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ABSTRACT

Building on prior work we have developed a no-reference
(NR) waveform-based convolutional neural network (CNN)
architecture that can accurately estimate speech quality or
intelligibility of narrowband and wideband speech segments.
These Wideband Audio Waveform Evaluation Networks,
or WAWEnets, achieve very high per-speech-segment cor-
relation (ρseg ≥ 0.92, RMSE ≤ 0.38) to established
full-reference quality and intelligibility estimators (PESQ,
POLQA, PEMO, STOI) based on over 17 hours of speech
from 127 previously unseen talkers speaking in 13 differ-
ent languages; just 10% of our total data. NR correlations
at this level across such a broad scope are unprecedented.
This achievement was made possible by using full-reference
estimates as training targets so that WAWEnets could learn
implicit undistorted speech models and exploit them to pro-
duce accurate NR estimates.

Index Terms— convolutional neural net, no-reference,
speech intelligibility, speech quality, wideband

1. INTRODUCTION

Speech quality and intelligibility estimators are critical to the
design, optimization, and maintenance of telecommunica-
tion networks. Current popular estimators include Perceptual
Evaluation of Speech Quality (PESQ) [1], Perceptual Ob-
jective Listening Quality Analysis (POLQA) [2], PEMO [3]
and Short-Time Objective Intelligibility Measure (STOI) [4].
These full-reference (FR) estimators give values that corre-
late well with human assessments but require the undistorted
reference signal as well as the distorted test signal. This
requirement limits the applicability of FR estimators and
motivates the development of no-reference (NR) estimators.

NR estimators produce quality or intelligibility values
without access to the reference signal. To do this they must
explicitly or implicitly embody very broad yet detailed mod-
els for undistorted speech. This is an active research area and
many different approaches have been proposed over the years.
The most recent contributions include novel signal processing
techniques [5] and numerous applications of artificial neural
networks (ANN) and deep learning techniques.

Most recent work utilizes features derived from traditional
speech processing techniques (e.g. magnitude spectrogram,
Mel-spectral or Mel-cepstral features, pitch values, voice ac-
tivity) as inputs to machine learning (ML) processes in order
to generate quality or intelligibility estimates [6–16].

Quality-Net [8] uses magnitude spectra as input. In [13]
a convolutional neural network (CNN) is applied to 2-D ar-
rays of Mel-cepstral coefficients and other derived features.
NISQA accepts super-wideband speech, targets MOS and
POLQA [14], multiple subjective dimensions, and gives av-
erage per-condition correlations as high as 0.90 [16]. In [16],
NISQA builds features from Mel-processed spectrograms
(eliminating the need for DCT features used in the earlier
NISQA version [14]). NIC-STOI [5] does not use any ANN.
It estimates reference speech characteristics to achieve an im-
pressive ρ = 0.940 with human intelligibility scores but only
for highly constrained data (one language, no speech coding)
which is understandable given the high cost of human scores.

Our method and the work in [12] are the only NR evalua-
tion networks where a raw waveform is used as input instead
of calculated features. Our method achieves superior perfor-
mance across a much broader scope (see Section 5).

Traditional speech processing techniques have enabled
speech compression, noise suppression, and frame erasure
concealment. But using those same techniques at the front-
end of a quality or intelligibility estimator forces the estimator
to operate under the same assumptions as the devices under
test, including specific models of speech and distortion as
well as limited computational power and memory.

ANNs have limitations as well and are certainly not
suited for every application. But CNNs implement a tradi-
tional signal processing technique—large banks of arbitrary,
customized moving average (MA) filters. This makes CNNs
of particular interest and importance for evaluating speech
waveforms. We present a 1-D convolutional architecture that
can be viewed as a multi-channel signal processor. Each
section (other than the first and last) hasfn input and out-
put channels, fn ⊂ Z>0. Each input channel is split into
fn copies and each copy is individually filtered by fn MA
filters. The f2n resulting signals are then mixed down to fn
output signals and passed through a non-linear distortion and
a non-conventional sample-rate reduction.
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S section type f̂s (Hz) lin sl (ms) lout
S1 Conv A-2 16,000 48,000 0.0625 8,000
S2 Conv M-4 8,000 24,000 0.125 6,000
S3 Conv M-2 2,000 6,000 0.5 3,000
S4 Conv M-4 1,000 3,000 1 750
S5 Conv M-3 250 750 4 250
S6 Conv M-2 83.3 250 12 125
S7 P Conv M-2 41.7 128 24 64
S8 Conv M-2 20.8 64 48 32
S9 Conv A-32 10.4 32 96 1
S10 Dense — fn — 1

Table 1. WAWEnet architecture: sections S1–S9 are com-
posed of one of the three section types listed in Table 2. Num-
ber of input and output samples per channel are given by lin
and lout, effective sample rate by f̂s, and effective sample
spacing by sl. The dense layer S10 maps fn scalar outputs
from S9 to the final output.

It is prudent to explore signal processing on the CNN’s
terms and leverage efficiencies afforded by ML technologies
to accomplish signal processing tasks—in this case, to learn
the proper features to estimate speech quality and intelli-
gibility. In this work we expand on a prior exploration in
this area [17] where we constructed a no-reference convo-
lutional waveform-based architecture to mimic narrowband
(NB) speech FR quality and intelligibility estimators. The NB
Audio Waveform Evaluation network (NAWEnet) learned its
own features and estimates quality and intelligibility with
high accuracy: per-speech-segment correlation ρseg > 0.92.
In Section 2 we describe the architecture of the Wideband
Audio Waveform Evaluation Network (WAWEnet), a net-
work that produces quality or intelligibility estimates for NB
or wideband (WB) speech. Section 3 describes the speech
corpus used for training and evaluation, Section 4 our training
methodology, Section 5 our results.

2. NETWORK DESIGN

In [17] we described an architecture framework and designed
a specific convolutional architecture, NAWEnet, to accept
three-second long NB speech waveforms and estimate qual-
ity or intelligibility consistent with one of three FR targets:
PESQ, POLQA, or STOI. Naturally, extending NAWEnet to
process WB data requires adding a convolutional section that
accepts WB input (16,000 smp/s × 3 s = 48,000 smp) to the
top of the architecture. This approach would require ≈ 40.5
million parameters, a small increase from the NAWEnet ar-
chitecture in [17] which has ≈ 40.1 million parameters.

Improving upon this natural extension, we created a much
more efficient network by removing the large dense network
from the bottom of the architecture and replacing it with three
additional convolutional sections and one very small dense

name Conv A-k Conv M-k P Conv M-k
Pad(1, 2)

C-fn-fl C-fn-fl C-fn-fl
BatchNorm BatchNorm BatchNorm
PReLU-fn PReLU-fn PReLU-fn

layers

AvgPool-k MaxPool-k AvgPool-k

Table 2. WAWEnet section types. Each section contains a
1-D convolution layer C-fn-fl with fn filters per channel and
fn channels, filter length fl = 3, stride of 1, and zero padding
b fl2 c = 1. Padding layer Pad(a, b) prepends a zeros and ap-
pends b zeros to the input vector. PReLU-fn [18] indicates
a PReLU activation with fn parameters. k denotes pooling
layer kernel size for Max or Average Pooling layers.

section for a total of 10 sections. In addition we trimmed
sections with two convolutional layers to have just one con-
volutional layer. The resulting architecture for WAWEnet is
shown in Table 1. Table 2 describes the three section con-
figurations used in S1–S9. We successfully reduced the filter
length to fl = 3 in all sections and we used fn = 96 channels
with fn = 96 filters per channel resulting in a total of 225,025
parameters, about 0.5% of the original number.

3. DATA CORPORA

We used high-quality WB speech recordings recorded in our
lab and taken from a variety of other sources including [19–
28]; some are conveniently grouped at openslr.org.

We divided these recordings into 100,681 three-second
segments (83.9 hours total) called reference segments. These
segments represent 13 languages and 1230 different talk-
ers. Mandarin, Spanish, and North American English (NAE)
each account for 29% of the reference segments, Korean 6%,
African-accented French 3%, Japanese 2%, and the remain-
ing 2% contains Italian, French, German, Portuguese, Hindi,
British English, Finnish, Dutch, and Polish.

Each reference segment has an active speech level of
26± 0.2 dB below the overload point and speech activity
factor of 50% or greater, both determined by the P.56 speech
voltmeter found in [29]. Any segment has at most 50% (1.5
sec) content in common with any other segment.

We applied a WB impairment to each of the 100,681 refer-
ence segments to produce a corresponding test segment. The
set of WB impairments includes 47 different WB speech cod-
ing modes taken from EVS, AMR, G.711.1, G.722.1, and
G.722. They also include the addition of noise (coffee shop,
party, bus, street at 5 or 15 dB SNR) followed with noise
suppression by removal of time-frequency components falling
below a threshold. We varied the threshold and the process-
ing frame length to achieve noise suppression results ranging
from low quality (many artifacts and/or much unsuppressed
noise) to moderate quality (few artifacts and modest noise).
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Fig. 1. Histograms, means, and stds. of FR targets over all available data. Lower values indicate lower quality or intelligibility.

Additionally, we applied the high-quality low-pass filter op-
tion in [29] to each WB test segment (post-impairment) to
create an NB version (with sample rate 16,000 smp/s) result-
ing in a total of 201,362 test segments.

Because the required amount of subjectively-labeled data
was not available, we used FR estimates as training targets to
teach WAWEnets to generate NR estimates. Thus we applied
FR estimators to each pair of reference-test segments. We
used speech-quality estimators PESQ and POLQA, the audio-
quality estimator PEMO (software available via [30]), and the
intelligibility estimator STOI (developed using fs = 10, 000
smp/s but successfully applied to WB speech elsewhere).

Thus each test segment received four target values (PESQ,
POLQA, PEMO, and STOI). In the case of an NB test seg-
ment, the WB reference segment was used as the reference
for each FR estimator. Fig. 1 shows a histogram of each tar-
get across all speech segments.

4. TRAINING METHODOLOGY

Starting with 201,362 three-second segments (167.8 hours of
speech), we generated an unseen dataset by reserving 10%
of each language, to the extent possible. The 127 talkers as-
sociated with the unseen dataset do not contribute any seg-
ments to the remaining data and are only used for evaluation.
The unseen dataset contains 20,782 segments (17.3 hours) of
speech. We split the remaining segments into training, testing,
and validation datasets (50%, 40%, and 10%, resp.). Thus the
training dataset contains 90,299 segments (75.2 hours); the
testing dataset contains 72,232 segments (60.2 hours); and the
validation dataset contains 18,049 segments (15.0 hours).

As in [17], we performed inverse phase augmentation
(IPA) to augment all datasets and to train WAWEnet to learn
invariance to waveform phase inversion. This resulted in
335.6 hours of speech data total.

We used affine transformations to map PESQ values
([1.02, 4.64]), POLQA values ([1, 4.75]), PEMO values
([0, 1]), and STOI values ([0.45, 1]), to [−1, 1] before use as
targets. We used the training process described in [17] with
one exception: the mini-batch size used was 60 segments per
batch. The Adam optimizer was configured identically as
was the learning rate scheduler. After training for 30 epochs,
we evaluated the network on the test and unseen datasets sep-
arately. The training and testing processes were performed

four times to generate one WAWEnet model instance for each
target: PESQ, POLQA, PEMO, and STOI. We used PyTorch
to construct our datasets and to train and test WAWEnets.
Training was done with an NVIDIA GeForce GTX 1070.1

5. RESULTS

Training a WAWEnet on one target for 30 epochs with
fn = 96 takes about 10.7 hours. This is a 33% reduction
from NAWEnet training time [17] in spite of the fact that
WAWEnet training uses 26% more speech data.

Table 3 gives the per-speech segment Pearson correla-
tions, ρseg , and RMSEs for completely unseen data for each
WAWEnet on each language, as well as on the combined un-
seen and test datasets. Fig. 2 shows a 2-D histogram of tar-
get quality or intelligibility scores vs. quality or intelligibility
scores estimated by the corresponding WAWEnet on unseen
data. The ρseg values range from 0.92 to 0.97 showing that
WAWEnets can be trained to agree with quality or intelligi-
bility targets across a broad range of WB and NB speech con-
ditions. These results are superior to any previously reported
(see Section 1). In addition, results for different languages
within a target are similar and this demonstrates WAWEnet’s
language robustness. The unseen dataset contains only un-
seen talkers. RMSE and ρseg values for unseen and test are
very close and this demonstrates robustness to unseen talkers.

We built a WAWEnet with fn = 16 to efficiently test sen-
sitivity to random initialization and random batch selection.
We trained for the PESQ target as described in Section 4 a to-
tal of 14 times. When evaluated on the unseen dataset the 14
ρseg values ranged from 0.911 to 0.926 and the RMSE values
ranged from 0.434 to 0.473. This demonstrates that the train-
ing process is stable but parameter initialization and batch
selection can have a measurable impact on performance. In
addition, it is impressive that reducing fn from 96 to 16 still
produced ρseg > 0.91 and RMSE < 0.48.

To learn more about combined effects of multichannel
filtering (convolution), non-linear processing (PReLU), and
non-conventional sample-rate conversion (pooling) we in-
stalled probes to measure signal characteristics throughout

1Certain products are mentioned in this paper to describe the experiment
design. The mention of such entities should not be construed as any endorse-
ment, approval, recommendation, prediction of success, or that they are in
any way superior to or more noteworthy than similar entities not mentioned.
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Fig. 2. Two-dimensional histograms showing target vs. estimated values for PESQ, POLQA, PEMO, and STOI when evaluated
on the unseen dataset. Number of segments per bin is given by the scale at the right.

Mandarin Spanish NAE Korean AA French Japanese others unseen comb. test comb.
ρseg 0.972 0.968 0.959 0.966 0.977 0.960 0.950 0.966 0.968PESQ RMSE 0.261 0.299 0.324 0.304 0.272 0.310 0.379 0.298 0.282
ρseg 0.942 0.947 0.947 0.949 0.960 0.909 0.922 0.944 0.950POLQA RMSE 0.345 0.356 0.344 0.356 0.330 0.407 0.430 0.355 0.337
ρseg 0.952 0.948 0.952 0.950 0.949 0.951 0.949 0.950 0.951PEMO RMSE 0.072 0.079 0.072 0.092 0.090 0.084 0.081 0.076 0.074
ρseg 0.925 0.934 0.909 0.895 0.884 0.947 0.801 0.920 0.916STOI RMSE 0.054 0.041 0.048 0.058 0.062 0.044 0.076 0.049 0.049

Table 3. Per-segment Pearson correlation and RMSE achieved on unseen data after training WAWEnet to target PESQ, POLQA,
PEMO and STOI separately. Results in “combined” columns reflect evaluation on the aggregated unseen or test dataset.

WAWEnets. Signal power spreads as signals flow through the
sections; 99% of signal power is in 71 of 96 channels at the
output of Section 1 and is in 87 of 96 channels at the output
of Section 9, suggesting that 96 channels is sufficient.

As these 96 signals flow through the nine sections some
channels continually accumulate information about the speech-
like nature of the input signal and other channels accumulate
information about the non-speech-like or distorted nature of
the input signal. Signal levels in these “speech channels” are
positively correlated to the targets (quality or intelligibility
values) while signal levels in the “distortion channels” are
negatively correlated to the targets. In all sections after Sec-
tion 1, roughly half the channels serve each role. The largest
correlation magnitudes increase monotonically section-by-
section. Example approximate values are 0.50, 0.60, 0.71,
0.82, and 0.94 at the outputs of Sections 1, 3, 5, 7, and 9,
respectively. S9 has 96 outputs and many of these show
strong negative or positive correlation to the target. The final
WAWEnet output is an optimized linear combination of these
(plus bias) and thus has even higher correlation to the target.

WAWEnets successfully target four different FR quality
or intelligibility estimators. Given the WAWEnet perfor-
mance on these different tasks (the four targets have very
different distributions), it stands to reason that given appro-
priate training data, WAWEnets could also directly target

mean opinion score (MOS) or specific dimensions of speech
quality, such as noisiness, coloration, and discontinuity. We
have demonstrated extending a WEnet from NB to WB and
we expect that extending to super wideband and fullband can
follow suit. Labeled data would be the main constraint.

6. CONCLUSION

We adapted the WEnets framework described in [17] to
provide speech quality and intelligibility estimates for WB
speech. This required adding a convolutional section and
reorganizing two lower sections, reducing parameter count
by > 99%. Per-segment correlations between 0.92 and 0.97
demonstrate that NR WAWEnets accurately follow FR targets
across 13 languages, over 17 hours of NB and WB speech
from 127 talkers that was completely unseen during training,
validation, and testing, and could likely follow a true MOS
target. Future opportunities include further dissection of the
inner workings of both NAWEnets and WAWEnets and pub-
lishing implementations at https://github.com/NTIA/WEnets.
Extending WAWEnets to super-wideband and fullband speech
applications as well as synthetic speech applications should
be possible given commensurate training data. It may be
possible to further prune WAWEnets parameters by following
the successes of image-targeted convolutional architectures
or by learning auto-regressive moving-average filters.
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