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ABSTRACT Speech quality and speech intelligibility can vary dramatically across the wide range of
currently available telecommunications systems, devices, and operating environments. This creates a strong
demand for efficient real-time measurements of quality and intelligibility. Wideband Audio Waveform
Evaluation Networks (WAWEnets) are convolutional neural networks (CNNs) that operate directly on
wideband audio waveforms in order to produce evaluations of those waveforms. In the present work these
evaluations give qualities of telecommunications speech (e.g., noisiness, intelligibility, overall speech qual-
ity). WAWEnets are no-reference networks because they do not require ‘‘reference’’ (original or undistorted)
versions of the waveforms they evaluate. Our initial 2020WAWEnet publication introduces four WAWEnets
and each emulates the output of an established full-reference speech quality or intelligibility estimation
algorithm. We have updated the WAWEnet architecture to be more efficient and effective. Here we present a
single WAWEnet that closely tracks seven different quality and intelligibility values with per-segment corre-
lations in the range of 0.92 to 0.96.We create a second network that additionally tracks four subjective speech
quality dimensions. We offer a third network that focuses on just subjective quality scores and achieves
a per-segment correlation of 0.97. The performance of our WAWEnet architecture compares favorably to
models with orders-of-magnitude more parameters and computational complexity. This work has leveraged
334 hours of speech in 13 languages, more than two million full-reference target values, and more than
93,000 subjective mean opinion scores. We also interpret the operation of WAWEnets and identify the key
to their operation using the language of signal processing: ReLUs strategically move spectral information
from non-DC components into the DC component. The DC values of 96 output signals define a vector in a
96-D latent space, and this vector is then mapped to a quality or intelligibility value for the input waveform.

INDEX TERMS Convolutional neural networks, no-reference objective estimator, speech intelligibility,
speech quality, subjective testing, wideband speech.

I. INTRODUCTION
Wired and wireless telecommunications options continue to
proliferate and evolve. Speech quality and speech intelligi-
bility can vary dramatically between systems and devices,
and further variation is driven by changes in acoustic
environment, network loading, and radio conditions. Efficient
real-time measurements of received speech quality and
intelligibly are invaluable. For decades, researchers have been
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developing such measurement tools as telecommunications
systems, devices, and use cases continue to evolve. This can
and has caused entirely new classes of speech impairments
and existing measurement tools may then fail to give
meaningful results. This scenario motivates the development
of new tools that do give meaningful results in the current
environment.

Measurement tools fall into two major classifications—
full-reference (FR) and no-reference (NR). FR tools require
reference (transmitted) and impaired (received) speech and
are practical in off-line applications. Some examples of FR
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tools developed over the years can be found in [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], and [13]. The
most effective FR tools apply psychoacoustic transformations
to reference and impaired speech and then compare these
internal representations in ways that mimic key attributes of
human judgement.

No-reference (NR) tools operate on impaired speech
alone and are much more practical for real-time, in-service
monitoring. NR tools eliminate the need for time alignment
and the issue of comparisons, but they require an embodied
model for how speech should sound—independent of what
speech was sent. This is a significant challenge, but success
allows for practical real-time, in-servicemonitoring of speech
quality or intelligibility. Thus these tools have also been
named ‘‘single-ended,’’ ‘‘in-service,’’ ‘‘non-intrusive,’’ or
‘‘output only.’’ Some examples of early NR tools are given
in [14], [15], and [16].

A. EXISTING MACHINE LEARNING APPROACHES
As machine learning (ML) has become more powerful and
accessible, numerous research groups have sought to apply
ML to the audio domain. In [17], image classification
networks use spectrograms as inputs in order to classify
the content of arbitrary audio signals. The work in [18],
[19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], [52], [53], [54], [55], [56], and [57] describes
ML-based approaches to NR quality estimation. Some of
these NR tools produce estimates of subjective test scores
that report speech or sound quality mean opinion score
(MOS) [18], [19], [20], [25], [26], [27], [28], [31], [36],
[40], [42], [43], [45], [49], [50], [57], naturalness [29],
[35], [37], listening effort [24], noise intrusiveness [50], and
speech intelligibility [21], [33]. The non-intrusive speech
quality assessment model called NISQA [53] uses log-
mel-spectrograms to produce estimates of subjective speech
quality as well as four constituent dimensions: noisiness,
coloration, discontinuity, and loudness. DNSMOS P.835 [55]
predicts subjective speech, background noise, and overall
qualities for noise suppression algorithms.

Other NR tools produce estimates of objective values,
including FR speech quality values [23], [30], [32], [38], [44],
[51], [54], [56], [57], FR speech intelligibility values [30],
[32], [38], [44], [52], [54], [56], [57], speech transmission
index [22], codec bit-rate [46], and detection of specific
impairments, artifacts, or noise types [34], [39], [41], [52].
Some of these tools perform a single task and others perform
multiple tasks. The work in [58] shows that large ML models
trained using self-supervised learning to perform speech
recognition tasks can also be successfully adapted to estimate
subjective scores of speech naturalness.

The works cited here cover a wide variety of ML
architectures. They address application areas that include
room acoustics (noise and reverberation), speech enhancers,
telecommunications systems, and hearing aids. Each

addresses one or more of narrowband (NB) (nominally
300Hz–3.5 kHz), wideband (WB) (nominally 50 Hz–7 kHz),
super-wideband (SWB) (nominally 50 Hz–16 kHz), or
fullband (FB) (nominally 20 Hz–20 kHz) speech, except for
[34] and [46] which address music. Recent work shows that
NR-tools can measure the speech quality of a system input
in spite of the fact that such tools can only access the system
output. [47].

It is typical to consider agreement with subjective test
results as the ultimate goal for NR tools. For ML-based tools,
however, this requires large datasets of subjective test results
(most commonly speech quality MOS values) for training
and validation. Sufficient datasets are rare and expensive to
generate through laboratory testing, so crowd-sourced tests
are becoming common. Joint training or transfer learning
can leverage objective FR quality values [26], [31], [50]
or impairment categories [49] alongside MOS values to
maximize the benefit of those MOS values. Semi-supervised
learning [42] is also an effective way to compensate for scarce
MOS values.

The operation of the absolute category rating (ACR) MOS
subjective test parallels the operation of NR objective tools.
In ACR MOS tests listeners hear speech impaired with
artifacts and give ratings without comparing the speech to a
reference signal. Although great care is often taken to achieve
absolute results, this can be a significant challenge; thus,
ACR MOS results are often most realistically considered to
be relative, not absolute. The use of the scale in any given
subjective test can depend on the conditions included in
that test and multiple other factors [59], [60]. For example,
a given condition might be rated 4.0 when it appears in a
test with lower quality conditions. But that same condition
might be rated 3.0 when it appears in a test with higher
quality conditions. Per-subject corrections are explored in
[50]. Amethod to learn per-test correction factors that is given
in [48] may be viewed as the ML version of the linear algebra
solution given in [61].

Key considerations when using ML to develop NR tools
are the total amount of data available, how that data is used to
both train and test a model, and the homogeneity or diversity
of the training and testing data. The number of talkers,
languages, and sources of impairment are also potentially
important factors, depending on the application. Because the
speech quality measurement community has not yet settled
on standardized datasets, some published work is backed by
extensive data and rigorous testing while other work could
be described as an initial proof-of-concept for some specific
architecture or application area, backed by a domain-specific
dataset. For this reason three separate datasets with three
different application areas are considered in this work.

B. THE WAWEnet MACHINE LEARNING APPROACH
The most common ML approach applies ML to a set of
features that form a spectral description, often one that
uses a perceptual frequency scale (e.g. mel, gammatone,
or third-octave bands) and that may use the log of the
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spectral magnitudes since the log function can very roughly
approximate the human perception of loudness. Alternately,
ML has been applied to features such as mel-frequency cep-
stral coefficients, delta MFCCs, perceptual linear prediction
coefficients, pitch, voice activity, frame energy, and features
used in the legacy NR tools [15], [16].

One distinction of WAWEnets is that they apply ML
directly to speechwaveforms instead of applying it to features
extracted from speech waveforms. Extracting features from
waveforms is a data compression step; it reduces the number
of inputs per unit time the ML algorithm must process. Good
features identify and preserve all useful information in the
speech waveform so that the ML algorithm may more easily
and efficiently map that information to the desired target
value. With WAWEnets there is no need to consider the
pros and cons of various features—all information is made
available to the network and the network itself effectively
creates the features it needs.While there is no doubt that many
different feature-based approaches have been successful
in this problem space, WAWEnets demonstrate that using
waveforms directly is a practical and effective alternative.
We note that processing complex spectral values is another
way to sidestep feature selection and preserve all of the
speech signal information. This has been explored very
recently for speech assessment [56] and previously studied
in related fields [62], [63], [64].

Before our initial WAWEnet publication in 2020 [32]
we had found just one other NR research effort that
considered speech waveforms for input to ML. In [22] ML
is applied to a spectrogram representation of audio in order
to estimate speech transmission index. But this spectrogram
representation is also learned—waveforms are processed
with 128 filters, each with length 128, and those filters are
‘‘initialized with a Fourier basis (sine waves at different
frequencies).’’ So in effect, ML is actually applied to the
audio waveform, but with a strong suggestion that the first
ML step should be to calculate a spectral representation. This
spectral representation does not use the magnitude function
and thus it has the potential to preserve all of the information
in the audio waveform.

We are aware of some additional waveform-related
research efforts that have emerged since our prior work [32]
was published. The input to [38] is a waveform, but the first
processing step is an encoder that ‘‘converts the waveform
into a feature map which is similar to the spectrum.’’ No
magnitude function is applied, so all information is preserved.
Experiments in [38] show the proposal has an advantage over
two feature-based approaches when estimating values from
two FR tools in the case of speech with added noise. In
[42] ML is applied to µ-law compressed speech in order to
estimate speech quality MOS. But the value of µ is learned
(it is initialized to 256 as in G.711 [65]), so, in effect, ML is
actually applied to the speech waveform, but with the strong
suggestion that the first ML step should be compression.
No quantization is added, so this approach can preserve all
of the information in the speech waveform.

In [44] the MOS estimation task is learned in two different
ways. Speech waveforms are first processed either by a
learnable 1-D convolution layer or by the ‘‘conventional
STFT,’’ and then supplied to the main ML architecture.
Authors report that compared to the STFT, ‘‘the learnable 1-D
convolution layer leads to slight improvements for all targets
in nearly all criteria.’’ This result suggests that allowingML to
operate on waveforms is preferable to providing it a spectral
representation.

The algorithm presented in [56] passes the input speech
waveform through a learnable filter bank and combines the
resulting informationwith that from several types of extracted
features. The very recently developed estimator in [57] uses
only the speech waveform as input and we compare its
predictions with WAWEnets results in Section VI-A. In [66]
a WAWEnet-style architecture is applied to waveforms to
generate quality information to guide dialog remixing.

In [32] we introduce four WAWEnets. Three of these
emulate FR speech quality tools POLQA [10], WB-PESQ
[8], and PEMO [7]. The fourth WAWEnet emulates the FR
speech intelligibility tool STOI [67].
Since that time, we have updated the WAWEnet architec-

ture to be more efficient and effective and have leveraged
large amounts of data to train three very effectiveWAWEnets.
Section II describes the new architecture. In Section III we
describe howwe used 252 hours of speech from 13 languages
to train and test individualWAWEnets to very closely emulate
seven FR tools (four speech-quality and three speech-
intelligibility). For comparison purposes, we provide results
from FR versions of these WAWEnets as well. Next we
present a single WAWEnet that emulates all seven FR tools
at once.

Section IV introduces 30 hours of subjectively rated
speech, and we train another WAWEnet to produce values for
four subjective rating dimensions and the seven FR quality
and intelligibility values. In Section V we train and evaluate
a thirdWAWEnet using 52 hours of speech with MOS scores.
This WAWEnet tracks MOS scores quite closely, confirming
that the single architecture can be trained to produce very
good results for both FR objective targets and subjective
targets.

Using ML to develop NR tools for evaluating speech
and audio is a rich and active field and numerous other
NR tools have been proposed. Our work is novel because
we adopt a relatively simple convolutional architecture,
we apply it directly to speech waveforms, we successfully
train to closely emulate eleven different targets, and we
use an unprecedented quantity and diversity of speech data.
In Section VI we provide multiple quantitative comparisons
between WAWEnets and some other available NR tools,
and we find that WAWEnets compare favorably. Finally, the
homogeneous hierarchical structure of WAWEnets allows
us to use the language of signal processing to explain how
WAWEnets collapse temporal information into a feature
vector that is an evaluation of the original signal. This
explanation is provided in Section VII. To our knowledge,
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FIGURE 1. Diagram depicting the overall shape of our WAWEnet model.
Each rectangle represents one section and the enclosed text describes
the shape of the section’s input vector. The input for all NR WAWEnets is
1 × 48,000, allowing only for an impaired speech segment. The input for
all FR WAWEnets is 2 × 48,000, allowing for an impaired and reference
speech segment. Starting with 48,000 speech samples, the model
coalesces information in the time domain until a 96-dimension feature
vector remains.

an interpretation of this sort has never before been
published.

II. WAWEnet ARCHITECTURE
WAWEnets use a hierarchy of convolutional layers, pooling,
and non-linearities to analyze the quality and intelligi-
bility of one-dimensional wideband speech input signals.
We designedWAWEnets to processwideband speech because
wideband speech is quickly becoming the norm in telecom-
munications. The WAWEnets training process optimizes a
hierarchy of convolutional filters that can then emphasize
or attenuate any frequency in the wideband speech range
(nominally 50 Hz–7 kHz) without any prior assumptions or
constraints, thus enabling an efficient and effective solution to
the task of quality measurements. This architecture can also
be interpreted using basic signal processing operations as we
describe in Section VII.

Similar to the model we describe in [32], WAWEnets
accept 3 seconds of wideband speech sampled at 16,000
samples/second as input. The architecture is composed of
sections that use one-dimensional, 96-channel convolutional
layers to filter the signal, and pooling layers in effect
downsample the signal.

This model differs from the model described in [32]
in a few key ways. We added additional convolutional
sections that downsample all the way to one ‘‘sample’’

per channel for each of the 96 channels, thus yielding a
96-dimension feature vector. A dense layer then maps the
feature vector to an estimate. This model therefore only
uses convolutional layers and downsampling to coalesce
temporal information, whereas the previous model also used
a dense layer to coalesce information across a temporal and
a feature dimension. This new strategy allows the network
to gracefully make predictions on segments with significant
portions of non-speech data without the need for long short-
term memory (LSTM) blocks or other sequence modeling
elements. Convolutions near the WAWEnet input may be
viewed as optimized filters that operate on speech signals
and downsampled speech signals to extract descriptors, while
convolutions near the output are more naturally interpreted as
processors that optimally combine shorter-term speech signal
descriptors to produce longer-term descriptions, ultimately
giving a single result for the entire 3-second signal.

All PReLU activations have been replaced with ReLU,
and average pooling is used throughout. The first section
downsamples the input signal by four, thereby significantly
reducing memory and computation requirements.

In this work we allow the dense layer in S14 to generate
multiple estimates (NT ,NT ≥ 1). This model is visualized
in Fig. 1 and is fully described by Tables 1 and 2. With
NT = 1, the new formulation has a total of 335,905
parameters, a roughly 50% increase over the 225,025
parameters of our previous model. However, the number
of multiply-accumulates (MAC) has decreased from 968 M
to 643 M, a decrease of more than 325 M MAC, or 34%.
For brevity, we refer to specific WAWEnet implementations
using a subscript that can indicate the type and number
(NT ) of estimates produced. For example, WAWEnet11 is
a WAWEnet with one input channel and 11 estimates.
In addition, WAWEnetS1 estimates one subjective target and
WAWEnetO1 estimates one objective FR target.
We also made a separate WAWEnet configuration that

allows S1 to accept two 48,000 sample vectors. We used this
configuration to create an FR WAWEnet that uses reference
and impaired speech (WAWEnetFR1 ), and, for comparison
purposes, a WAWEnet that uses two identical copies of the
impaired speech (WAWEnet21).

III. WAWEnet FOR SEVEN OBJECTIVE FR TARGETS
A. DATA
The Institute for Telecommunication Sciences (ITS) dataset
is formed from high-quality WB speech recordings. We care-
fully selected these from an array of sources including [68],
[69], [70], [71], [72], [73], [74], [75], [76], and [77] and
also from recordings made in our lab. We extracted 3-second
‘‘reference segments’’ from these recordings such that each
reference segment has a speech activity factor (SAF) of
50% or greater (determined by the P.56 Speech Voltmeter
found in [78]). Allowing significant portions of non-speech
signal at any location in the segment acts as a natural form
of regularization and facilitates WAWEnets’ convolutional
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TABLE 1. WAWEnet architecture. Sections S1–S13 are composed of one of
the two section types listed in Table 2. Number of input and output
samples per channel are given by lin and lout , effective sample rate by f̂s,
and effective sample spacing by sl . The dense layer S14 maps
fn = 96 scalar outputs from S13 to NT estimates.

TABLE 2. WAWEnet section types. Each section contains a 1-D
convolution layer C-fn-fl with fn= 96 filters per channel and fn channels,
filter length fl = 3, stride of 1, and zero padding ⌊

fl
2 ⌋ = 1. Padding layer

Pad(a, b) prepends a zeros and appends b zeros to the input vector. ReLU
indicates a ReLU activation. k denotes average pooling layer kernel size.

sections to make quality estimates without the need for
explicit sequence modeling elements such as LSTMs. Any
given segment has at most 50% (1.5 sec) content in common
with any other segment. We then normalized each reference
segment to have an active speech level of 26 ± 0.2 dB
below the overload point, again using the P.56 Speech
Voltmeter.

This process provided 84 hours of speech in the form
of 100,681 reference segments, representing 13 languages
and 1230 different talkers. Spanish, Mandarin, and North
American English each account for 29% of the segments.
Korean contributes 6% of the segments, African-accented
French 3%, Japanese 2%, while Italian, French, German,
Portuguese, Hindi, British English, Finnish, Dutch, and
Polish combine to contribute the remaining 2%.

We strategically split the reference segments into training,
testing, and validation groups, as well as an unseen group.
We generated the unseen group by reserving 10% of the
talkers in each language, to the extent possible. The resulting
127 talkers associatedwith the unseen group do not contribute
any segments to the remaining data and are used only for
evaluation. The unseen dataset contains 10,391 segments
(9 hours) of speech. We split the remaining segments into
training (50%), testing (40%), and validation groups (10%)
with approximate sizes of 38, 30, and 7 hours, respectively.

We processed each reference segment with software to
simulate the impairments found in a wide range of current
telecommunications environments. These impairments cover

three classes: background noise and suppression, speech
codecs, and packet loss and concealment.

Background noises include coffee shop, party, and street
noise at SNRs between 5 and 25 dB. The noise suppression
algorithm follows the popular time-frequency (TF) masking
paradigm. It is not intended to be optimal but instead is
designed to be easily adjusted to cover a wide operational
range, frommild suppression that leaves significant noise and
produces minimal artifacts and distortion, to very aggressive
suppression that leaves no noise but creates significant
artifacts and distortion. To achieve this, the algorithm
applies the STFT to each speech signal to produce a TF
representation of the signal. It then replaces elements of the
TF representation with zero if their magnitude falls below a
selected threshold. Finally the inverse STFT and the overlap-
and-add (OLA) process convert this new TF representation
back to a time-domain speech signal. These conversions are
further formalized in [79].

If the threshold is zero, no elements of the TF rep-
resentation are changed and the original speech signal is
reproduced. Low thresholds remove some elements (typically
noise) but not so many elements that artifacts are produced.
Higher thresholds remove more noise and also remove lower
level speech components, thus producing more artifacts.
We adjusted the threshold from 30 to 60 dB below the level
of the peak TF element and also adjusted the STFT window
length from 4 to 64 ms duration in order to achieve a wide
range of impairment types and levels and thus a wide range
of speech qualities and intelligibilities.

We applied 6 WB codec algorithms: EVS, AMR-WB,
Opus, G.711.1, G.722.1, and G.722. We selected bit-rates
ranging from 8 to 64 kbps, for a total of 49 WB codec modes.
We used 13 different NB codecs, including EVS, AMR,
Opus, G.711, G.729, G.723.1, G.726, MELP, and others. Bit-
rates ranged from 1.2 to 64 kbps for a total of 40 NB codec
modes. We used both independent and bursty packet losses
at rates ranging from 5 to 40%, followed by packet loss
concealment (PLC). Finally, we normalized each impaired
segment to have an active speech level of 26 ± 0.2 dB below
the overload point.

Each reference segment was impaired in three different
ways: a randomly selected NB noise or codec impairment,
a randomly selected WB noise or codec impairment, and a
randomly selected NB or WB impairment that combined a
codec with noise or PLC or both. This produced roughly
302,000 segments of impaired speech. This is 252 hours (114
training, 90 testing, 21 validation, and 27 unseen). A high-
level summary of the impairment distribution is given in
Table 3. In each row 50% of the speech is NB and 50% is
WB. A total of 321 distinct conditions are present in the ITS
dataset.

Each impaired segment in the dataset was then labeled
with values from seven established FR estimators:WB-PESQ
[8], POLQA [10], ViSQOL (compliance version c310) [12],
and PEMO (software available via [80]) estimate the quality
of the impaired segment, while STOI [67], ESTOI [9], and
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TABLE 3. Distribution of impairments in ITS dataset.

SIIBGauss [11] give estimates of the speech intelligibility.
Each of these seven FR tools compared every impaired
segment with the corresponding WB reference segment.
We then trainedWAWEnets to estimate these FR values using
only the impaired segments.

B. TRAINING
We used affine transformations to map observed values from
WB-PESQ ([1.02, 4.64]), POLQA ([1, 4.75]), PEMO ([0, 1]),
ViSQOL ([1, 5]), STOI ([0.45, 1]), ESTOI ([0.23, 1]), and
SIIBGauss ([0, 750]) to [-1, 1] before use as targets. As in [30]
and [32], we performed inverse phase augmentation (IPA)
to augment all datasets in order to train WAWEnets to learn
invariance to waveform phase inversion. This augmentation
increased the amount of data available to just over 500 hours
of total speech data.

When training our model from scratch on the ITS dataset,
we used one set of initial weights for each training process.
This set of weights was initialized using the Kaiming-Normal
initialization method [81]. In the cases where NT > 1, the
weights in the last layer were duplicated NT times, resulting
in a shape of NT × 96.
We seeded all random number generators such that batch

order and batch contents were consistent for every training
run. WAWEnets were trained using mini-batches that were as
large as GPU memory would allow; in this case, 60 segments
per batch. We used root mean-squared error (RMSE) as
our loss function along with the Adam optimizer [82] with
10−4 learning rate, and L2 regularization parameter set to
10−5. When the network had trained for an entire epoch, we
evaluated the validation set and logged the epoch RMSE loss
El and per-segment correlation between the target and the
WAWEnet output, ρseg. In the case thatEl on the validation set
had not decreased by at least 10−4 for 5 epochs, wemultiplied
the learning rate by 10−1. The network was trained for
30 epochs. Training WAWEnetO1 on one NVIDIA GTX
1070 took about 14 hours.1

WAWEnets are NR tools, but for completeness of the
research effort, we also created some FR versions. An NR
WAWEnet processes 48,000 samples (3s × 16, 000 sam-
ples/second). The FR version (WAWEnetFR1 ) processes
reference speech and the corresponding impaired speech.

1Certain products are mentioned in this paper to describe the experiment
design. The mention of such entities should not be construed as any
endorsement, approval, recommendation, prediction of success, or that they
are in any way superior to or more noteworthy than similar entities not
mentioned.

TABLE 4. Pearson correlations between predictions from three
WAWEnets with NT = 1 and seven objective FR targets, unseen portion of
ITS dataset, individual network for each target, correlations calculated
per-segment.

The two signals are processed independently at the input
layer, and then jointly thereafter. This joint processing allows
WAWEnets to compute a family of relevant functions of the
two signals. To accommodate two input signals, the first
convolutional layer of WAWEnetFR1 has more parameters
(input size 2 channels × 48, 000 samples × 96 filters)
compared to the NR WAWEnet (input size 1 channel ×

48, 000 samples×96 filters). During initialization, all weights
in the S1 were duplicated resulting in a shape of 2×48, 000×

96. In order to make a fair comparison, we also created
a dual input NR version called WAWEnet21. WAWEnet21
and WAWEnetFR1 have identical architecture and number of
parameters. WAWEnet21 processes two identical copies of the
impaired speech. Results for all three versions are presented
and compared below.

C. INDIVIDUAL NETWORK FOR EACH OF SEVEN FR
TARGETS
We trained individual WAWEnets (WAWEnetO1) for each of
the seven FR targets. Table 4 gives the resulting per-segment
Pearson correlations and Table 5 shows the corresponding
per-segment RMS errors. To allow for direct comparisons,
these errors are normalized and shown as a percentage of the
full scale for each target.

The network outputs are highly correlated to the FR target
values across a vast amount of data that spans a wide range
of impairment types, talkers, and languages, in spite of the
fact that the networks have no access to the reference speech
for comparison purposes. In effect, the networks embody
very effective generalized models for speech quality (or
intelligibility). These generalized models are invariant to
speech content, talker, and language, and this allows them to
operate without comparison to a reference speech signal.

The ‘‘Dual-NR’’ column of Table 4 shows that the
additional weights in WAWEnet21’s S1 have minimal effect
on correlation. And the ‘‘FR’’ column (WAWEnetFR1 ) shows
that access to reference speech (and necessarily increasing
the network size) does produce some additional benefit,
as expected. Table 5 tells the same story in the RMSE domain.
The networks produce impressive estimation error values that
range from 5 to 9% of full scale. These values barely change
when network size is increased, but are further reduced when
reference speech is provided.
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TABLE 5. Normalized RMSE between predictions from three WAWEnets
with NT = 1 and seven objective FR targets, unseen portion of ITS
dataset, individual network for each target, errors calculated
per-segment, values are percent of full scale.

TABLE 6. Pearson correlation, RMSE, and normalized RMSE between
seven estimates from a single network (WAWEnet7) and seven objective
FR targets, unseen portion of ITS dataset, correlation and error calculated
per-segment. Final column shows the nominal range for each target as
[valmin, valmax]. Note that RMSE (%) = 100 × RMSE/(valmax − valmin).

.

D. SINGLE NETWORK FOR ALL SEVEN FR TARGETS
The outstanding success of individual WAWEnets for
each target suggests that the WAWEnet architecture has
plenty of capacity for this class of problems. This then
suggests the possibility of a single network that maps
speech signals to points in a single latent space such
that those points can then be mapped to all four quality
and all three intelligibility targets. Speech quality indicates
how pleasing a speech signal is to the ear and speech
intelligibility measures the information carried by the speech.
These are certainly different quantities, but they are also
related, and this bodes well for the possibility of a single
network.

We trained a single WAWEnet to produce four, five,
six, and all seven target values and found that this co-
training is both possible and beneficial. Seven networks
are replaced with a single network of nearly identical size
without compromise in performance. In fact, co-training with
seven targets appears to regularize the problem and results
in improved performance. Table 6 provides correlation and
RMSE values for the single network called WAWEnet7. The
single network correlation values are better than those for
the individual networks (see Table 4) in four cases and they
are matched in the other three cases. The single network
RMSE values are better than those for the individual networks
(see Table 5) in six cases and they are matched in the
seventh case. Fig. 2 contains two-dimensional histograms
that show the joint distribution of WAWEnet7 per-segment
estimates and actual target values for four of the seven
targets.

IV. WAWEnet FOR SEVEN OBJECTIVE FR TARGETS AND
FOUR SUBJECTIVE TARGETS
Having successfully developed a single WAWEnet that
emulates seven FR tools, we asked if that network might be
further trained to also emulate subjective scores.

A. DATA
We added to our collection the dataset described in [53]
and generously provided by the Quality and Usability
Lab of the Technische Universität Berlin. We designate
this the TUB dataset. It contains a variety of speech
sources, simulated impairments (added background noise,
selected codecs, packet loss, bandpass filtering, and clipping)
and live impairments (background noise, landline-to-mobile
calls, and VoIP calls) Additional details are given in [53].
We successfully computed seven FR target values for 14,220
of the TUB speech files.2 Each of these files also has crowd-
sourced subjective ratings of overall speech quality, noisiness,
coloration, discontinuity, and loudness.

We used the subjective ratings ‘‘overall speech quality,’’
‘‘noisiness,’’ ‘‘coloration,’’ and ‘‘discontinuity’’ (labeled as
MOS, NOI, COL, and DIS, respectively) as targets for
WAWEnet training. The ‘‘loudness’’ rating is not a practical
target for WAWEnets because WAWEnets use normalized
input speech levels. This removes variation in overall signal
level, which is a dominating factor behind the ‘‘loudness’’
ratings. This normalization could be removed if training for
‘‘loudness’’ is desired.

We divided the dataset in twoways. The first was according
to the labeling that was provided with it. We used the 10,903
files (77%) from ‘‘TRAIN_LIVE’’ and ‘‘TRAIN_SIM’’
for training, the 642 (4%) files from ‘‘TEST_FOR,’’
‘‘TEST_NSC,’’ and ‘‘TEST_P501’’ for testing, and the 2,675
files (19%) from ‘‘VAL_LIVE’’ and ‘‘VAL_SIM’’ for vali-
dation. Note that ‘‘TEST_NSC’’ contains German language
speech and the remainder of the dataset is English language
speech. In order to compare this somewhat heterogeneous
division with a more homogeneous division, we also divided
the dataset through random sampling: 50% (7,110 files) were
used for training, 40% (5,688 files) for testing, and 10%
(1,422 files) for validation. The results presented below are
based on the testing portion in both cases.

File lengths range from 4.5 s to 14.6 s with a mean of 8.8 s
and amedian of 9.0 s.WAWEnetswork on 3-second segments
where the SAF is at least 50%. For each file we find all
such distinct segments in the file—98% of the files produce
two segments, 48% produce three and 10% produce four.
The result is approximately 28,200 training segments, 6,800
validation segments, and 1400 testing segments—a total of
30 hours of speech. Using G.191 tools [78], we converted the
data from 48,000 samples/second to 16,000 samples/second

2The ‘‘TEST_LIVETALK’’ database had no reference files so FR targets
could not be calculated. FR estimators occasionally fail to produce valid
results so this reduces the usable number of files as well.

125582 VOLUME 11, 2023



A. A. Catellier, S. D. Voran: WAWEnets: Efficient, Accurate Estimation of Speech Qualities

FIGURE 2. Two-dimensional histogram showing joint distribution of WAWEnet7 per-segment estimates and actual target values with per-segment
Pearson correlation and unnormalized RMSE for four of the seven targets on the unseen portion of the ITS dataset. Number of segments per bin is given
by the scale at the right.

and normalized each segment to 26 ± 0.2 dB below the
overload point.

Each subjective rating is based on an entire file. For
training, we replicate that file rating to create an identical
target for each segment extracted from that file. If the file
shows little temporal variation in the rated attribute, then
this target replication incurs only a minor approximation.
But if there is major variation (e.g. localized packet loss or
non-stationary background noise) then replication of targets
can be a significant approximation and source of error. For
testing, the correlations and RMSE values compare each per-
segment WAWEnet output with the subjective rating of the
corresponding file.

Signal bandwidths create an additional approximation in
this work. The subjective ratings in the TUB dataset are
based on FB speech signals but WAWEnets are WB and
only analyze the lower 8 kHz of these signals. There is no
principled method to convert FB MOS values to WB MOS
values (this is connected with the fact that MOS values are
relative, not absolute) so we use the FB values as is and
accept the approximation. The spectrum above theWB upper
limit typically makes relatively small contributions to quality
and intelligibility so we consider this to be a very close
approximation.

B. TRAINING AND RESULTS
Starting with the weights from WAWEnet7 we allowed the
optimizer to update the weights in each section. This strategy
improved overall performance compared to the random
initialization strategy used in Section III-B. We used affine
transformations to map all subjective scores from [1, 5] to
[-1, 1]. Besides those exceptions, we followed the training
process described in Section III-B.
We trained a WAWEnet to emulate the four subjective

ratings: WAWEnetS4. The per-segment correlation and nor-
malized RMSE values are shown in Table 7. We also trained
WAWEnets to emulate the four subjective ratings and three,
four, five, six, or all seven of the FR values. Table 7 also
shows the result for a single WAWEnet that emulates four
subjective and seven objective FR targets:WAWEnet11. Fig. 3
contains two-dimensional histograms that show the joint
distribution of WAWEnet11 per-segment estimates and actual

target values for four of the eleven targets using the 50/40/10
split.

Table 7 makes clear that co-training with the objective
FR targets improves correlations and RMS errors for the
four subjective targets. It appears that the extra constraints
regularize the problem and lead to a better solution.
Considering the test data prescribed by the TUB dataset,
Table 7 shows dramatic correlation drops and RMS error
increases for the FR targets compared to those reported in
the previous section. But the correlation drop is smaller when
evaluated on the random split. Table 6 and Table 7 are based
on different and dissimilar datasets, so the comparison is not
exact.

Estimators are often judged by per-condition statistics.
Target values are averaged for all results from each condition
(e.g., each individual codec mode or noise environment)
and the same is done for the estimates. These per-condition
averages are then compared by correlation or error statistics.
Averaging within each condition reflects a common and
relevant estimation situatio: it removes variation due to
talkers, utterances, and other factors so we can draw clear
conclusions about the conditions or about the systems that we
are testing. Table 8 provides per-condition results analogous
to those in Table 7. Here we see that WAWEnet11 gives per-
condition correlations of 0.85 or better for four subjective
and three objective FR targets. For some targets, WAWEnet11
performs much better under the 50/40/10 split than under
the 77/4/19 split. This indicates that testing on just 4% of
the data (642 files) does not lead to robust or representative
results, especially when those 642 files show characteristics
that differ from those of the training data, as indicated in the
dataset’s documentation.

V. WAWEnet FOR SUBJECTIVE SCORES ONLY
We also trained a WAWEnet to closely emulate subjective
speech quality scores only.

A. DATA
We are very grateful that the Audio, Speech, and Information
Retrieval Group at Indiana University Bloomington provided
us with the dataset described in [83]. We call this the IUB
dataset, and it is better suited to WAWEnets than the TUB
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FIGURE 3. Two-dimensional histogram showing joint distribution of WAWEnet11 per-segment estimates and actual target values with per-segment
Pearson correlation and unnormalized RMSE for 4 of the 11 targets on the test portion of the TUB dataset when using the 50/40/10 split. Number of
segments per bin is given by the scale at the right.

TABLE 7. Per-segment Pearson correlation (ρseg) and normalized RMSE
between single WAWEnet trained for 4 (WAWEnetS4) or 11 (WAWEnet11)
targets. Testing portion of TUB dataset. Error values are percent of full
scale.

TABLE 8. Per-condition Pearson correlation (ρ) and normalized RMSE
between single WAWEnet trained for 4 (WAWEnetS4) or 11 (WAWEnet11)
targets. Testing portion of TUB dataset. Error values are percent of full
scale.

dataset is. The IUB dataset is WB, so WAWEnets need not
approximate FB subjective scores from WB signals, as was
the case with the TUB dataset. In addition, the IUB file
lengths range from 2.0 s to 7.8 s, with a mean of 3.8 s and
a median of 3.7 s, thus providing a much closer match to the
WAWEnet 3-second window than was possible with the TUB
data.

The IUB dataset includes high-quality speech from close-
talking microphones and lower quality speech from more
distant microphones. The distant microphones necessarily
capture more natural and artificial environmental noise

(SNRs reported in the range −10 to +11 dB) and natural
reverberation (speech-to-reverberation ratios reported in the
range −5 to +4 dB) [83]. In addition, some recordings
were subjected to 3.4 kHz low-pass filtering in order to
create anchor conditions for subjective testing. Subjective
testing was crowd-sourced. Scores were collected, filtered,
and normalized [83] to produce speech quality scores on a
scale of zero to 10. The result is 36,000 speech files, each
with a scaled subjective speech quality MOS value.

The IUB dataset contains 35,428 files that are 6 seconds
or shorter. From each of these files we selected all disjoint
3-second segments with SAF at or above 50%. Any file
shorter than 3 seconds was zero-padded to create a single
3-second segment. By this process, 1,794 files produced
two segments each and the remaining 27,572 files produced
one segment each. This gives more than 31,000 segments,
or 26 hours, of speech data. Each segment was assigned
the scaled MOS value of the file that it came from. Using
only files of 6 seconds or shorter means that a 3-second
segment contains at least half of the file. This minimizes error
associated with assigning per-file MOS values to individual
segments when speech quality is not constant throughout
the file. Using G.191 tools [78], we normalized each file to
26 ± 0.2 dB below the overload point.

B. TRAINING AND RESULTS
We used affine transformations to map all subjective scores
from [0, 10] to [-1, 1]. Starting with the weights from
WAWEnet7, we allowed the optimizer to update the weights
in each section. However, with this dataset equivalent results
are achieved using the initialization method described in
Section III-B. We randomly selected 50% of the segments for
training, 10% for validation and 40% for testing. The rest of
the training process was similar to the process described in
Section III-B, except we allowed training for 60 epochs in this
case. The results that follow are based on the approximately
14,700 testing segments, which comprise about 12 hours of
speech.

WAWEnetS1 achieves a per-segment correlation to MOS
of 0.97 and normalized RMSE of 5.8% of full scale.
Fig. 4 shows this correlation graphically. Six other recently
proposed NR tools are applied to the IUB dataset in [44], and
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FIGURE 4. Two-dimensional histogram showing joint distribution of
WAWEnetS1 per-segment estimates and actual target values with
per-segment Pearson correlation and unnormalized RMSE for scaled MOS
on the test portion of the IUB dataset. Number of segments per bin is
given by the scale at the right.

the resulting Pearson correlations to MOS range from 0.93 to
0.96. The WAWEnetS1 MOS correlation of 0.973 improves
upon the best of these. Mean absolute errors (MAEs) given
in [44] range from 0.40 to 0.50 and the WAWEnetS1 MAE
is 0.37, which places WAWEnetS1 at a lower error rate than
the best previous result. Note that this is not a complete
comparison because the best tools in [44] produce MOS
and three additional estimates, while WAWEnetS1 produces
only MOS. But there is no question that this WAWEnet
architecture performs on a par with these other top performers
on this dataset.

VI. DISCUSSION AND COMPARISONS
We have shown that the NR WAWEnet architecture can
evaluate wideband speech signals in a manner consistent
with a variety of objective and subjective evaluations
without using any reference speech signal. WAWEnet7 can
simultaneously very closely emulate seven diverse objective
targets. WAWEnetS1 closely emulates MOS values. And
simultaneous emulation of seven objective targets and four
subjective targets with WAWEnet11 appears to improve
performance on subjective targets compared to emulating
solely subjective targets.

The weights present in WAWEnet7 appear to be relevant
to both the TUB and the IUB datasets. Training on
the TUB dataset with the 50/40/10 split with a random
initialization and eleven targets resulted in MOS, NOI,
COL, and DIS per-segment correlations of 0.80, 0.80, 0.75,
and 0.64, respectively—lower than the correlations achieved
when starting from WAWEnet7. When training on the IUB
dataset, the weights present in WAWEnet7 don’t improve
estimation performance, but the training process converged
to the best performance roughly 5 epochs sooner. With both
the TUB and the IUB datasets, solely allowing the weights in

TABLE 9. Number of parameters, number of parameters trained, and
multiply-accumulates (MAC) per 3 seconds of speech for each of the
systems compared in Section VI-A.

WAWEnet7 S14 to be trained resulted in worse performance
than allowing the weights in all sections to be trained.

If desired, one could use WAWEnets to process narrow-
band speech (fs = 8000 samples/second) by modifying input
section S1 to have pooling layer size k = 2 instead of k = 4.
It is possible to extend the WAWEnet architecture to wider
bandwidths (higher sample rates) by adding one or more
sections to the input of the network. For example, adding a
section with a k = 3 would allow WAWEnets to process
3 seconds of speech with a sample rate of 48 kHz.

Likewise, there are several strategies suitable for extending
WAWEnets to process longer signals. One strategy would
be to insert a section with a k = 2 between S13 and
S14. This would allow WAWEnets to generate estimates for
6-second signals. Another strategy would be to use either
the 96-D feature vector or target estimates as an input
to a recurrent neural network of some kind, e.g., LSTM
or gated recurrent unit (GRU), thus allowing WAWEnets
to process arbitrary-length speech. With sufficient data,
either strategy might learn to properly account for the
various principles at work when speech quality varies. These
principles include (see [84]): long-term ratings are lower-
bounded by minima and upper-bounded by averages, larger
and more frequent quality variations reduce quality, and
recency. Alternatively, longer signals can be accommodated
by a sliding 3-secondWAWEnet processingwindow followed
by averaging or more sophisticated processing of the multiple
results produced.

A. COMPARISONS
Part of evaluating model performance is making comparisons
to other models that perform the same task. Care must be
taken to ensure equal footing is given in each comparison, and
it is often difficult to make perfectly equitable comparisons.
For example, some models in the literature are trained using
fully supervised approaches on datasets with impairments
that encompass a narrow scope, i.e., only reverb, only noise
and noise suppression, or only speech synthesis. Others are
trained using unsupervised or self-supervised approaches on
much larger datasets. Additionally, models vary greatly in
size (number of parameters) and computational complexity.

In Section V-B we have already reported that the
WAWEnetS1 correlation to MOS of 0.97 on the IUB data
is better than any of the six alternatives studied in [44]
(correlations 0.93 to 0.96). We will now discuss comparisons
we have conducted using freely available models and training
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TABLE 10. Per-segment correlation (ρseg) and RMSE (%) achieved by select models that were trained or fine-tuned on the training portion of the ITS
dataset and/or evaluated on the unseen portion of the ITS dataset. Models above the blank rows were trained from scratch on the ITS dataset and
models below the blank rows were either fine-tuned on the ITS dataset or not retrained. Please refer to Table 9 for information about number of model
parameters for each model and number of parameters trained.

code. In order to make additional fair and informative
comparisons, we have selected a few diverse models and
training strategies.

NISQA-DIM [53] is a model that is used to predict
MOS and other speech qualities on fullband data. It uses
calculated features specifically—a log-mel-spectrogramwith
48 bands—as inputs. We have adapted its open-source
training code3 to predict seven targets, trained it from scratch
on our dataset for 30 epochs, and evaluated it on our unseen
dataset.

Wav2vec 2.0 [85] was originally trained in a self-
supervised manner for the task of speech recognition on
a very large corpus of data. It uses wideband waveforms
as inputs and is a very large model. Borrowing from the
approach described in [58],4 we used the features generated
by the small wav2vec 2.0 model with no fine-tuning5 as
an input to a linear transformation from 768 features to
seven target values. We trained the model in two ways:
allowing all model parameters to be updated (wav2vec fine-
tuned), and only training the linear transformation (wav2vec
frozen). These models were used in place of WAWEnets in
our training code, and therefore the same training and testing
procedure used for training WAWEnets was implemented.

TorchAudio-Squim [57] is large, very computationally
complex model that was trained specifically to predict
objective (WB-PESQ, STOI) and subjective (MOS) speech
quality measurements. It also utilizes wideband waveforms
as inputs. We evaluated the models as-delivered in the
torchaudio package on our unseen dataset as intended
by the authors.6 In order to make MOS predictions, a ‘‘non-
matching reference’’ is required, and we selected a clean
source file from the IUB dataset.

3https://github.com/gabrielmittag/NISQA
4https://github.com/nii-yamagishilab/mos-finetune-ssl
5https://github.com/facebookresearch/fairseq/tree/main/examples/

wav2vec
6The model used in this test was gathered from the Python ‘torchaudio’

package, version 2.1.0.dev20230516+cu118.

A comparison of model characteristics is shown in Table 9.
Note that NISQA-DIM and WAWEnet7 have similar size
and MAC counts while the other options are much larger
and require far more computations. Corresponding evaluation
results for estimating FR objective targets are provided in
Table 10. When allowed to update all parameters during
the training process, the wav2vec model achieves the best
performance. The value of the unsupervised pre-training on
a very large dataset is evident, as is the ease of supervised
fine-tuning to perform a task that differs greatly from the
model’s original intended task. When we train only the linear
transformation that follows wav2vec, we observe fairly good
performance, but this also demonstrates that the latent space
generated by the original wav2vec network is not perfectly
suited for the purpose of predicting speech qualities.

Setting aside the much larger and more computationally
demanding wav2vec and TorchAudio-Squim, we focus now
on the much more comparable NISQA-DIM andWAWEnet7.
WAWEnet7 correlations are better than NISQA-DIM cor-
relations for four of the seven targets. WAWEnet7 RMSEs
are better than NISQA-DIM RMSEs for three of the
targets and matched for a fourth. When performance is
averaged across all seven targets, the two are matched in
correlation, and WAWEnet7 shows a small advantage in
RMSE. In the default configuration, NISQA-DIM uses a self-
attention mechanism and attention pooling in its network
architecture. This enables impressive performance with fewer
parameters than WAWEnet7, and the NISQA-DIM network
itself performs fewerMACs thanWAWEnet7. Note, however,
that computation of the input log-mel-spectrograms required
by NISQA-DIM is not included in this computational
complexity measurement.

TorchAudio-Squim performed reasonably well when esti-
matingWB-PESQ and STOI on the unseen portion of the ITS
dataset, especially in consideration of the comparably narrow
scope of its training data. We also used TorchAudio-Squim
to estimate the MOS values on the test portion of the IUB
dataset and on the test portion of the TUB dataset with the
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50/40/10 split. Per-segment correlations were 0.417 and
0.197, respectively, and normalized RMSE values were
28.0% and 37.5%. The low correlation and high RMSE indi-
cate poor agreement with MOS values for these two datasets.
These results demonstrate that care must be taken even when
using large and thoroughly trained models to evaluate data
that may be dissimilar to the model’s training data.

These comparisons demonstrate that WAWEnets provide
a viable and competitive approach to predicting speech
qualities while maintaining accuracy and ease of training.
We have shown that training on relatively small datasets
produces good results. WAWEnets’ small computation and
storage footprint minimizes their power consumption and
facilitates their use in a wide range of applications. Further,
the homogeneous and hierarchical structure of WAWEnets
makes them amenable to some level of interpretability. In the
next section we use the language of signal processing to
describe the internal operation of WAWEnets.

VII. SIGNAL PROCESSING INTERPRETATION
We have established that the WAWEnet architecture offers
an efficient and effective tool for evaluating wideband
speech waveforms. It does this by mapping a wideband
speech waveform to a 96-dimensional vector in a latent
space. Different projections in that space produce scalar
values that can track different objective or subjective values
related to speech quality or intelligibility. We also seek
to understand, to the extent possible, how the WAWEnet
architecture maps waveforms to this space. As is often the
case with algorithms developed through machine learning,
a fully satisfying interpretation is elusive. But we can describe
the signal processing that a WAWEnet applies and give a
high-level description of how this signal processing converts
a waveform into an evaluation of that waveform.

A. FUNCTIONS
To map waveforms to the latent space a WAWEnet uses
13 sections and each section consists of four layers.
In the language of ML, these four layers are convolution,
batch normalization, ReLU, and average pooling. Table 11
shows how the four layers map to six signal-processing
(SP) functions. Linear time-invariant (LTI) systems are
often relatively amenable to analysis. Table 11 shows that
WAWEnets are linear except for the bias and half-wave
rectification (HWR). Of course these non-linear functions
are what enable WAWEnets (and many other ML based
algorithms) to accomplish the assigned tasks and also prevent
the network from simplifying into a trivial and ineffective
one. Time-invariance is satisfied by all functions except the
sub-sampling (which shows time-invariance only for time
shifts that are integral multiples of the output sampling
period).
S1 has one input channel and 96 output channels. S1 begins

by splitting the input audio signal into 96 identical copies
which then feed into the 96 channels. These 96 channels are
processed in parallel and independent of each other. Each

TABLE 11. WAWEnet ML layers expanded into signal processing
functions.

channel starts with FIR (finite impulse response) filtering,
followed by the application of gain and bias, then HWR, and
finally a low-pass FIR filter and sub-sampling with a factor
of four.
S2 through S13 have 96 input channels and 96 output

channels. The filtering layer of these sections can be
described as a full matrix of filtering. That is, 962 =

9216 filters are used to produce 96 filtered versions of each
input channel. Then each of the 96 output channels is formed
by summing one filtered version of each input channel (96
signals in each sum). The remaining layers of S2 through S13
are the same as those in S1, although the sub-sampling may
use a factor of two, three, or four. In each of these layers the
96 channels are processed in parallel and independent of each
other. S6 and S9 start with zero padding (appending one zero
at the end of the signal) to allow sub-sampling by a factor of
two at the end of the section.

B. PER-FUNCTION OPERATION
A time-domain description of the operations says that
WAWEnets replace samples with weighted local averages
(convolutions), add up signals from 96 different channels,
scale and shift all samples in a channel uniformly (batch
normalization), replace negative samples with zero (HWR),
and replace blocks of samples with their average value
(average pooling). A frequency-domain description provides
more insight, so we next describe how these functions change
the spectra of the signals as they move through the network.
We describe separately changes to the DC component of the
signal spectra and changes to the other components. This
distinction is key to the description of the overall operation
that follows.

The second-order FIR filters have three unconstrained real
coefficients, resulting in either a pair of complex-conjugate
zeros, or two zeros on the real line. The result is gentle
spectral peaks and gentle or deep spectral nulls, depending
on the location of the zeros relative to the unit circle.
Forty percent of these filters are lowpass, 29% highpass,
19% bandstop, and 12% bandpass. These proportions change
by less than 1% between WAWEnet7, WAWEnet11, and
WAWEnetS1. This commonality is consistent with the fact
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FIGURE 5. Top panel shows spectra of two tones (345 Hz, shown in light
blue, and 6789 Hz, shown in gold), middle panel shows the result of
half-wave rectification with zero bias, bottom panel shows the additional
effect of average pooling (pooling factor is 2). Colors emphasize
non-linearity: light blue shows spectral components that are produced by
the 345 Hz tone alone, gold shows components produced by the 6789 Hz
tone alone, blue shows components that only appear when both tones
are present. A significant DC component will be produced in any of these
three cases, and it is shown in black.

that both WAWEnet11 and WAWEnetS1 use the weights from
WAWEnet7 as their initial state during the training process.
The gain function simply scales all values of the spectrum

(DC and non-DC) by a single value. The bias function
adjusts only the DC value of the spectrum and leaves the
rest unchanged. The effect of HWR is controlled by the bias.
If the bias forces all samples to be negative, HWR removes
the signal. If the bias forces all samples to be positive, HWR
does nothing. If the bias is such that the signal is bipolar, the
most common and prominent spectral effect is the creation of
new spectral components, thus increasing the spectral density.
An example is given in the middle panel of Fig. 5. The effect
of HWR on the DC value of the signal depends strongly on
the signal.

The FIR filtering that precedes the subsampling is length
m with all coefficients equal to m−1 (m = 2, 3, or 4).
These are low-pass filters and each one has a perfect null
at any frequency that would alias to DC so the subsequent
subsampling cannot change the DC value of the spectrum.
(This is consistent with the fact that averaging cannot change
the DC value of a signal.) The subsampling will remove all
spectral content above the new Nyquist frequency and can
produce aliasing at any non-DC frequency below the new
Nyquist frequency. The aliasing is significant because these
FIR low-pass filters are very short and have responses that
are far from the near brick-wall responses needed to achieve
alias-free sub-sampling. For example, when m = 2 spectral
components just above the newNyquist frequency are aliased
to those just below the new Nyquist frequency with only
3 dB of attenuation. Aliasing involves addition of complex
values, so aliasing may reduce or increase the original
spectral magnitudes depending on the relative phases of

the two addends. The bottom panel of Fig. 5 shows an
example.

Note that in conventional sample rate reduction, a filter
calculates one output sample for each input sample, then
subsampling retains every mth sample. The avgpool function
integrates filtering and subsampling so that only every mth

sample is calculated. Because the filtering is FIR and the filter
length matches the downsampling factor, this unconventional
approach produces the same results as the conventional
approach.

C. OVERALL OPERATION
We can view the end-to-end mapping from audio signals to
the 96-D latent space as 96 individual (but coupled) signal
processors. The job of these processors is to shorten the
signals and to strategically shape and move relevant spectral
information to DC. In S13 the length-3 filtering and 3-to-1
sub-sampling (the avgpool layer) serve to extract the DC
value of a signal that has 3 samples. The ensemble of
the 96 DC values defines a vector in the latent space and this
vector is then mapped to a final output value by S14.
The particulars of shaping spectral information andmoving

it to DC are shown graphically for one section in Fig. 6.
In each section, non-DC spectral values of the signals are
modified by FIR filtering, gain, HWR, the pooling FIR filter,
and sub-sampling. The DC spectral values of the signals are
modified by just four of the six functions. In the FIR filtering,
gain, and bias functions, the modification of the DC value is
determined solely by the processor. These modifications are
independent of the signal itself. But in the HWR function the
modification of the DC spectral component is driven by the
non-DC spectral components. The HWR is the stage where
relevant non-DC spectral information is strategically moved
to DC.

For example, consider a speech signal and noise signal
each with a DC value of zero. When added, the noisy speech
signal still has aDC value of zero. But after HWR, the original
and noisy speech signal can have very different DC values,
and these DC values can thus serve to indicate that noise was
present in the speech signal. This is a very simple example,
and by using many sections of intricate spectral shaping and
folding, this processor can also accurately assess a broad
array of much more nuanced perturbations to speech signals.

Fig. 6 emphasizes the fact that every function modifies
either the DC component or the non-DC component, or both,
and that the HWR is the sole function where non-DC
information influences the DC value. The input audio signal
will typically have a DC value near zero, but, as the
processing continues, the spectral shaping and the flow of
information to DC at HWRs results in DC values that describe
important characteristics of the original audio signal.

Fig. 7 gives a visual example of DC values in the first
13 sections of WAWEnetS1 (1 input signal plus the outputs
of 6 SP functions× 13 sections gives 79 rows) for each of the
96 channels. Input speech is shown at the top of the figure and
DC values there are all zero, as expected. As signals move
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FIGURE 6. In each section, four of the six functions change DC
component and five of the six change non-DC components. Non-DC
components affect the DC component only in the half-wave rectification
function. Sections sequentially move non-DC information to DC.

FIGURE 7. Example DC values (dark purple for large negative, bright
yellow for large positive) in the first 13 sections (shown as labeled
macro-rows) and all 96 channels (shown as columns) of WAWEnetS1.The
six rows within each section show the DC output value of six signal
processing functions (FIR, gain, bias, HWR, FIR, sub-sampling, in that
order) in that section. The DC value of the input signal is replicated
96 times above S1.

through the network (down the figure) DC values build in
various channels for part or all of a section. No continuous
downward ‘‘flow’’ of DC appears because channels are fully
connected with each other in every section and channel
numbers are arbitrary. The most dramatic distribution of DC
values is in the second half of the network (lower half of
the figure), and this distribution then moderates to form the
output.

In effect, the wideband input speech signal passes through
96 parallel coupled signal processors (composed of S1–S13)

FIGURE 8. 96 outputs of S13 for 30 conditions. From left to right, six
increasing bit-rates for each of four codecs, then three noise suppression
thresholds for each of two SNRs. Example observations: channel
32 responds strongly to WB vs NB and also to noise suppression
thresholds; channel 17 responds to codec bit-rates and to noise levels.

and the 96 DC values of the 96 output signals form a
vector that is then mapped by S14 to an estimate of some
quality of that speech signal. Fig. 8 shows examples of these
96-D WAWEnet7 outputs for 30 different conditions (1,320
segments averaged for each condition). These examples show
how different dimensions respond to different attributes while
they work together to produce an estimate of speech quality
or intelligibility.

VIII. CONCLUSION
WAWEnets are no-reference wideband audio waveform
evaluation networks that process waveforms directly into
evaluations of those waveforms. We have trained and
evaluated multiple WAWEnets, and this work is based on
334 hours of speech in 13 different languages produced by
more than 1000 different talkers. We have demonstrated that
WAWEnet7 can produce speech quality and intelligibility
estimates that agree (correlations of 0.92 to 0.96) with values
from seven established FR objective estimators. WAWEnet11
demonstrates that this architecture is useful for estimating
both objective and subjective speech qualities at the same
time. WAWEnetS1 agrees with the subjective MOS values
of the IUB dataset with per-segment correlation 0.973,
improving upon top results from other current approaches.
These three sets of results show that WAWEnets can provide
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useful estimations of audio qualities when trained on either
large or small datasets that contain either real or simulated
speech impairments.

The number of parameters in WAWEnet7 is only 0.4%
of the number in wav2vec and 4.5% of the number in
TorchAudio-Squim. And the operations required to run
WAWEnet7 are 3.3% of those required for wav2vec and
2.7% of those required for TorchAudio-Squim. This makes
WAWEnet7 quite lightweight and energy-efficient relative
to those two alternatives. In these respects, WAWEnet7 is
comparable to NISQA-DIM. In addition, our experiments
found WAWEnet7 and NISQA-DIM had matched corre-
lations, and WAWEnet7 had slightly lower RMSE than
NISQA-DIM. This demonstrates that allowing CNNs to learn
to extract the needed information directly from waveforms
(as in WAWEnets) is a perfectly viable alternative to using
hand-crafted features as network inputs (as in NISQA-
DIM). We expect that WAWEnet7 will generate accurate
predictions of speech qualities for applications where speech
impairments resemble those represented in our wide-ranging
training dataset. In addition, we expect they would be useful
for narrower applications (for example, measuring reverb
present in a room) if trained to do so.

WAWEnets’ small size make them approachable for
applications where computing power is at a premium.
This fact, combined with the fact that they work directly
on waveforms, means WAWEnets are uniquely suited for
endpoint monitoring. This monitoring could be logged along
with other relevant information to support retrospective
diagnostics, address questions of compliance with service
level agreements, or to enable studies of which configurations
or conditions create changes that would be audible to users at
the endpoint and which would be transparent. Results could
also be passed back upstream to inform network elements
of user experience so they could adapt as needed. And
WAWEnets can also be used offline to efficiently analyze
large batches of recorded speech files.

WAWEnets are distinct from the vast majority of alterna-
tives because they apply ML directly to speech waveforms
instead of applying it to features extracted from speech wave-
forms. This gives WAWEnets access to all the information in
the waveforms and allows them to, in effect, generate the best
features for the task internally, rather than having potentially
sub-optimal features mandated externally. Our work shows
that this is indeed a viable approach.

At present, WAWEnets operate only on 3-second segments
of speech sampled at 16,000 samples/second. We have
proposed (see Section VI) several strategies to extend
WAWEnets to wider bandwidths and longer signals as labeled
data becomes available.

WAWEnets are composed of six common signal pro-
cessing functions and, as expected, the non-linear functions
(bias and HWR) are critical. These functions move spectral
information (shaped by FIR filtering and gains) to DC so that
the DC values of the final, very short signals provide a 96-D
description of the original, much longer signals.

We encourage further experimentation and development
with WAWEnets, especially in the case that impairments
in your dataset differ significantly from impairments in our
dataset. To that end, please visit the software repository
at https://github.com/NTIA/WEnets where we provide the
weights derived in this work and code suitable for training
WAWEnets on your dataset.
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