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ABSTRACT

Subjective testing is the most direct means of assessing au-
dio, video, and multimedia quality as experienced by users
and maximizing the information gathered while minimizing
the number of trials is an important goal. We propose gradi-
ent ascent subjective testing (GAST) as an efficient way to
locate optimizing sets of coding or transmission parameter
values. GAST combines gradient ascent optimization tech-
niques with paired-comparison subjective test trials to effi-
ciently locate parameter values that maximize perceived qual-
ity. We used GAST to search a two-dimensional parame-
ter space for the known region of maximal audio quality as
proof-of-concept. That point was accurately located and we
estimate that conventional testing would have required at least
27 times as many trials to generate the same results.

Index Terms— Audio Quality, Gradient Ascent, Golden
Section Line Search, Multimedia Quality, Subjective Testing,
Video Quality

1. INTRODUCTION

Subjective testing is arguably the most basic and direct way
to assess the user-perceived quality of audio, video, and mul-
timedia presentations. Through careful selection of signals,
presentation environments, presentation protocols, and test
subjects, one can approximate a real-world scenario and ac-
quire a representative sample of user perceptions for that sce-
nario. This generally requires specialized equipment, soft-
ware, laboratory environments, skills, and numerous human
test subjects [1]. These elements equate to significant ex-
penses and weeks or months of work. Objective estimators
of perceived quality can eliminate many expenses and com-
plications inherent in subjective testing but they produce only
estimates of perceived quality [1].

Between these poles lies another option: subjective test-
ing with improved efficiency. That is, gathering more infor-
mation using fewer experimental trials.

One quality assessment task that can be particularly in-
tensive is optimization of one or more coding or transmission
parameters. Given a bit-rate constraint, one might seek to op-
timally partition those bits between different signals (e.g., au-

dio, video, data), between basic signal coding and redundancy
that improves robustness to transmission errors or losses (e.g.,
multi-descriptive coding or forward error correction), or be-
tween the different components of a reduced-rate signal repre-
sentation for an individual signal (e.g., quantized scale factors
and quantized transform coefficients in an audio coder).

Such optimization problems can be solved by an exhaus-
tive search (ES) of a discretized version of the parameter
space using an absolute category rating (ACR) subjective
test to evaluate each point in the space. But this can require
the evaluation of a very large number of points and it also
requires one to guess at how to best discretize the parameter
space.

We propose gradient ascent subjective testing (GAST) as
an efficient alternative to ES ACR testing. GAST can effi-
ciently and adaptively select a subset of points in the space to
evaluate, without the need to impose an arbitrary discretiza-
tion on the space. GAST can incorporate the ACR approach
but is particularly well-matched to paired-comparison (PC)
testing. Using PC testing is an added bonus because com-
paring two stimuli is easier (and thus less noise is introduced
into results) than providing absolute ratings for two stimuli
presented in isolation from each other.

In Section 2, we describe the GAST algorithm. Section
3 details an initial proof-of-concept experiment using the
GAST algorithm. Discussion and observations are provided
in Section 4 .

2. GRADIENT ASCENT PAIRED-COMPARISION
SUBJECTIVE TESTING ALGORITHM

Finding the point in n-dimensional space that approximately
maximizes (or minimizes) an objective function defined on
that space is a classic problem and many different avenues
to its solution have been offered over the years [2], [3]. A
unifying key idea is to evaluate the objective function at a
small number of intelligently selected points, use those results
to select more points, and thus continue to better locate the
desired maximal point. Key attributes of solutions include
convergence properties and efficiencies.

We adopt this basic idea to the problem of optimizing per-
ceived quality on an n-dimensional parameter space. In this

133U.S. Government Work Not Protected by U.S. Copyright QoMEX 2009



case, the objective function is perceived quality and is evalu-
ated by human subjects. Thus a GAST algorithm implemen-
tation platform includes a computer and one or more human
subjects. Software calculates a pair of points in the parameter
space where the objective function (perceived quality) should
be evaluated, and then facilitates the presentation of stimuli
associated with this pair of points. The subject evaluates this
pair of stimuli and the software uses the response to then cal-
culate the next pair of points to evaluate. The software and
the subject continue this interplay until termination criteria
indicate it is likely that point of maximum quality has been
located.

This approach could be applied to any number of opti-
mization algorithms. We have elected to start with a very ba-
sic gradient ascent algorithm because it seems well-matched
to expected properties of actual applications (i.e., smooth,
slowly varying objective functions with fairly broad maxima
that can only be imprecisely evaluated). The GAST algo-
rithm iterates between two main steps: finding the direction
of steepest ascent, and searching a line for a maximum. Each
of these steps requires PC scores from a test subject.

2.1. Subjective Scores

The GAST algorithm described here uses PC scores. This
means that two stimuli are presented and a subject indicates
any preference between the two. For visual stimuli, either
sequential or side-by-side presentations are possible. Another
option is to employ an A/B switch that allows the subject to
switch between the two stimuli at will. For auditory stimuli,
the options are sequential presentation and A/B switching.

Our initial experiment was auditory. We used sequential
presentation and allowed for five possible responses: “The
audio quality of the second recording is much better than,
better than, the same as, worse than, or much worse than, the
first recording.” The algorithm associates these five responses
with the integers 2, 1, 0,−1, and −2, respectively. These in-
tegers are called subjective scores.

Without loss of generality, we adopt the language of se-
quential presentation for the remainder of this paper. We use
S(x,y) to represent the subjective score resulting from a pre-
sentation of the signal parameterized by the vector x (rep-
resenting a point in n-dimensional space), followed by pre-
sentation of the signal parameterized by the vector y. Thus
positive values of S(x,y) indicate that the y signal was pre-
ferred to the x signal, negative values indicate the opposite,
and zero indicates that there was no preference.

2.2. Direction Finding

Consider a point in an n-dimensional space represented by
a column vector x. We seek to find the direction in which
the objective function increases most rapidly. The direction-
finding algorithm finds an approximate solution using be-
tween n and 2·n finite differences. Let

x±k = x±∆d · Ik, k = 1, 2, . . . , n, (1)

indicate a point near x differing from x in only the kth di-
mension. In (1), ∆d is a fixed scalar direction-finding step
size and Ik is the kth column of the n×n identity matrix. ∆d

needs to be large enough to cause detectable changes in per-
ceived quality, but small enough to provide accurate localized
information about those changes.

The direction-finding algorithm gathers subjective scores
S
(
x,x±k

)
for each dimension k, as allowed. If the parameter

space is bounded, x+
k or x−k could be outside the parameter

space, the corresponding signal would not exist, and the cor-
responding subjective score would not exist. If only one sub-
jective score exists for dimension k, then the corresponding
element δk(x) of the direction vector δ(x) is given by

δk(x) =
S
(
x,x±k

)
±∆d

. (2)

For dimensions where both subjective scores exist, δk(x) is
given by

δk(x) = 0, when S
(
x,x−k

)
< 0 and S

(
x,x+

k

)
< 0 , (3)

δk(x) =
S
(
x,x+

k

)
− S

(
x,x−k

)
2∆d

, otherwise . (4)

Equation (3) treats the special case where x is located at
a maximum in dimension k. Equation (4) treats the general
case where two subjective scores are available and uses them
together to approximate an average local slope in dimension
k. Once δk(x) has been calculated for all n dimensions, the
resulting direction vector δ(x) is scaled to have unit norm:

δ̂(x) =
δ(x)
|δ(x)|

. (5)

The result is a unit-norm vector δ̂(x) that provides an
approximate indication of the direction in which the objec-
tive function increases most rapidly. It is an approximate re-
sult because it is based on finite differences in the parameter
space, and because the subjective scores are constrained to
five distinct values. The impact of this approximation will
depend on the specific context in which GAST is used. Our
proof-of-concept experiment appears unhindered by this ap-
proximation.

2.3. Golden Section Line Search

Given an arbitrary line segment in parameter space, the itera-
tive line search algorithm in GAST finds the point on that line
segment that approximately maximizes the objective func-
tion. The algorithm is initialized by a point represented by the
column vector x0, a unit-norm direction vector δ̂(x0), and a
boundary definition for the parameter space. The first step
is to find the line segment (or “line” for brevity) that runs in
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the direction δ̂(x0) from x0 to the boundary of the parameter
space. We call the second end of this line x3.

This line is the input to the iterative portion of the algo-
rithm. Each iteration results in a new, shorter line that is eval-
uated on the next iteration. This evaluation is based on the
comparison of the objective function at two interior points
that lie on this line. These points are called x1 and x2 and
are ordered as shown in Figure 1. If S(x1,x2)< 0 (consis-
tent with the example of the solid line) then the new line to
search on the next iteration is the line between x0 and x2.
If 0 <S (x1,x2) (consistent with the example of the broken
line) then the new line to search is the line between x1 and
x3.
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Fig. 1. Example relationships for four points in the line
search.

Motivated by a desire for predictable convergence, we add
the constraint that each iteration must scale the line down by
a constant value 0 < γ < 1, regardless of which interval is
chosen as the new interval. This means that

|x2 − x0| = |x3 − x1| = γ |x3 − x0| (6)

and

|x1 − x0| = |x3 − x0|−|x3 − x1| = (1−γ) |x3 − x0| (7)

Regardless of the subjective score, the new shorter line
(between x0 and x2 or between x1 and x3) always inherits
an interior point from the longer line (x1 in first case and x2

in the second case). Motivated by a desire to use paired com-
parisons efficiently, we add the constraint that this inherited
(from iteration i) interior point must be one of the two inte-
rior points evaluated in iteration i+ 1.

Consider the case where the result of iteration i is the line
between x0 and x2 (consistent with the solid line in the ex-
ample of Figure 1). That new shorter line inherits the interior
point x1. In iteration i + 1 a second interior point must be
added. If this new point is inserted to the left of x1, then x1

would now (iteration i + 1) serve the role that x2 played in
iteration i. Using (6) we conclude that

|x1 − x0| = γ2 |x3 − x0| (8)

Comparing (7) and (8) we conclude that

γ2 = (1− γ) so γ =
−1 +

√
5

2
. (9)

Finally,

1
γ

= γ + 1 =
1 +
√

5
2

= ϕ ≈ 1.618 . (10)

If the new point is inserted to the right of x1, then x1

would now (iteration i+ 1) serve the same role that it played
in iteration i. Using (6) and (7) we conclude that

|x1 − x0|=(1− γ) |x3 − x0|=(1− γ) γ |x3 − x0| , (11)

but this can only be solved by γ = 1 which violates the al-
lowed range on γ. Thus the new point must be inserted to the
left of x1.

If iteration i produces the line between x1 and x3 (con-
sistent with the broken line in the example of Figure 1), an
analogous set of results will follow. Thus γ = 1/ϕ is the
only value to use in equations (6) and (7) to locate x1 and
x2 so that the uniform-scaling-per-iteration constraint and the
interior-point-reuse constraint are satisfied. The line to search
scales by γ = 1/ϕ at each iteration. The irrational number
ϕ is called the golden section or golden mean. It defines an
aesthetically pleasing rectangle that has been used widely in
architecture and art, and also lends its name to this line search
algorithm [2].

In GAST this golden section line search iterates until
S(x1,x2) = 0 and |x2 − x1| < ∆t, where ∆t is a termina-
tion parameter. This condition indicates there is no preference
between two signals whose parameterizations are sufficiently
close to each other. The algorithm returns 1

2 (x2 + x1) as
the approximation to the point on the original line where the
objective function is maximized. Our proof-of-concept ex-
periments indicate that the approximation is a good one. If
S(x1,x2) = 0 when ∆t ≤ |x2 − x1|, then x1 and x2 are
moved apart in increments until a non-zero vote is returned.
This is a special case that breaks from the golden section
constraints.

2.4. Entire Algorithm

To start the GAST algorithm, one must select a starting point
x0 in the n-dimensional parameter space. (In Section 3
we successfully use both deterministic points on the bound-
ary of the space and randomly selected interior points.) The
direction-finding algorithm is applied to find δ̂(x0) indicating
the direction of steepest ascent from x0. Next, x0 and δ̂(x0)
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are provided to the line search algorithm, which searches in
the direction δ̂(x0) from x0 to the boundary of the search
space and returns the maximizing point x1.

The direction-finding algorithm is then used to find δ̂(x1),
which shows the direction of steepest ascent from x1. Line
searching and direction finding continue to alternate in this
fashion until a terminating condition is satisfied. At any it-
eration, the output of the last line search is the best approxi-
mation to the point in the parameter space that maximizes the
objective function.

One terminating condition is δ̂(xi) = 0 since this indi-
cates that there no is direction to move from xi to increase the
objective function. Equations (2) through (4) show that this
could be due to subjective scores of zero (no differences de-
tected), a local maximum, or a local minimum that is judged
to be perfectly symmetrical in all n dimensions. Terminating
in a local minimum is not desirable, so if this is deemed a
possibility one should test for it (the test is analogous to the
one in equation (3)) and restart the GAST algorithm from a
new starting point as necessary. The algorithm also terminates
if the distance between the input and output points of a line
search is less than ∆t since future iterations will be unlikely
to move the result outside that neighborhood.

The GAST algorithm climbs the surface of the objective
function to find a maximal value. If multiple local maxima ex-
ist, the algorithm will find one of them but there is no guaran-
tee that it will be the global maximum. If multiple local max-
ima are suspected, then multiple trials using multiple starting
places could help to identify them. Other more sophisticated
algorithms might be considered as well.

3. PROOF-OF-CONCEPT EXPERIMENT

To test the GAST concept we devised an experiment using
reference conditions and a 2-dimensional parameter space
with a known region of maximal audio quality.

3.1. Experiment Description

This experiment used eight diverse five-second musical seg-
ments taken from compact discs. A sample rate of 44,100
samples/second was maintained through this experiment. The
segments were passed through two reference conditions in
sequence. The first reference condition was the modulated
noise reference unit (MNRU) [4]. This condition adds signal-
correlated Gaussian noise to the audio signal at the specified
SNR of Q dB:

yk = xk + xk · nk · 10−
Q
20 = xk ·

(
1 + nk · 10−

Q
20

)
, (12)

where xk, yk and nk are input, output, and unit-variance zero-
mean Gaussian noise samples, respectively. The noise added
by the MNRU sounds like that produced by some waveform
coders.

The second reference condition was modeled after the T-
Reference described in [5, 6]. We used a frame size of 256
samples (5.8 ms). If frames are labeled 1 through N , then the
T-Reference applies temporal compression to frames num-
bered 1 + 3 · k, it does not change frames numbered 2 + 3 · k,
and it applies temporal expansion to frames numbered 3 + 3 ·
k, k = 0, 1, 2, . . .. Temporal compression is accomplished by
deleting every T th sample, and the complementary temporal
expansion is accomplished by interpolating a sample between
every T th and T + 1st sample. Since b256/T c samples are
deleted from the first frame in the group and the same number
of samples are interpolated into the third frame in the group,
the total number of samples in each group of three frames is
preserved at 3 · 256.

Valid values of the unit-less parameter T are integers in
the range from 2 to 256. The distortion introduced by the
T-Reference is described as “warbling” or “burbling” and is
similar to that produced by some parametric coders. Larger
values of T correspond to less distortion.

We developed GAST software to work in a normalized
[0, 1] parameter space. Thus, we mapped this range to Q and
T values according to

Q = −85 · p2
1 + 100 · p1 (13)

and
T = 1+

[
2(−15·p2

2+13·p2+2)
]

(14)

where [·] denotes rounding to the nearest integer. These re-
lationships are displayed in Figure 2. They were selected to
smoothly traverse a wide range of Q and T values, have dif-
ferent shapes, asymmetric slopes, and a single interior maxi-
mum for both Q and T .

From Figure 2 we can conclude that in the two-dimensional
space (p1, p2), there is a line segment of numerically maxi-
mal audio quality extending from the point (0.60,0.39) to the
point (0.60,0.48). This segment is shown as a solid vertical
line in Figures 3 and 4.

3.2. GAST Algorithm Implementation

The direction finding and the golden section line search al-
gorithms were coded inside objects called “tunes” such that
all calculations take place transparently to an outer algorithm
that facilitates subject interaction. The outer algorithm needs
only to instantiate said tunes by specifying x0, ∆d and ∆t, re-
quest parameter pairs associated with the signal pairs that are
played, submit subjective scores, and keep track of all tune
objects that it instantiated.

The outer algorithm is also responsible for drawing a
graphical user interface to be used by the subject, as well
as instantiating, polling, and updating necessary tune ob-
jects, presenting audio to subjects, handling subject votes,
randomizing tune play order, and ensuring that each search
terminates. The MNRU and T-Reference algorithms execute
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Fig. 2. Q as a function of p1 (dashed), and T as a function of
p2 (solid).

quickly, so it was possible to generate the required audio
signals just before they were played.

Subjects heard signals through headphones and submitted
votes using a PDA. After the presentation of each pair of sig-
nals, a subject could submit a vote (as described in Section
2.1) or request to hear the pair played again. Our GAST soft-
ware is available at www.its.bldrdoc.gov/audio for those who
wish to experiment with the GAST technique.

3.3. Experiment Results

Six persons participated in the experiment. Each ran the
GAST algorithm on four of the eight musical selections, us-
ing two different starting places per selection. One starting
place was the origin of the parameter space, the other was
randomly chosen for each musical selection and each subject.
Thus, each subject started eight different GAST tasks, and
in each trial the subject made one step of progress on one
task randomly selected from the eight. We used the direction-
finding step size ∆d = 0.15 and the terminating condition
∆t = 0.20.

Some tasks ended prematurely due to operational errors,
subject time limitations, or saturation of perceived quality (at
the low end) near the corners of the parameter space. Beyond
these special cases, the GAST algorithm behaved as expected.

Figure 3 shows an example GAST task trajectory. The re-
gion of numerically maximal audio quality is shown with a
bold vertical line. The circle at the origin indicates the start-
ing location. The triangles connected to that circle indicate
the two points used in the first direction-finding step. The
audio signal parameterized by the triangle at (0.15, 0) was
voted ”much better” than the signal associated with the ori-
gin, so S

(
(0, 0)T , (0.15, 0)T

)
= 2, where (·)T indicates the

transpose operator. Similarly S
(
(0, 0)T , (0, 0.15)T

)
= 1.
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Fig. 3. Example trajectory of a GAST trial; details in text.

These two scores yielded the normalized direction vector
δ̂(x) = (1/

√
5) · (2, 1)T and this led to a search of the line

that runs up and to the right. Points played on this line
are shown with diamonds and the result of the line search is
shown with a square. The four points connected to that square
were played as part of the second direction-finding step. This
led to a search of the line that runs toward the upper left
corner of the figure. Again, points played are shown with
diamonds and the final result is shown with a square. This
result is very close to the location of numerically maximum
audio quality. This task required 13 votes.

Different musical selections can reveal or mask distor-
tions in different ways, and these distortions may be perceived
differently by individual subjects. Thus, perceived quality is
a function of signals and subjects as well as the device under
test. Averaging results over a representative sample of rele-
vant signals and subjects gives the most meaningful perceived
quality results.

Figure 4 shows the GAST algorithm start (open circles)
and end (solid squares) points for the 35 GAST tasks that
ran to completion. An average 15.6 votes were required per
task. The end points cluster around the line segment of nu-
merically maximal audio quality (the solid vertical line), as
expected. The mean and 95-percent confidence intervals for
the p1 and p2 dimensions are shown with a circle and a cross.
For the 35 combinations of subjects and musical selections,
we are 95 percent confident that the mean location of maxi-
mal perceived audio quality is between 0.571 and 0.649 in p1

dimension, and between 0.404 and 0.436 in the p2 dimension.
This result is consistent with the known location of numeri-
cally maximal audio quality and required 15.6 × 35 = 546
PC presentations (not including any replays) and 546 votes.
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Fig. 4. Start and end points for 35 GAST trials shown with
open circles and solid squares, respectively. The cross shows
mean and 95-percent confidence intervals for all end points.
Bold vertical line represents region of numerically maximal
audio quality.

To locate this point with the same resolution using ES
ACR testing, one would need about 13 samples ((0.649 −
0.571)−1 = 12.8) in the p1 dimension and 32 samples
((0.436 − 0.404)−1 = 31.3) in the p2 dimension, result-
ing in a 416 sample grid on the parameter space. Evaluating
each point with all 35 combinations of musical selections and
subjects would require 416 × 35 = 14, 560 ACR presenta-
tions (not including any replays) and votes. This is a lower
bound. If 35 trials per point in the parameter space does not
result in statistically significant differences between adjacent
parameter space samples in the neighborhood of the quality
maximum, then additional trials would be required to locate
the maximum with a resolution that matches GAST.

Thus, we find that the number of votes required is reduced
by at least a factor of 14, 560/546 = 26.7. Two signals must
be played for a PC presentation, and one is played for an ACR
presentation, so the number of presentations is reduced by at
least a factor of 13.4.

4. DISCUSSION AND OBSERVATIONS

We have demonstrated proof-of-concept for the GAST ap-
proach in a simple, controlled 2-dimensional case with a
known region of maximal audio quality. The correct result
was obtained. Compared with the hypothetical comparable
ES ACR subjective test, votes and presentations were re-
duced by factors of at least 27 and 13, respectively. One
would expect these savings to increase in higher dimensional

problems. Additionally, GAST eliminates the need to select
step sizes to use in ES. An option between ES and GAST
would be to perform a coarse, broad ES that identifies a re-
gion where one should follow up with a fine, narrow ES. But
this requires manual intervention and manual selection of
multiple step sizes and search ranges.

This initial experiment admittedly uses a well-behaved
quality surface, and GAST results will likely vary depending
on the shape of the parameter space and attributes of the qual-
ity surface over that space. This paper presents only an initial
effort. There are many potential paths to improved GAST
performance, efficiency, and robustness.

Given additional time and data, one might undertake re-
finement of the terminating conditions, possibly making them
adaptive. One might make line lengths adaptive, searching
shorter lines as the algorithm progresses, since the start of
the line should be getting closer to the sought-after point of
maximal quality. The direction finding step size ∆d might be
advantageously adapted as the algorithm progresses (larger
early on or when in flatter regions, smaller later or in steeper
regions). When finding points of minimal quality is of inter-
est, one can simply multiply all votes by −1 and the GAST
algorithm will locate minima instead of maxima.

GAST can be used with naı̈ve or expert subjects. Expert
subjects might benefit from additional information as the test
progresses. Since the end point of each line search is the cur-
rent approximation to the point of maximal quality, experts
might be able to improve their GAST efficiency if they can
respond to a message that says, “You have just completed the
your nth line search for this task. Would you like to begin
another one?”
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