rvgexp is located in file LEW3.CPP.

Parameters passed to rvgexp:

slice - integer, the current time slice.
lambduh - double, corresponds to lambda in slicedo, the exponential autocorrelation factor.
start - pointer to array offloats, points to the beginning ofthe dynamic block containing the

array.

Local variables:

normall - double, variable from a normally distributed random number stream with°mean
and variance equal to one. The notation N(O,l) is usually used for such a
distribution.

normal2 - double, variable from an N(O,l) stream independent of normall. These two
N(O,l) distributions (normall and normal2) are said to be independent and
identically distributed (lID).

mult - double, used to hold computed factor 1 - A. to avoid recomputing.

p - integer, used to count through creation of array.

current - pointer to a float, points to the current position ofthe dynamic block. Used to run
through the array.

Variable returned to slicedo:

current - pointer to float, points to the next position in the dynamically allocated array.
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Function called by rvgexp:

get_2i_Dormals - producestwo independent normal random variates. Nothing is passed by rvgexp,
but two lID N(O,l) variates are returned by reference. Get_2i_Dormals is in the file
LEW3.CPP.
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float * rvgexp(int slice, double lambduh, float *start)
{

/* Function prototype */

void get_2i_normals(double *, double *);

/* Variables */

int p;
float *current;
double normall, normal2, mult, squared;

/* Code */

current = start;
mult = 1 - lambduh;

if (slice == 0)
{

for (p = 0; p < DATA; P += 2)
{

get_2i_normals(&normall, &normal2);
*current = normall * mult;
current++;
*current = normal2 * mult;
current++;

}
}
else
{

for (p = 0; p < DATA; P += 2)
{

get_2i_normals(&normall, &normaI2);
*current = normall + lambduh * (*current - normall);
current++;
*current = normal2 + lambduh *(*current - normal2);
current++;

}
}

return (current);

} /* End of rvgexp */
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7.4.8. Function void get_2i_Dormals

Description;

This function is an improvement ofthe Box-Muller algorithm that produces two independent
standard normal variates. The algorithm is called the polar method and is an
acceptance/rejection method given in Law and Kelton [10, pp. 490-492] with further
reference to Marsaglia and Bray [23]. Atkinson and Pearce [24], and Ahrens and Dieter [25]
report a 9 - 31% increase in speed over the standard Box-Muller method, see Box and Muller
[26]. The algorithm requires two independent uniform pseudorandom number streams. To
ensure this independence, two different random number generators are used. There are faster
algorithms, see, for example, Kinderman and Ramage [27], but the polar method produces
a pair ofindependent variates as required by the modulation function (19). Get_2i_normals
is in file LEW3.CPP.

Parameters returned to rvgexp;

normyi - double, N(0,1) distributed random variate passed back by reference.
normy2 - double, N(O,!) distributed random variate passed back by reference.

Local variables;

vi - double.
v2 - double.
w - double.
y - double.

Functions called by get_2i_normals;

ranI - Wichmann-Hill composite uniform random number generator, returns a double on
the interval (0,1). RanI is located in file LEW3.CPP.

ran2 - L'Ecuyer's composite uniform random number generator, returns a double on the
interval (0,1). Ran2 is located in file LEW3.CPP.

sqrt - returns the square root of a non-negative real number, must include MATH.H.
log - returns the natural logarithm of a positive real number, must include MATH.H.
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void get_2i_normals(double *normyl, double *normy2)

/* The polar method improvement of the Box-Muller method of producing two
* independent N(0,1) variates.
* Note: Two random number generators are used to ensure that the two
* required random number streams are independent. */

{
/* Function prototypes */

double ranlO;
double ran20;

/* Variables */

double vI, v2, w, y;

/* Code */

do
{

vI = 2.0 * ranlO - 1.0;
v2 = 2.0 * ran20 - 1.0;
w=vl * vI +v2 * v2;

}
while (w> 1.0);

y = sqrt(-2.0 * log(w) / w);

*normyl = vI * y;
*normy2 = v2 * y;

return;
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7.4.9. Function double ranI

Description:

Rani is called by get_2i_normals. This function is an implementation of the Wichmann
Hill uniform random number generator. It requires three integer seeds. The random number
generator is a composite of the three generators

Ui+1 = 171 Ui (mod 30,269) ,

Vi+1 = 172 Vi (mod 30,307) , and
Wi+! 170 Wi (mod 30,323) ,

(30)

given in Jeruchim, Balaban, and Shanmugan [28, pp 273-275] with further reference to
Coates, Janacek, and Lever [29], and Wichmann and Hill [30]. The period ofthe composite
random stream is ofthe order 1013

• The function returns a double on the interval (0,1). The
seeds are global variables and are initialized in comp_arrays. The seeds are updated with
each call to rani. Rani is located in file LEW3.CPP.

Global variables used:

seed] - integer, U in (30) above.
seed2 - integer, Vin (30) above.
seed3 - integer, Win (30) above.

Variable returned to get_2i_normals:

Returns the fractional part ofthe sum of U, V, and W divided by 30,269, 30,307, and 30,323,
respectively.

Functions called by rani:

fmod - returns the fractional remainder of one double type divided by another. Need to
include MATH.H.
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double ran10

/* An implementation ofthe Wichmann-Hill composite algorithm
*Note: seed1, seed2, and seed3 are global variables initialized
* globally and retain value with each call */

{
/* Code */

seed1 = (171 * seed1) % 30269;
seed2 = (172 * seed2) % 30307;
seed3 = (170 * seed3) % 30323;

retum(fmod((double)seed1 / 30269.0 + (double)seed2 / 30307.0 +
(double)seed3 /30323.0, 1.0));

} /* End of ran1 */
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7.4.10. Function double ran2

Description:

This function is an implementation of L'Ecuyer's composite uniform random number
generator. Ran2 is located in LEW3 .CPP. It requires two long integer seeds. The random
number generator is a composite of the two generators

Ui+! = 40,014 Ui (mod 2,147,483,563) and

~+! = 40,692 Vi (mod 2,147,483,399) ,

that, in turn, are inputs to the generator

Wi+! = Ui+! + ~+! (mod 2,147,483,563) .

(31)

(32)

The algorithm is given in Brately, Fox, and Schrage, [21, pp. 204, 332] with further reference
to L'Ecuyer [31]. The period is of the order 1018

• The seeds are global variables and are
initialized in comp_arrays. The function returns a double on (0,1). The seeds are updated
with each call.

Global variables used:

seed4 - long integer, U in (31) and (32) above.
seed5 - long integer, V in (31) and (32) above.

Variable returned to get_2i_normals:

w /2,147,483,563 - the uniform random variate on the interval (0,1).

Local variables:

w - long integer - Win (32) above.
k - long integer - useful variable to avoid repeated divisions.
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double ran20

/* An implementation of L'Ecuyer's composite algorithm
*Note: seed4 and seed5 are global variables initialized globally and
* retain value with each call */

{
/* Variables */

long int w, k;

/* Code */

k = seed4 / 53668;
seed4 = 40014 * (seed4 - k * 53668) - k * 12211;

if (seed4 < 0)
seed4 += 2147483563;

k = seed5 / 52774;
seed5 = 40692 * (seed5 - k * 52774) - k * 3791;

if (seed5 < 0)
seed5 += 2147483399;

w = seed5 - seed4;

if(w <= 0)
w += 2147483562;

return((double)w * 4.656613057392e-1O);

} /* End ofran2 */
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7.5 Project File LEW4.CPP

This file contains code to calculate the impulse response and the FFT.

Includes:

STDIO.H -library file with the standard input/output routines.
STDLIB.H - standard library file needed for exit function.
MATH.H - library file with math functions.

Defines:

MAXLAYERS - the maximum number of reflecting layers (or reflected rays seen by the
receiver) in the ionosphere that the program will handle.

DATA - the number of real data points in the output data streams. Two successive data
points represent a complex number. The first is the real part and the second is the
imaginary part.

TWOPI - definition of21t = 6.28318530717959.
SWAP - a data switching macro used by the FFT algorithm, little_four.

Structures:

ray-path - structure that contains all input and computed variables characteristic ofa path.
The elements of ray_path are given on p. 28.

compute - structure that contains all the variables specific to the computations or not
specific to an individual path. The elements of compute are given on p. 29.
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#include <stdio.h>
#include <math.h>

#define MAXLAYERS 3
#define DATA 4096
#define TWOPI 6.28318530717959

#define SWAP(a,b) tempr= (a); \
(a) = (b); \
(b) = tempr

typedef struct ray--path
{

float path_Distance, center_freq, penetrate_freq, thick_scale, maxD_hgt;
float peak_amplitude, sigma_tau, sigma_c, sigma_D, fds, fdl;
double tau_c, sigma_f, sIp, tau_L, tau_V, tau_I, alpha, sigma_I, lambda;

};

typedef struct compute
{

int layers, slices, seed;
float delta_t, afl;
double delta_tau, big_el;

};
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7.5.1. Function void little four

Description:

This function computes the complex FFT ofa complex array and is called by slicedo. This
is an implementation of the FFT found in Press et al. [32, pp. 404-414]. A single data array
is passed in where the elements are alternating real and imaginary parts ofcomplex numbers.
This data array is replaced (passed back) with the complex coefficients of its Fourier
transform. This function begins counting at 1, so the input array must be decremented by one
in the function call, e.g., little_four(data - 1, 4096, 1). Little_four is contained in file
LEW4.CPP.

Parameters passed to little_four:

data - array offloat, size 2 x nn, passed by reference, contains the complex impulse response
array.

nn - integer, must be a power oftwo, indicates size of the complex array.
isign - integer, a flag that indicates the desired direction ofthe FFT, 1 means the normal FFT

will be run while -1 means the inverse FFT will be run. Normalization for the
inverse case is not done within little four.

Parameters returned by little_four:

data - array of float, size 2 x nn, contains the complex Fourier coefficients, returned by
reference.

Macros used:

SWAP - this macro simply swaps the value of two variables. Used by little_four in data
rearrangement.

Functions called:

sin - library function returns the sine of a real number. Needs MATH.H.

Code listing:

See Press et al. [32, pp. 404-414].
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7.5.2. Function void imp

Description:

This function computes the impulse response for each time slice by computing and
superimposing the impulse responses for each layer. See (2) and (14). Imp is located in
LEW4.CPP.

Parameters passed to imp:

datb - array of float of size 2 x DATA, corresponds to cdat in slicedo.
pdsi - attay of ray_path of size layers.
cdsi- array of compute of size 1.

start - pointer to float, current position in the random number array.

timexx - double, current slice time.

00 - integer, current time slice index.

Local variables:

tau_k - double, delay step.
gag - double, difference between tau_k and tau_I for current layer.
gg - double, gag divided by sigma_I.
exparg - double, argument of the combined exponential term.
squirt - double, result of the square root term.
sine - double, sine of exparg.
cosine - double, cosine of exparg.

xkm - float, real part of random variable term.
ykm - float, imaginary part of random variable term.

now - pointer to float, points to current term in the random number array, incremented
within imp.

r - integer counter.
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Functions called:

sqrt - library function that takes the square root of a non-negative real number, needs
MATH.H.

exp - library function that raises e to a real number, requires MATH.H.
log - library function that takes the natural logarithm of a non-negative real number, needs

MATH.H.
sin - library function that takes the sine of a real number, needs MATH.H.
cos - library function that takes the cosine of a real number, needs MATH.H.
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void imp(float datb[2 * DATA], struct rayyath pdsi[MAXLAYERS],
struct compute cdsi[l], float *start, double timexx, int 00)

{
/* Variables */

int r;
float xkm, ykm;
float *now;
double tau_k, gg, exparg, squirt, sine, cosine, gag;

/* Code */

now = start;
tau_k = cdsi[0].big_e1;

for (r = 1; r < DATA / 2; r++)
{

tau~ += cdsi[0].de1ta_tau;

if ((gag = tau_k - pdsi[oo].tau_l) <= 0)
continue;

/* Bypass since 10g(gg) in squirt computation below will be
* undefined when tau_k is less than or equal to .tau_1 */

else
gg = gag / pdsi[oo].sigma_l;

exparg = TWOPI * (timexx * (Pdsi[oo].fds + pdsi[oo].slp *
(tau_k - pdsi[oo].tau_c)));

squirt = sqrt((pdsi[oo].peak_amplitude * exp(pdsi[oo].alpha *
(log(gg) - gg + 1))));

sine = sineexparg);
cosine = cos(exparg);
xkm= *now;
now++;
ykm= *now;
now++;
datb[r + r] += (float)(squirt * (cosine * xkm - sine * ykm));
datb[r + r + 1] += (float)(squirt * (cosine * ykm + sine * xkm));

}
return;

} /* End of imp */
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7.6. Additional Information

This section contains additional information that may be of use to understanding, executing,
manipulating, and changing the code.

7.6.1 Library Functions Used

exit - terminates the program, used to terminate for improper input arguments, and for unsuccessful
input or output file openings and closings, must include STDLIB.H.

log - returns the natural logarithm of a positive real number, must include MATH.H.
sqrt - returns the square root of a non-negative real number, must include MATH.H.
fmod - returns the fractional remainder of one positive double divided by another, must include

MATH.H.
pow -library function returns x to the power ofywherex andy are type double, needs MATH.H.
cos - returns trigonometric cosine of a real number, must include MATH.H.
sin - returns trigonometric sine of a real number, must include MATH.H.
exp - returns e raised to the real argument, must include MATH.H.
fopen - opens files, requires STDIO.H.
fclose - closes files, requires STDIO.H.
fscanf - library function reads from files, requires STDIO.H.
printf - library function reads to files, requires STDIO.H.
fprintf - prints to file, requires STDIO.H.
malloc - allocates memory for the large data arrays, needs STDLIB.H.
free - unallocates memory block, needs STDLIB.H.
sinh - library function takes the hyperbolic sine of a real number, requires MATH.H.
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7.6.2. Input Data File Format

This program reads input data from an ASCII file in the following order with white space between
values.

slices (integer)
delta_t (float) [dt]{microseconds}
aft (float)
layers (integer between 1 and 3 inclusive)
seed (integer between 1 and 30268 inclusive)

[For each layer]

path_Distance (float) [D] {kilometers}
centerJreq (float) [fc] {megaHertz}
penetrateJreq (float) [1;,] {megaHertz}
thick_scale (float) [a] {kilometers}
maxD_hgt (float) [ho] {kilometers}
peak_amplitude (float) [A]
sigma_tau (float) [a..] {microseconds}
sigma_c (float) [ae] {microseconds}
sigma_D (float) [ad {Hertz}
fsl (float) [fs] {Hertz}
fdl (float) [fsL] {Hertz}

[] Indicates variable symbol.
{} Indicates units.
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7.6.3. Function Calling Hierarchy

This section contains a modified function calling tree that indicates the functions, including library
functions that each function calls. A function calls the functions indented once immediately below
it. The hierarchy also indicates the function that calls particular functions. For example, function
main calls the functions init and doit. Little_el calls the function funvalue and the library function
pow. RanI is called by the function get_2i_normals and the library function log is called by the
functions comp_arrays, big_c, funvalue, get_2i_normals, slicedo, and imp.

main
init

input_data
{exit, fscanf, printf}

{exit, fopen, fclose}
doit

comp_arrays
{sqrt, log}
big_c

{sqrt, sinh, log}
little el

funvalue
{log}

{pow}
{exit}
outl

slicedo
rvgexp

get_2i_normals
ranI

{fmod}
ran2
{sqrt, log}

{cos, sin, log, sqrt}
outit
imp

{sqrt, exp, log, sin, cos}
little four

{sin}

{} - indicates library functions.
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8. SUMMARY

This report presents and documents a computer program that calculates the transfer function for a
wideband HF channel simulator with a 1-MHz bandwidth. The program outputs the transfer
function which is intended as input to the hardware HF channel simulator under development. The
program's input is a set ofparameters that characterizes the conditions ofa particular skywave path
for the HF channel being modeled.

Mathematical descriptions of the model are provided in the report. Code listing of the program is
provided and complete documentation and a user's guide are included.

Graphical verification of the model is provided through plots of scattering functions for each path
presented. Scattering functions relate several important parameters of the model, including delay
spread, delay offset, Doppler shift, and Doppler spread. Scattering functions are also a popular
method of presenting measured channels. The scattering functions allow visual verification of
several of the input and computed parameters of the program. The verification indicates that the
model agrees well with the expected representation of the input parameters. The exception is that
an unexpected constant offset in overall Doppler frequency was found that appears to be related to
filtering parameters for the stochastic input of the model. The offset is related to the sampling rate
and to the Doppler spread input to the program.

A solution to the offset problem is to carefully design the digital filters for each channel rather than
to use a general filter for all situations. This could be a considerable effort; however, the result
would be a set of standard channels that could be used for laboratory testing and evaluation ofradio
systems and radio networks. In particular, the channels could be used to prove the efficacy and
reliability ofcommunications systems in support ofNS/EP goals and missions in the laboratory and
without the need for expensive and time-consuming over-the-air (OTA) testing.

Even with the unexpected shift problem, the verification results are in good enough agreement with
the model to indicate that the hardware simulator will still be an excellent engineering tool. As such,
it could be used in research and development of radio systems and networks.
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APPENDIX: SCATTERING FUNCTION PROGRAM

This program is essentially the same as the transfer function program and hence is presented with
little additional documentation. The program produces the scattering function rather than a transfer
function. The scattering function can be graphically presented with the proper plotting software.

The major difference is that this program does the FFT ofthe impulse response in the time direction
at each increment ofdelay. For that reason, the dynamic memory arrangement is no longer necessary
and the global array cdat carries all the information at every step. Thus, cdat is initialized and filled
with the uniform random number streams that are used to compute the N(O, 1) random streams which
replace the uniform streams in cdat. This is repeated in rvgexp, where the random streams are
replaced with the exponentially autocorrelated sequences i.n cdat. Finally, cdat contains the impulse
response in the time direction. This is done for each reflecting layer with the array fcdat
accumulating the superimposed impulse responses. The FFT is performed onfcdat. The magnitude
offcdat is placed in the array outdat and is printed to file by outit.

The function outit normalizes the data by setting maximum and minimum values ofamplitude and
converts the values to dB. The minimum and maximum are set arbitrarily. If the amplitude values
are desired, the code which is commented out should replace the for loop immediately following.
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/* specavgl.cpp */
#include <stdio.h>
#define MAXLAYERS 3
typedef struct rayjJath
{

float path_Distance, centerjreq, penetratejreq, thick_scale, maxD_hgt;
float peak_amplitude, sigma_tau, sigma_c, sigma_D, fds, fdl;
double tau_c, sigmaj, sIp, tau_L, tau_V, tau_I, alpha, sigma_I, lambda;

};
typedef struct compute
{

int layers, slices, seed;
float delta_t, afl;
double delta~tau, big_el;

};
typedefchar *STRING;

void main(int argc, char *argv[])
{

/* Function prototypes */
extern void init(int, STRING, compute[], rayjJath[]);
extern void doit(compute[], rayjJath[], STRING, STRING);

/* Structures */
struct rayjJath p[MAXLAYERS];
struct compute c[l];

/* Code */
init(argc, argv[l], c, p);
doit(c, p, argv[2], argv[3]);

} /* End of main */

92



/* specavg2.cpp */
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#define MAXLAYERS 3
#define DATA 2048
typedef struct ray-path
{

float path_Distance, centerJreq, penetrateJreq, thick_scale, maxD_hgt;
float peak_amplitude, sigma_tau, sigma_c, sigma_D, fds, fdl;
double tau_c, sigma_f, sip, tau_L, tau_V, tau_I, alpha, sigma_I, lambda;

};
typedef struct compute
{

int layers, slices, seed;
float delta_t, afl;
double delta_tau, big_el;

};
typedef char *STRING;
FILE *innyfile, *datyfile, *bigfile;

void init(int arg_num, STRING inny, struct compute ci[l], struct ray-path pi[MAXLAYERS])
{

/* Function prototype */
void input_data(compute[], ray-path[]);
/* Code */
if(arg_num !=4)
{

printf("\n Error in function init! \n");
printf("\n Is command line correct?: lewsblue infile outfilel outfile2 \n");
printf("\n Program will terminate! \n");
exit(O);

}
if ((innyfile = fopen(inny,"r"» == NULL)
{

printf("\n Error in function init! \n");
printf("\n Input file cannot be opened! \n");
printf("\n Terminating program! \n");
exit(O);

}
input_data(ci, pi);
ci[O].delta_t *= 1.0E-6;
if (fclose(innyfile) == EOF)
{

printf("\n Error in function init! \n");
printf("\n Cannot close the input file! \n");
printf("\n Program will terminate! \n");
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exit(O);
}
return;

} /* End of init */

void input_data(struct compute cii[l], struct ray-path pii[MAXLAYERS])
{

/* Variable */
intj;

/* Code */
fscanf(innyfile, "%d%fllloflllod%d", &cii[O] .slices, &cii[O] .delta_t, &cii[O] .afl, &cii[O] .layers,

&cii[O].seed);
for (j = 0; j < cii[O].layers; j++)
{

fsc'lnf(innyfile, "%fllloflllofllloflllofllloflllofllloflllofllloflllof', &piifj].path_Distance,
&pii[j] .centerjreq, &pii[j] .penetratejreq, &pii[j] .thick_scale, &piifj].maxD_hgt,

&pii[j].peak_amplitude, &pii[j].sigma_tau, &pii[j].sigma_c, &:.pii[j].sigma_D,
&pii[j].fds, &pii[j].fdl);
/* Input data checking */

if (pii[j].peak_amplitude ;:::= 0.0)
{

printf("\n Error in function input_data! ");
printf("\n Division by zero coming! ");
printf("\n Peak_amplitude, A, must be greater than O! ");
printf("\n Program will terminate! ");
printf("\n Correct the input file! ");
exit(O);

}
if (piifj].sigma_c == 0.0)
{

printf("\n Error in function input_data! ");
printf("\n Division by zero warning! ");
printf("\n Sigma_c must be greater than O!");
printf("\n Program will terminate! ");
printf("\n Correct the input file! ");
exit(O);

}
if ((cii[0].afl <= 0.0) II (cii[O].afl >= 1.0))
{

printf("\n Error in function input_data! ");
printf("\n Square root of a negative number warning! ");
printf("\n Afl must be between 0 and I! ");
printf("\n Program will terminatel");
printf("\n Correct the input file! ");
exit(O);

}
if (piifj].penetratejreq <= pii[j].centerjreq)
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{
printf("\n Error in function input_data!");
printf("\n Penetration frequency must be greater than the");
printf(" center frequency! ");
printf("\n Program will terminate! ");
printf("\n Correct the input file! ");
exit(O);

}
if ((cii[O].seed < I) II (cii[O].seed > 30268))
{

printf("\n Error in function input_data! ");
printf("\n The seed must be between 1");
printf("\n and 30268 inclusive! ");
printf("\n Program will terminate! ");
printf("\n Correct the input file! ");
exit(O);

}
}

return;
} /* End of input_data */

void outl(struct compute cdco[l], struct ray-path pdco[MAXLAYERS], STRING daoutl)
{

/* Variable */
int i;

/* Code */
if ((datyfile = fopen(daoutl,"w")) == NULL)
{

printf("\n Error in function outl! \n");
printf("\n First output file cannot be opened \n");
printf("\n Terminating program! \n");
exit(O);

}
fprintf(datyfile,"\n Computing Parameters \n");
fprintf(datyfile,"\nInput parameters\n");
fprintf(datyfile,"\n slices =%d", cdco[O] .slices);
fprintf(datyfile,"\n delta_t = %f', cdco[O].delta_t);
fprintf(datyfile,"\n aft =%f', cdco[O].aft);
fprintf(datyfile,"\n layers = %d", cdco[O].layers);
fprintf(datyfile,"\n seed = %d", cdco[O].seed);
fprintf(datyfile,"\n\nComputed parameter\n");
fprintf(datyfile,"\n delta_tau = %If', cdco[O].delta_tau);
fprintf(datyfile,"\n big_el = %If', cdco[O].big_el);
fprintf(datyfile,"\n\n Individual Path Data \n");
for (i = 0; i < cdco[O].layers; i++)
{

fprintf(datyfile,"\n Layer %d \n", i + I);
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fprintf(datyfile,"\n Input parameters \n");
fprintf(datyfile,"\n path distance = %f', pdco[i].path_Distance);
fprintf(datyfile, "\n center frequency = %f', pdco[i].center_freq);
fprintf(datyfile,"\n penetration frequency = %f', pdco[i].penetratejreq);
fprintf(datyfile,"\n Thickness scale factor = %f', pdco[i].thick_scale);
fprintf(datyfile,"\n Height of the maximum density = %f', pdco[i].maxD_hgt);
fprintf(datyfile,"\n peak amplitude = %f', pdco[i].peak_amplitude);
fprintf(datyfile,"\n sigma_tau = %f', pdco[i].sigma_tau);
fprintf(datyfile,"\n sigma_c = %f', pdco[i].sigma_c);
fprintf(datyfile,"\n sigma_D = %f', pdco[i].sigma_D);
fprintf(datyfile,"\n fds = %f', pdco[i].fds);
fprintf(datyfile,"\n fdl = %f\n", pdco[i].fdl);
fprintf(datyfile,"\n Computed parameters \n");
fprintf(datyfile,"\n tau_c = %If', pdco[i].tau_c);
fprintf(datyfile,"\n sigmaj= %If', pdco[i].sigma_t);
fprintf(datyfile,"\n sip = %If', pdco[i].slp);
fprintf(datyfile,"\n tau_L = %If', pdco[i].tau_L);
fprintf(datyfile,"\n tau_U = %If', pdco[i].tau_U);
fprintf(datyfile,"\n tau_I = %If', pdco[i].tau_I);
fprintf(datyfile,"\n alpha = %If', pdco[i].alpha);
fprintf(datyfile,"\n sigma_I = %If', pdco[i].sigma_I);
fprintf(datyfile, "\n lambda = %If\n", pdco[i].lambda);

} /* End of i loop */
if (fclose(datyfile) == EOF)
{

printf("\n Error in function outl! \n");
printf("\n Cannot close the first output file! \n");
printf("\n Terminating program! \n");
exit(O);

}
} /* End of outl */

void outit(float fdat[DATA], STRING daout2)
{

/* Variables */
int q;
float max, quot, min;

/* Code */
if ((bigfile = fopen(daout2,"a")) == NULL)
{

printf("\n Error in function outit! \n");
printf("\n Second output file cannot be opened! \n");
printf("\n Terminating program! \n");
exit (0);

}
max = 0.2979;
min = -20.0;
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II for (q = (DATA I 2) - 1; q >= 0; q--)
II fprintf(bigfile, "%If ", fdat[q]);

for (q = (DATA I 2) - 1; q >= 0; q--)
{

if «quot = fdat[q] I max) > 0.01)
fprintf(bigfile, "%If ", 10 * log1O(quot));

else
fprintf(bigfile, "%If ", min);

}
fprintf(bigfile, "\n");
if (fclose(bigfile) == EOF)
{

printf("\n Error in function outit! \n");
printf("\n Cannot close the second output file! \n");
printf("\n Terminating program! \n");
exit(O);

}
} 1* End of outit *1
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/* specavg3.cpp */
#inc1ude <stdio.h>
#inc1ude <math.h>
#inc1ude <stdlib.h>
#inc1ude <alloc.h>
#define MAXLAYERS 3
#define DATA 2048
#define TWOPI 6.28318530717959
#define C 0.299792458
typedefstructray-path
{

float path_Distance, centerjreq, penetratejreq, thick_scale, maxD_hgt;
float peak_amplitude, sigma_tau, sigma_c, sigma_D, fds, fd1;
double tau_c, sigmaj, sIp, tau_L, tau_V, tau3, alpha, sigma_I, lambda;

};
typedef struct compute
{

int layers, slices, seed;
float delta_t, afl;
double delta_tau, big_el;

};
typedef char *STRING;

/* Global Variables */
long seedl, seed2, seed3, seed4, seed5;
float cdat[DATA]; /* DATA is 4 x slices value */
float fcdat[DATA];
float outdat[DATA / 2];

void doit(struct compute cd[1], struct ray-path pd[MAXLAYERS], STRING daty, STRING daty2)
{

/* Function prototypes */
void comp_arrays(compute[], ray-path[], STRING);
void slicedo(compute[], ray-path[], STRING);

/* Code */
comp_arrays(cd, pd, daty);
slicedo(cd, pd, daty2);
return;

} /* End of doit */

void comp_arrays(struct compute cdc[1], struct ray-path pdc[MAXLAYERS], STRING datout1)
{

/* Function prototypes */
double big_c(ray-path[], int);
double little el(float, double, double);
extern void out1(compute[], ray-path[], STRING);

/* Variables *;
int k,jump;
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double SV, Z_l, big_U;
/* Initialize random number generator seeds */

seedl = (171 * cdc[O].seed) % 30269;
seed2 = (172 * seedl) % 30307;
seed3 = (170 * seed2) % 30323;
k = seed3 /52774;
seed5 = 40692 * (seed3 - k * 52774) - k * 3791;
if (seed5 < 0)

seed5 += 2147483399;
k = seed5 /53668;
seed4 = 40014 * (seed5 - k * 53668) - k * 12211;
if (seed4 < 0)

seed4 += 2147483563;
/* Compute the layer parameters */

for (k = 0; k < cdc[O].layers; k++)
{

SV = cdc[O].afl;
pdc[k].sigmaj= TWOPI * pdc[k].sigma_D * sv / sqrt(l.O - sv * sv);
pdc[k].lambda = exp(-cdc[O].delta_t * pdc[k].sigma_f);
/* Note that sv can't equal 1 */
pdc[k] .tau_c = big_c(pdc, k);
pdc[k].slp = (pdc[k].fds - pdc[k].fdl) / pdc[k].sigma_c;
pdc[k].tau_L = pdc[k].tau_c - pdc[k].sigma_c;
pdc[k].tau_U = pdc[k].tau_L + pdc[k].sigma_tau;
pdc[k].tau_l = little_el(pdc[k].tau_c, pdc[k].tau_L, pdc[k].tau_U);
Z_l = (pdc[k].tau_L - pdc[k].tau_l) / (pdc[k].tau_c - pdc[k].tau_l);
pdc[k].alpha = (log(sv» / (log(ZJ) + 1 - ZJ);
pdc[k].sigmaJ = pdc[k].tau_c - pdc[k].tau_l;

} /* End ofk-Ioop */
/* Compute big_el and delta_tau */
big_U = 0.0;
cdc[O].big_el = 100000.0;
for (k = 0; k < cdc[O].layers; k++)
{

if (pdc[k].tau_U > big_U)
big_U = pdc[k].tau_U;

if (pdc[k].tau_l < cdc[O].big_el)
cdc[O].big_el = pdc[k].tauJ;

}
if (cdc[O].big_el < 0.0)

cdc[O].big_el = 0.0;
cdc[O].delta_tau = (big_U - cdc[O].big_el) / (DATA / 4);
out1(cdc, pdc, datoutl);
return;

} /* End ofcomp_arrays */

double big_c(struct ray-path pdcb[MAXLAYERS], int t)
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{
/* Variables */

double compl, comp2, comp3, effective_height;
/* Code */

compl = pdcb[t].penetratejreq / pdcb[t].centerjreq;
comp2 = sqrt((compl * compl) - I);
comp3 = sinh(pdcb[t].maxD_hgt / pdcb[t].thick_scale);
effective_height = pdcb[t].thick~scale * log(sqrt(comp2) * comp3 +

sqrt((l / comp2) * camp3 * comp3 - I));
return((2 / C) * sqrt(effective_height * effective_height +

pdcb[t].pathJ)istance * pdcb[t].path-Pistance / 4));
} /* End ofbig~c */

intm;
double searchpoint, negative_arg, positive_arg, holdval, halfdif;

/* Code */
searchpoint = tau_L - I;
/* Get two estimates for bisection algorithm */
if ((holdval = funvalue(tau_L, tau_V, tau~c, searchpoint)) < 0)

negative_arg =searchpoint;
else

if (holdval > 0)
{

positive_arg =searchpoint;
while (I)
{

searchpoint =(searchpoint + tau_L) / 2;
if ((holdval = funvalue(tau_L, tau_V, tau_c, searchpoint)) > 0)

positive_arg =searchpoint;
else

if (holdval < 0)
{

negative_arg =searchpoint;
break;

}
else

return(searchpoint);
}

}
else return(searchpoint); /* Holdval = 0 */

/* bisection algorithm with two appropriate estimates */
for (m = I; m <= 100; m++)
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{
halfdif= (negative_arg - positive_arg) / 2;
searchpoint = positive_arg + halfdif;
if (((holdval = funvalue(tau_L, tau_V, tau_c, searchpoint)) == 0) II

(halfdif < 0.0000001))
return(searchpoint);

if((holdval * funvalue(tau_L, tau_V, tau_c, positive_arg)) > 0)
positive_arg = searchpoint;

else
negative_arg = searchpoint;

}
printf("\n Error in function little_ell ");
printf("\n Bisection for tau_l failed after 100 iterations! ");
printf("\n Stopping program! ");
exit(O);

} /* End of little el */

double funvalue(double L, double V, float c, double point)
{

/* Code */
return(log((L - point) / (V - point)) + ((V - L) / (c - point)));

} /* End of funvalue */

void slicedo(struct compute cds[I], struct rayyath pds[MAXLAYERS], STRING datout2)
{

/* Function prototypes */
void rvgexp(double);
extern void littlejour(float[], int, int);
extern void outit(float[], STRING);
extern void imp(float[], rayyath[], compute[], int, double, double);

/* Variables */
int m, n, 0, p;
double gag, gg, tau_k;

/* Code */
tau_k = cds[O].big_el;
for (n = 0; n < 1024; n++) /* Vp to 1024 counting delay*/
{

for (0 = 0; 0 < DATA / 2; 0++)
outdat[o] = 0.0;

tau_k += cds[O].delta_tau;
for (m = 0; m < 160; m++)
{

for (0 = 0; 0 < DATA; 0++)
fcdat[o] = 0.0;

for (0 = 0; 0 < cds[O].layers; 0++)
{

for (p = 0; p < DATA; p++)
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cdat[p] == 0.0;
if ((gag = tau_k - pds[o].tauJ) <= 0.0)

continue;
else
{

rvgexp(pds[0].lambda);
gg = gag / pds[o].sigma_l;
imp(cdat, pds, cds, 0, tau_k, gg);

}
for (p = 0; p < DATA; p++)

fcdat[p] += cdat[p];
} /* End of layers loop */

littlejour(fcdat - 1, DATA / 2, 1);
for (0 = 0; 0 < DATA / 2; 0++)

outdat[o] += sqrt(fcdat[o + 0] * fcdat[o + 0] + fcdat[o + 0 + 1] *
fcdat[o + 0 + 1]);

} /* End ofm-Ioop */
for (m = 0; m < DATA / 2; m++)

outdat[o] /= 160.0;
outit(outdat, datout2);

} /* End of delay slice loop */
return;

} /* End of slicedo */

void rvgexp(double lambduh)
{

/* Function prototype */
void get_2i_normalsO;

/* Variables */
int s;
double mult;

/* Code */
mult = 1 - 1ambduh;
get_2i_normalsO;
cdat[O] = cdat[O] *mult;
cdat[1] = cdat[1] * mult;
for (s = 2; s < DATA / 2; s += 2)
{

cdat[s] = cdat[s] + lambduh * (cdat[s - 2] - cdat[s]);
cdat[s + 1] == cdat[s + 1] + lambduh * (cdat[s - 1] - cdat[s + 1]) ;

}
return;

} /* End of rvgexp */

void get_2i_normalsO
/* The polar method improvement of the Box-Muller method of producing two
* independent N(O,1) variates.
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/* Function prototypes */
void ranIO;
void ran20;

/* Variables */
int s;
double arg, mult, vI, v2, w, y;

/* Code */
ranIO;
ran20;
for (s = 0; s < DATA / 2; s +=2)
{

{

*Note:

*
Two random number generators are used to ensure that the two
required random number streams really are independent. */

mult = sqrt(-2 * log(cdat[s]));
arg = TWOPI * cdat[s + 1];
cdat[s] = mult * cos(arg);
cdat[s + 1] = mult * sin(arg);

}
return;

} /* End ofget_2i_normals */

void rani 0
/* An implementl:ltion of the Wichmann-Hill composite algorithm
*Note: seedI, seed2, and seed3 are global variables initialized
* globally and retain value with each call */

{

/* Variable */
int s;

/* Code */
for (s = 0; s < DATA / 2; s += 2)
{

seedl = (171 * seedI) % 30269;
seed2 = (172 * seed2) % 30307;
seed3 = (170 * seed3) % 30323;
cdat[s] = (float)fmod((double)seedl / 30269.0 + (double)seed2 / 30307.0 +

(double)seed3 / 30323.0, 1.0);
}
return;

} /* End of ranI */

void ran20
/* An implementation of L'Ecuyer's composite algorithm
*Note: seed4 and seed5 are global variables initialized globally and
* retain value with each call */

{
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tdat[r] = datb[r];
no_squirt = (pdsi[oo].peak_amplitude * exp(pdsi[oo].alpha * (log(ggg) - ggg + 1)));
expargfx = TWOPI * (pdsi[oo].fds + pdsi[oo].slp * (tau_kk - pdsi[oo].tau_c));
timexx = 0.0;
for (r = 0; r < cdsi[O].slices; r++)
{

timexx += cdsi[O].delta_t;
exparg = timexx * expargfx;
sine = sin(exparg);
cosine = cos(exparg);
sind = (no_squirt / cdsi[O].slices) * sine;
cosind == (no_squirt / cdsi[O].slices) * cosine;
summer = 0.0;
for(m = 0; m < cdsi[O].slices - r; m++)

summer = summer + (tdat[m + m] * tdat[m + m + r + r]) + (tdat[m + m +
1] * tdat[m + m + r + r + 1]);

datb[r + r] = (float)(cosind * summer / (cdsi[O].slices - r));
datb[r + r + 1] = (float)(sind * summer / (cdsi[O].slices - r));

}
return;

} /* End of imp */
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