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George Hu�ord*

In this report I have attempted to write down the algorithm of the ITM (the Irregular
Terrain Model) as it is currently implemented. There are probably, however, some features
of the model that are not documented here. I hope they are not many, and that one need
not refer too often to the original Fortran source code.

The purpose of the model is to estimate some of the characteristics of a received signal
level for a radio link. This usually means cumulative distributions for what really appears
to be a random phenomenon.

The original model was developed in the late 1960's when land mobile radio and television
broadcasting were important systems that required better engineering. Perhaps that ex-
plains the emphasis on low and hidden antennas and on the long-distance �elds that might
cause interference.
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1. Input.

We picture a radio link located in some region on the earth. Then the input needed by
the model is a proper description of that link. The two modes of the model|the area

prediction mode and the point-to-point mode|are distinguished mostly by the amount of
input data required. The point-to-point mode must provide details of the terrain pro�le
of the link that the area prediction mode will estimate using empirical medians. Since in
other respects the two modes follow very similar paths we shall try here to treat both in
parallel.

The two terminals of the link we denote as terminals 1 and 2, leaving it to the user to
identify which is transmitter and which receiver.

We try always to use consistent units and we think the user can modify our statements
to �t any desired basic units. For ourselves, we prefer SI units and express lengths (and
distances) in meters. Exceptions to the rule of consistent units might include our mea-
sure of atmospheric refractivity (N-units or parts per million) and our measure of losses,
attenuations, gains, etc. (in decibels).

1.1. General input for both modes of usage.
d Distance between the two terminals.

hg1, hg2 Antenna structural heights.

k Wave number, measured in units of reciprocal lengths;
see Note 1.

�h Terrain irregularity parameter.

Ns Minimum monthly mean surface refractivity, measured
in N-units; see Note 2.


e The earth's e�ective curvature, measured in units of
reciprocal length; see Note 3.

Zg Surface transfer impedance of the ground|a complex,
dimensionless number; see Note 4.

radio climate Expressed qualitatively as one of a number of discrete
climate types.

2



Note 1. The wave number is that of the carrier or central frequency. It is de�ned to be

k = 2�=� = f=f0 with f0 = 47:70 MHz �m (1:1)

where � is the wave length, f the frequency. (Here and elsewhere we have assumed the
speed of light in air is 299.7 m/�s.)

Note 2. To simplify its representation, the surface refractivity is sometimes given in terms
of N0, the surface refractivity \reduced to sea level." When this is the situation, one must
know the general elevation zs of the region involved, and then

Ns = N0e
�zs=z1 with z1 = 9:46 km: (1:2)

Note 3. The earth's e�ective curvature is the reciprocal of the earth's e�ective radius and
may be expressed as


e = 
a=K

where 
a is the earth's actual curvature and K is the \e�ective earth radius factor." The
value is normally determined from the surface refractivity using the empirical formula


e = 
a(1� 0:04665 eNs=N1) (1:3)

where
N1 = 179:3 N-units, and 
a = 157 � 10�9 m�1 = 157 N-units/km:

Note 4. The \surface transfer impedance" is normally de�ned in terms of the relative
permittivity �r and conductivity � of the ground, and the polarization of the radio waves
involved. In these terms, we have

Zg =

�pa
�0r � 1 horizontal polarizationpa
�0r � 1=�0r vertical polarization

(1:4)

where �0r is the \complex relative permittivity" de�ned by

�0r = �r + iZ0�=k; Z0 = 376:62 ohm: (1:5)

The conductivity � is normally expressed in siemens (reciprocal ohms) per meter.

1.2. Additional input for the area prediction mode.
siting criteria Criteria describing the care taken at each terminal to

assure good radio propagation conditions. This is
expressed qualitatively in three steps: at random,
with care, and with great care.
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1.3. Additional input for the point-to-point mode.
he1, he2 Antenna e�ective heights.

dL1, dL2 Distances from each terminal to its radio horizon.

�e1, �e2 Elevation angles of the horizons from each terminal at
the height of the antennas. These are measured in
radians.

These quantities, together with �h, are all geometric and should be determined from the
terrain pro�le that lies between the two terminals. We shall not go into detail here.

The \e�ective height" of an antenna is its height above an \e�ective re
ecting plane" or
above the \intermediate foreground" between the antenna and its horizon. A di�culty
with the model is that there is no explicit de�nition of this quantity, and the accuracy of
the model sometimes depends on the skill of the user in estimating values for these e�ective
heights.

In the case of a line-of-sight path there are no horizons, but the model still requires values
for dLj , �ej , j = 1; 2. They should be determined from the formulas used in the area
prediction mode and listed in Section 3 below. Now it may happen that after these
computations one discovers d > dL = dL1 + dL2, implying that the path is a beyond-
horizon one. Noting that dL is a monotone increasing function of the hej we can assume
these latter have been underestimated and that they should be increased by a common
factor until dL = d.

2. Output.

The output from the model may take on one of several forms at the user's option. Simplest
of these forms is just the reference attenuation Aref . This is themedian attenuation relative
to a free space signal that should be observed on the set of all similar paths during times
when the atmospheric conditions correspond to a standard, well-mixed, atmosphere.

The second form of output provides the two- or three-dimensional cumulative distribution
of attenuation in which time, location, and situation variability are all accounted for. This
is done by giving the quantile A(qT ; qL; qS), the attenuation that will not be exceeded
as a function of the fractions of time, locations, and situations. One says In qS of the
situations there will be at least qL of the locations where the attenuation does not exceed
A(qT ; qL; qS) for at least qT of the time.

When the point-to-point mode is used on particular, well-de�ned paths with de�nitely �xed
terminals, there is no location variability, and one must use a two-dimensional description
of cumulative distributions. One can now say With probability (or con�dence) qS the
attenuation will not exceed A(qT ; qS) for at least qT of the time. The same e�ect can be
achieved by setting qL = 0:5 in the three-dimensional formulation.

On some occassions it will be desireable to go beyond the three-dimensional quantiles and
to treat directly the underlying model of variability. For example, consider the case of a
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communications link that is to be used once and once only. For such a \one-shot" system
one is interested only in what probability or con�dence an adequate signal is received that
once. The three-dimensional distributions used above must now be combined into one.

3. Preparatory Calculations.

We start with some preliminary calculations of a geometric nature.

3.1. Preparatory calculations for the area prediction mode.

The parameters hej , dLj , �ej , j = 1; 2, which are part of the input in the point-to-point
mode are, in the area prediction mode, estimated using empirical formulas in which �h
plays an important role.

First, consider the e�ective heights. This is where the siting criteria are used. We have

hej = hgj if terminal j is sited at random: (3:1)

Otherwise, let

Bj =

�
5 m if terminal j is sited with care
10 m if terminal j is sited with great care.

Then

B0

j = (Bj �H1) sin
��
a

2
min(hg1=H2; 1)

�
+H1 with H1 = 1 m; H2 = 5 m;

and
hej = hgj +B0

je
�2hgj=�h: (3:2)

The remaining parameters are quickly determined.

dLsj =
pa
2hej=
e

dLj = dLsj exp
�
�0:07

pa
�h=max(hej ;H3)

�
with H3 = 5 m; (3:3)

and �nally,
�ej = [0:65�h(dLsj=dLj � 1) � 2hej]=dLsj : (3:4)

3.2. Preparatory calculations for both modes.

dLsj =
pa
2hej=
e; j = 1; 2 (3:5)

dLs = dLs1 + dLs2 (3:6)

dL = dL1 + dL2 (3:7)

�e = max(�e1 + �e2;�dL
e): (3:8)

We also note here the de�nitions of two functions of a distance s:

�h(s) = (1� 0:8 e�s=D)�h with D = 50 km; (3:9)

and
�h(s) = 0:78�h(s) exp

�
�(�h(s)=H)1=4

�
with H = 16 m: (3:10)
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4. The Reference Attenuation.

The reference attenuation is determined as a function of the distance d from the piecewise
formula

Aref =

8<
:
max

�
0; Ael +K1d+K2 ln(d=dLs)

�
d � dLs

Aed +mdd dLs � d � dx
Aes +msd dx � d

(4:1)

where the coe�cients Ael, K1, K2, Aed, md, Aes, ms, and the distance dx are calculated
using the algorithms below. The three intervals de�ned here are called the line-of-sight,
di�raction, and scatter regions, respectively. The function in (4.1) is continuous so that at
the two endpoints where d = dLs or dx the two formulas give the same results. It follows
that instead of seven independent coe�cients there are really only �ve.

4.1. Coe�cients for the di�raction range.

Set

Xae = (k
2e )
�1=3 (4:2)

d3 = max(dLs; dL + 1:3787Xae) (4:3)

d4 = d3 + 2:7574Xae (4:4)

A3 = Adi�(d3) (4:5)

A4 = Adi� (d4) (4:6)

where Adi� is the function de�ned below. The formula for Aref in the di�raction range
is then just the linear function having the values A3 and A4 at the distances d3 and d4,
respectively. Thus

md = (A4 �A3)=(d4 � d3) (4:7)

Aed = A3 �mdd3: (4:8)

4.1.1. The function Adi�(s).

We �rst de�ne the weighting factor

w =
1
a

1 + 0:1
pa
Q

(4:9)

with

Q = min
� k
a

2�
�h(s); 1000)

�
he1he2 + C
a

hg1hg2 +C

�1=2

+
dL + �e=
e
a

s

and

C =

�
0 in the area prediction mode
10 m2 in the point-to-point mode

and where �h(s) is the function de�ned in (3.9) above. Next we de�ne a \clutter factor"

Afo = min
�
15; 5 log

�
1 + �khg1hg2�h(dLs)

��
with � = 4:77 � 10�4 m�2 (4:10)
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and with �h(s) de�ned in (3.10) above.

Then
Adi� (s) = (1 �w)Ak +wAr +Afo (4:11)

where the \double knife edge attenuation" Ak and the \rounded earth attenuation" Ar

are yet to be de�ned. Set
� = �e + s
e (4:12)

vj =
�
a

2

�
k
a

�

dLj(s � dL)
a

s� dL + dLj

�1=2

; j = 1; 2 (4:13)

and then
Ak = Fn(v1) + Fn(v2) (4:14)

where Fn(v) is the Fresnel integral de�ned below.

For the rounded earth attenuation we use a \three radii" method applied to Vogler's
formulation of the solution to the smooth, spherical earth problem. We set


0 = �=(s � dL) 
j = 2hej=d
2
Lj ; j = 1; 2 (4:15)

�j = (k=
j)
1=3; j = 0; 1; 2 (4:16)

Kj =
1
a

i�jZg
; j = 0; 1; 2: (4:17)

Note that the Kj are complex numbers. To continue, we set

xj = AB(Kj )�j
jdLj ; j = 1:2 (4:18)

x0 = AB(K0)�0� + x1 + x2 (4:19)

and then
Ar = G(x0)� F (x1;K1)� F (x2;K2)� C1(K0) (4:20)

where A = 151:03 is a dimensionless constant and the functions B(K), G(x), F (x;K), and
C1(K) are those de�ned by Vogler.

In (4.14) and (4.20) we have �nished the de�nition of Adi� . We should like, however,
to complete the subject by de�ning more precisely the more or less standard functions
mentioned above. The Fresnel integral, for example, may be written as

Fn(v) = 20 log

���� 1
apa
2i

Z
1

v

ei�u
2=2du

����: (4:21)

For Vogler's formulation to the solution to the spherical earth problem, we �rst introduce
the special Airy function

Wi(z) =Ai(z) + iBi(z)

=2Ai(e2�i=3z)
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where Ai(z) and Bi(z) are the two standard Airy functions de�ned in many texts. They
are analytic in the entire complex plane and are particular solutions to the di�erential
equation

w00(z) � zw(z) = 0:

First, to de�ne the function B(K) we �nd the smallest solution to the modal equation

Wi(t0) = 21=3KWi0(t0)

and then

B = 2�1=3Imft0g: (4:22)

Finally, we also have

G(x) = 20 log(x�1=2ex=A) (4:23)

F (x;K) = 20 log
��(�=(21=3AB))1=2Wi

�
t0 � (x=(21=3AB))2

��� (4:24)

C1(K) = 20 log
��1
a

2
(�=(21=3AB))1=2(22=3K2t0 � 1)Wi0(t0)

2
�� (4:25)

where A is again the constant de�ned above.

It is of interest to note that for large x we �nd F (x;K) � G(x), and that for those values
of K in which we are interested it is a good approximation to say C1(K) = 20 dB.

4.2. Coe�cients for the line-of-sight range.

We begin by setting

d2 =dLs (4:26)

A2 =Aed +mdd2: (4:27)

Then there are two general cases. First, if Aed � 0

d0 =min
�1
a

2
dL; 1:908 khe1he2

�
(4:28)

d1 =
3
a

4
d0 +

1
a

4
dL (4:29)

A0 =Alos(d0) (4:30)

A1 =Alos(d1) (4:31)

where the function Alos(s) is de�ned below. The idea, now, is to devise a curve of the form

Ael +K1d+K2 ln(d=dLs)
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that passes through the three values A0, A1, A2 at d0, d1, d2, respectively,. In doing this,
however, we require K1; K2 � 0, and sometimes this forces us to abandon one or both of
the values A0, A1. We �rst de�ne

K 0

2 =max

�
0;
(d2 � d0)(A1 �A0)� (d1 � d0)(A2 �A0)
a

(d2 � d0) ln(d1=d0)� (d1 � d0) ln(d2=d0)

�
(4:32)

K 0

1 =
�
A2 �A0 �K 0

2 ln(d2=d0)
�
=(d2 � d0) (4:33)

which, except for the possibility that the �rst calculation for K 0

2 results in a negative value,
is simply the straightforward solution for the two corresponding coe�cients. If K 0

1 � 0 we
then have

K1 = K 0

1; K2 = K 0

2: (4:34)

If, however, K 0

1 < 0, we de�ne

K 00

2 = (A2 �A0)= ln(d2=d0); (4:35)

and if now K 00

2 � 0 then

K1 = 0; K2 = K 00

2 : (4:36)

Otherwise, we abandon both A0 and A1 and set

K1 =md; K2 = 0: (4:37)

In the second general case we have Aed < 0. We then set

d0 =1:908 khe1he2 (4:38)

d1 =max(�Aed=md; dL=4): (4:39)

If d0 < d1 we again evaluate A0, A1, and K
0

2 as before. If K
0

2 > 0 we also evaluate K 0

1 and
proceed exactly as before. If, however, we have either d0 � d1 or K 0

2 = 0, we evaluate A1

and de�ne

K 00

1 = (A2 �A1)=(d2 � d1): (4:40)

If now K 00

1 > 0 we set

K1 = K 00

1 ; K2 = 0; (4:41)

and otherwise we use (4.37).

At this point we will have de�ned the coe�cients K1 and K2. We �nally set

Ael = A2 �K1d2: (4:42)
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4.2.1. The function Alos(s)

First we de�ne the weighting factor

w = 1=
�
1 +D1k�h=max(D2; dLs)

�
with D1 = 47:7 m; D2 = 10 km: (4:43)

Then

Alos = (1� w)Ad + wAt (4:44)

where the \extended di�raction attenuation" Ad and the \two-ray attenuation" At are yet
to be de�ned.

First, the extended di�raction attenuation is given very simply by

Ad = Aed +mds: (4:45)

For the two-ray attenuation, we set

sin =
he1 + he2
apa
s2 + (he1 + he2)2

(4:46)

and

R0e =
sin � Zg
a

sin + Zg
exp[�k�h(s) sin ] (4:47)

where �h(s) is the function de�ned in (3.10) above. Note that R0e is complex since it uses
the complex surface transfer impedance Zg. Then

Re =

�
R0e if jR0ej � max(1=2;

pa
sin )

(R0e=jR0ej)
pa
sin otherwise

(4:48)

We also set

�0 = 2khe1he2=s (4:49)

and

� =

�
�0 if �0 � �=2
� � (�=2)2=�0 otherwise

(4:50)

Then �nally

At = �20 log j1 +Ree
i�j: (4:51)
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4.3. Coe�cients for the scatter range.

Set

d5 =dL +Ds (4:52)

d6 =d5 +Ds with Ds = 200 km: (4:53)

Then de�ne

A5 =Ascat(d5) (4:54)

A6 =Ascat(d6); (4:55)

where Ascat(s) is de�ned below. There are, however, some sets of parameters for which
Ascat is not de�ned, and it may happen that either or both A5, A6 is unde�ned. If this is
so, one merely sets

dx = +1 (4:56)

and one can let Aes, ms remain unde�ned. In the more normal situation one has

ms =(A6 �A5)=Ds (4:57)

dx =max
�
dLs; dL +Xae log(kHs); (A5 �Aed �msd5)=(md �ms)

�
(4:58)

Aes =Aed + (md �ms)dx (4:59)

where Ds is the distance given above, where Xae has been de�ned in (4.2), and where
Hs = 47:7 m.

4.3.1. The function Ascat.

Computation of this function uses an abbreviated version of the methods described in
Section 9 and Annex III.5 of NBS TN101. First, set

� =�e + 
es (4:60)

�0 =�e1 + �e2 + 
es (4:61)

rj =2 k�
0hej; j = 1; 2: (4:62)

If both r1 and r2 are less than 0.2 the functionAscat is not de�ned (or is in�nite). Otherwise
we put

Ascat(s) = 10 log(kH�4) + F (�s; Ns) +H0 (4:63)

where F (�s;Ns) is the function shown in Figure 9.1 of TN101, H0 is the \frequency gain
function", and H = 47:7 m.

The frequency gain function H0 is a function of r1, r2, the scatter e�ciency factor �s,
and the \asymmetry factor" which we shall here call ss. A di�culty with the present
model is that there is not su�cient geometric data in the input variables to determine
where the crossover point is. This is resolved by assuming it to be midway between the
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two horizons. The asymmetry factor, for example, is found by �rst de�ning the distance
between horizons

ds = s� dL1 � dL2 (4:64)

whereupon

ss =
dL2 + ds=2
a

dL1 + ds=2
: (4:65)

There then follows that the height of the crossover point is

z0 =
ssd�

0

a

(1 + ss)2
(4:66)

and then

�s =
z0
a

Z0

�
1 + (0:031�Ns2:32 � 10�3 +N2

s 5:67 � 10�6)e�(z0=Z1)
6�

(4:67)

where
Z0 = 1:756 km Z1 = 8:0 km

The computation of H0 then proceeds according to the rules in Section 9.3 and Figure 9.3
of TN101.

The model requires these results at the two distances s = d5, d6, described above. One
further precaution is taken to prevent anomalous results. If, at d5, calculations show that
H0 will exceed 15 dB, they are replaced by the value it has at d6. This helps keep the
scatter-mode slope within reasonable bounds.

5. Variability|the quantiles of attenuation.

We want now to compute the quantiles A(qT ; qL; qS) where qT , qL, qS , are the desired
fractions of time, locations, and situations, respectively. In the point-to-point mode, we
would want a two-fold quantile A(qT ; qS), but in the present model this is done simply by
computing the three-fold quantile with qL equal to 0.5.

Because the distributions involved are all normal, or nearly normal, it simpli�es the calcu-
lations to rescale the desired fractions and to express them in terms of \standard normal
deviates." We use the complementary normal distribution

Q(z) =
1
apa
2�

Z
1

z

e�t
2=2dt

and then the deviate is simply the inverse function

z(q) = Q�1(q):

Thus if the random variable x is normally distributed with meanX0 and standard deviation
�, its quantiles are given by

X(q) = X0 + �z(q):
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Setting
zT = z(qT ); zL = z(qL); zS = z(qS );

we now ask for the quantiles A(zT ; zL; zS). In these rescaled variables, it is as though all
probabilities are to be plotted on normal probability paper. In the case of the point-to-
point mode we will simply suppose zL = 0.

First we de�ne
A0 = Aref � Vmed � YT � YL � YS (5:1)

where Aref is the reference attenuation de�ned in Section 4, and where the adjustment Vmed

and the deviations YT , YL, YS , are de�ned below. The values of YT and YL depend on the
single variables zT and zL, respectively. The value of YS , on the other hand, depends on
all three standard normal deviates.

The �nal quantile is a modi�cation of A0 given by

A(zT ; zL; zS) =

(
A0 if A0 � 0

A0
29�A0
a

29� 10A0
otherwise.

(5:2)

An important quantity used below is the \e�ective distance." We set

dex =
pa
2a1he1 +

pa
2a1he2 + a1(kD1)

�1=3 (5:3)

with
a1 = 9000 km; D1 = 1266 km:

Then the e�ective distance is given by

de =

�
D0d=dex for d � dex
D0 + d� dex for d � dex

(5:4)

with D0 = 130 km.

5.1. Time variability.

Quantiles of time variability are computed using a variation of the methods described in
Section 10 and Annex III.7 of NBS TN101, and also in CCIR Report 238-3. Those methods
speak of eight or nine discrete radio climates, of which seven have been documented with
corresponding empirical curves. It is these empirical curves to which we refer below. They
are all curves of quantiles of deviations versus the e�ective distance de.

The adjustment from the reference attenuation to the all-year median is

Vmed = Vmed(de; clim) (5:5)

where the function is described in Figure 10.13 of TN101.
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The deviation YT is piecewise linear in zT ; and may be written in the form

YT =

8<
:
�T�zT zT � 0
�T+zT 0 � zT � zD
�T+zD + �TD(zT � zD) zD � zT

(5:6)

The slopes (or \pseudo-standard deviations")

�T� =�T�(de; clim)

�T+ =�T+(de; clim)
(5:7)

are obtained from TN101 in the following way. For �T� we use the .90 quantile and divide
the corresponding ordinates by z(:90) = �1:282. For �T+ we use the .10 quantile and
divide by z(:10) = 1:282.

The remaining constants in (5.6) pertain to the \ducting," or low probability, case. We
write

zD = zD(clim); �TD = CD(clim)�T+ (5:8)

where values of zD and CD are given in Table 5.1. In that table we have also listed values
of qD = Q(zD).

Table 5.1. Ducting (low probability) constants
a

a Climate a qD a zD a CD a
a

a Equatorial a .10 a 1.282 a 1.224 a
a

a Continental Subtropical a �.015 a 2.161 a .801 a
a

a Maritime Subtropical a .10 a 1.282 a 1.380 a
a

a Desert a 0 a 1 a � a
a

a Continental Temperate a .10 a 1.282 a 1.224 a
a

a Maritime Temperate Overland a .10 a 1.282 a 1.518 a
a

a Maritime Temperate Oversea a .10 a 1.282 a 1.518 a
a

5.2. Location variability.

We set

YL = �LzL (5:9)

where

�L = 10k�h(d)=(k�h(d) + 13)

and �h(s) is de�ned in (3.9) above.
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5.3. Situation variability.

Set
�S = 5 + 3e�de=D (5:10)

where D = 100 km. Then

YS =

�
�2S +

Y 2
T
a

7:8 + z2S
+

Y 2
L
a

24 + z2S

�1=2

zS (5:11)

This latter is intended to reveal how the uncertainties become greater in the wings of the
distributions.

6. Addenda|numerical approximations.

Part of the algorithm for the ITM consists in approximations for the standard functions
that have been used. In these approximations, computational simplicity has often taken
greater priority than accuracy.

The Fresnel integral is used in x4.1.1 and is de�ned in (4.21). We have (for v > 0)

Fn(v) �
�
6:02 + 9:11v � 1:27v2 if v � 2:40
12:953 + 20 log v otherwise

(6:1)

The functions B(K), G(x), F (x;K), C1(K), which are used in di�raction around a smooth
earth, are also used in x4.1.1 and are de�ned in (4.22){(4.25). We have

B(K) �1:607� jKj (6:2)

G(x) =:05751x� 10 log x (6:3)

F (x;K) �
8<
:
F2(x;K) if 0 < x � 200
G(x) + 0:0134xe�x=200(F1(x) �G(x)) if 200 < x < 2000
G(x) if 2000 � x

(6:4)

where
F1(x) = 40 log(max(x; 1)) � 117 (6:5)

F2(x;K) =

�
F1(x) if jKj < 10�5 or x(� log jKj)3 > 450
2:5 � 10�5x2=jKj+ 20 log jKj � 15 otherwise

(6:6)

The �nal approximation here is
C1(K) � 20 (6:7)

To complete this section we have the two functions, F (�d) and H0, used for tropospheric
scatter. First,

F (D;Ns) = F0(D) � 0:1(Ns � 301)e�D=D0 (6:8)

where
D0 = 40 km
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and (when D is given in meters)

F0(D) =

8<
:
133:4 + 0:332 � 10�3D � 10 logD for 0 < D � 10 km
104:6 + 0:212 � 10�3D � 2:5 logD for 10 < D � 70 km
71:8 + 0:157 � 10�3D + 5 logD otherwise

(6:9)

The frequency gain function may be written as

H0 = H00(r1; r2; �s) + �H0 (6:10)

where
�H0 = 6(0:6� log �s) log ss log r2=ssr1 (6:11)

and where H00 is obtained by linear interpolation between its values when �s is an integer.
For �s = 1; : : : ; 5 we set

H00(r1; r2; j) =
1
a

2
[H01(r1; j) +H01(r2; j)] (6:12)

with

H01(r; j) =

8>>><
>>>:

10 log(1 + 24r�2 + 25r�4) j = 1
10 log(1 + 45r�2 + 80r�4) j = 2
10 log(1 + 68r�2 + 177r�4) j = 3
10 log(1 + 80r�2 + 395r�4) j = 4
10 log(1 + 105r�2 + 705r�4) j = 5

(6:13)

For �s > 5 we use the value for �s = 5, and for �s = 0 we suppose

H00(r1; r2; 0) = 10 log

2
4
 
1 +

pa

2
a

r1

!2 
1 +

pa

2
a

r2

!2
r1 + r2
a

r1 + r2 + 2
pa

2

3
5 (6:14)

In all of this, we truncate the values of ss and q = r2=ssr1 at 0.1 and 10.

end

16


