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Abstract— This paper examines the estimation of the local 
mean voltage of a radio signal in a Rayleigh fast-fading 
environment. We focus on the statistical uncertainties of local 
voltage averages obtained by both integrating the voltage envelope 
of a specified spatial interval and averaging over a set of discrete 
spatial samples. We derive new analytical expressions of the 
variances of both discrete and continuous averaging for selected 
spatial intervals. We also give recommendations for averaging 
intervals and sample spacing to achieve a ±1 dB spreading factor. 
We provide important new results for the variance of discrete 
averaging with new insight gained on separations required for 
uncorrelated samples. One significant finding of this work is that 
criteria in the published literature are incorrect and 
underestimate the variance. We support these findings with an 
experimental validation of our variance expressions using 
laboratory fading simulator measurements and sample statistics. 

Keywords—Autocorrelation, Continuous Average, Correlation, 
Coverage Factor, CW Channel sounder, Discrete Average, 
Ensemble Average, Fast Fading, IQ Envelope, Local Mean, Lee 40-
Wavelength Criterion, Path Loss, Propagation, Rayleigh, Sampling, 
Standard Deviation, Spreading Factor, Time Series, Variance, 
Vector Signal Analyzer. 

I. INTRODUCTION 

The Institute for Telecommunication Sciences (ITS) has 
developed and deployed a continuous-wave (CW) channel 
sounding system to measure radio channel properties [1]. This 
system has been deployed in a wide variety of outdoor clutter 
environments around the United States, ranging from open rural 
to dense urban environments [2]. The system transmits a CW 
signal from a fixed location to a receiver located in a van. The 
van is driven over prescribed routes and measures the received 
signal for the duration of the tests. The signal is received by a 
vector signal analyzer (VSA), which down-converts the signal 
to a baseband IQ data stream. After a drive test, the IQ samples 
are transferred to a computer and post processed to obtain useful 
propagation parameters such as path loss and fast-fading 
parameters. 

One key element used in post processing of measured data 
to obtain path loss is window averaging. This process smooths 
the data and enables meaningful estimates of the local mean 
voltage. The local mean voltage is converted into power, which, 
in turn, is used to compute path loss. Two types of window 
averaging are described: continuous-time and discrete-time. The 
analysis and results that are presented here are applicable to non-

line-of-sight (NLOS) Rayleigh, fast fading channels with a 
distribution of scatterers that results in a Jake’s power spectrum 
[3].  

II. CONTINUOUS AND DISCRETE WINDOWED AVERAGING

Fig. 1 depicts a van with an onboard receiver that is
recording IQ voltage data with an averaging interval of spatial 
extent 2L meters; λ is the wavelength in meters at the frequency 
of operation. This averaging interval is centered on a receiving 
antenna location on the roof of the van, and it extends ±L meters 
along the axis of travel.  

The centered, rectangular averaging window that is used to 
process the received IQ envelope data, for both continuous and 
discrete-sampled data, is shown in Fig. 2. For the continuous-
time case the complex baseband IQ signal can be written as 

 𝑠𝑠(𝑡𝑡) = 𝑟𝑟(𝑡𝑡)𝑒𝑒𝑖𝑖𝑖𝑖(𝑡𝑡),  (1) 

where 𝑟𝑟(𝑡𝑡) and 𝜑𝜑(𝑡𝑡) are the envelope and phase of the signal, 
respectively. An estimate of the local mean 𝑚𝑚�  at a location x can 
be obtained by averaging the IQ envelope r(y) over a distance 
2L from x-L to x+L: 

𝑚𝑚�(𝑥𝑥) =
1

2𝐿𝐿
� 𝑟𝑟(𝑦𝑦)𝑑𝑑𝑦𝑦.
𝑥𝑥+𝐿𝐿

𝑥𝑥−𝐿𝐿

    (2) 

For a non-line-of sight channel with a uniform distribution 
of scatterers around a receiving location, the probability density 

Fig. 1. A van collecting mobile channel data from a CW transmitter, 
traveling at a constant speed. The averaging interval 2L is centered on 
the receiving antenna. 
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function of the received voltage envelope r(t) is a Rayleigh 
distributed random variable given by 

𝑝𝑝(𝑟𝑟) =
𝑟𝑟
𝑏𝑏2

exp �−
𝑟𝑟2

2𝑏𝑏2
�  ,  (3) 

where r ≥ 0 and b is a parameter with the dimensions of r(t) 
(volts in this case). The mean of (3) is given by 

𝑚𝑚𝑟𝑟 = ⟨𝑟𝑟〉 = � 𝑟𝑟𝑝𝑝(𝑟𝑟)𝑑𝑑𝑟𝑟 = �
𝜋𝜋
2

∞

0

𝑏𝑏  (4) 

where ⟨·〉 denotes the usual expectation operator E{}[4]. The 
variance of (3) is 

𝜎𝜎𝑟𝑟2 = � 𝑟𝑟2
∞

0

𝑝𝑝(𝑟𝑟)𝑑𝑑𝑟𝑟 − 𝑚𝑚𝑟𝑟
2 = �2 −

𝜋𝜋
2
� 𝑏𝑏2.  (5) 

Applying (3) and (4) to (2) and interchanging the order of 
integration and the expectation obtains the local mean 

⟨𝑚𝑚�(𝑥𝑥)〉 =
1

2𝐿𝐿
� ⟨𝑟𝑟(𝑦𝑦)〉𝑑𝑑𝑦𝑦 = ⟨𝑟𝑟(𝑦𝑦)〉 = �

𝜋𝜋
2

 
𝑥𝑥+𝐿𝐿

𝑥𝑥−𝐿𝐿

𝑏𝑏,  (6) 

which is the same as the mean of the governing Rayleigh 
distribution of the voltage envelope r(t). 

In the past [5], continuous averaging was used to measure 
the local mean voltage and power. However, in more modern 
measurement systems, the local mean voltage is estimated by 
averaging a finite number of discrete samples from a digitizing 
receiver like a VSA. The red x’s in Fig. 2 denote the location of 
uniformly spaced, discrete samples within the 2L averaging 
interval, spaced d meters apart. For N samples, the spacing is  

𝑑𝑑 =
2𝐿𝐿

(𝑁𝑁 − 1)
 .  (7) 

The estimated local mean using N discrete samples at a 
sequence of spatial locations 𝑥𝑥𝑖𝑖  uniformly separated by a 
distance d is 

𝑚𝑚� =
1
𝑁𝑁
�𝑟𝑟𝑖𝑖  
𝑁𝑁

𝑖𝑖=1

,  (8) 

where 𝑟𝑟𝑖𝑖 ≡ 𝑟𝑟(𝑥𝑥𝑖𝑖). Applying the expectation operator ⟨·〉 to (8) 
and interchanging the order of summation and the expectation 
yields 

 ⟨ 𝑚𝑚�〉 =
1
𝑁𝑁
�⟨𝑟𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖=1

〉 = �
𝜋𝜋
2

b =  𝑚𝑚𝑟𝑟 .  (9) 

The ensemble average (9) of the discrete sampled 
measurements, once again, equals the mean of the governing 
Rayleigh distribution. While continuous signal acquisition and 
averaging is no longer used in propagation measurements, it 
does serve as a useful benchmark for discrete channel sampling. 

Variance and Spread of the local mean 

Fig. 3 shows the impact of window averaging. The IQ data 
were obtained from benchtop measurements using a mobile 
channel simulator. The channel simulator was configured to 
generate Rayleigh-faded IQ time series (see Section VI for 
details). The blue trace in Fig. 3(a)-(d) is the Rayleigh-faded 
envelope generated by the simulator. Three rectangular 
averaging windows, with widths ranging from 0.25λ to 60λ, 
were applied to the envelope. The red traces are averaged results. 

Fig. 2. Rectangular window used to smooth the received IQ voltage 
envelope. This window is used for either continuous waveforms or 
discrete data with a sample spacing of d (denoted by the red x’s). 

XX X X X
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Fig. 3. Rayleigh faded IQ envelope (blue traces) and local mean (red 
traces). The window widths used are: (a) 0.25 λ, (b) 1 λ, (c) 6 λ, (d) 60 λ. 
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As the window width increases, the variations in the 
averaged results decrease as is expected. The averaging process 
transforms the fast-fading time series governed by the Rayleigh 
probability density function (PDF) into a more slowly varying 
time-series governed by a different PDF. Fig. 4 shows 
probability density histograms of the voltage envelope with no 
averaging, and window widths of 2L = 0.25λ, 1.0λ, and 60λ. A 
Rayleigh PDF is seen in Fig. 4(a) with no averaging. As the 
window width increases beyond one wavelength, the resulting 
voltage envelope distributions become more centered and 
symmetric. The spread of the resulting distributions also 
decreases, due to the higher degree of averaging.  

For the range of window widths that are typically used in 
practical mobile channel measurements (20λ-70 λ), the resulting 
distribution is normal. This can be inferred by applying the 
Central Limit Theorem to a sum of random variables [4],[6].  

III. VARIANCE OF A CONTINUOUS WINDOWED AVERAGE 
The variance of the average is used to evaluate the spread in 

data. It is given by  

𝜎𝜎𝑚𝑚�2 = ⟨𝑚𝑚�2(𝑥𝑥)〉 − ⟨𝑚𝑚�(𝑥𝑥)〉2,                                                   (10) 

where 𝑚𝑚�(𝑥𝑥) is the continuous average (2). The mean square of 
the estimate 〈𝑚𝑚�2(𝑥𝑥)⟩ is 
 

〈𝑚𝑚�2(𝑥𝑥)⟩ =
1

4𝐿𝐿2
� � ⟨

𝑥𝑥+𝐿𝐿

𝑥𝑥−𝐿𝐿

𝑥𝑥+𝐿𝐿

𝑥𝑥−𝐿𝐿

𝑟𝑟(𝑦𝑦1)𝑟𝑟(𝑦𝑦2)〉𝑑𝑑𝑦𝑦1𝑑𝑑𝑦𝑦2 .                  (11) 

Applying (11) and (6) to (10) yields 

𝜎𝜎𝑚𝑚�2 =
1

4𝐿𝐿2
� � �〈𝑟𝑟(𝑦𝑦1)𝑟𝑟(𝑦𝑦2)〉 −

𝜋𝜋
2
𝑏𝑏2�

𝑥𝑥+𝐿𝐿

𝑥𝑥−𝐿𝐿

𝑥𝑥+𝐿𝐿

𝑥𝑥−𝐿𝐿

𝑑𝑑𝑦𝑦1𝑑𝑑𝑦𝑦2 .         (12)  

Applying a result from [6] and [7], (12) simplifies to 

𝜎𝜎𝑚𝑚�2 =
1
𝐿𝐿
� �1 −

𝑦𝑦
2𝐿𝐿
�

2𝐿𝐿

0

�𝑅𝑅𝑟𝑟(𝑦𝑦) −
𝜋𝜋
2
𝑏𝑏2� 𝑑𝑑𝑦𝑦,                             (13) 

where 𝑅𝑅𝑟𝑟(𝑦𝑦)  is autocorrelation function of the voltage 
envelope. If a Jakes channel [3] is assumed, the autocorrelation 
function is given by  

𝑅𝑅𝑟𝑟(𝑦𝑦) = �
𝜋𝜋
4

+ �1 −
𝜋𝜋
4
� 𝐽𝐽02 �

2𝜋𝜋𝑦𝑦
𝜆𝜆
��2𝑏𝑏2 ,                           (14) 

where Jo is a zeroth order Bessel function of the first kind, b is 
the parameter of the Rayleigh distribution in (3), and λ is the 
wavelength. Substituting (14) into (13) and simplifying yields 
the result 

𝜎𝜎𝑚𝑚�2 =
2𝑏𝑏2

𝐿𝐿
𝜆𝜆

�1 −
𝜋𝜋
4
�� �1 −

𝑥𝑥
2𝐿𝐿
𝜆𝜆
�

2𝐿𝐿
𝜆𝜆

0

𝐽𝐽02(2𝜋𝜋𝑥𝑥)𝑑𝑑𝑥𝑥 .              (15) 

Lee [8] used the same assumptions used in (11) for his 
analysis, but obtained the erroneous result 

𝜎𝜎𝑚𝑚�2 =
�𝜋𝜋2 𝑏𝑏

2 �2𝐿𝐿
𝜆𝜆 �

� �1 −
𝑥𝑥

2𝐿𝐿
𝜆𝜆
�

2𝐿𝐿
𝜆𝜆

0

𝐽𝐽02(2𝜋𝜋𝑥𝑥)𝑑𝑑𝑥𝑥 .                       (16) 

Eq. (15) and (16) contain the same integrals, but the 
multiplying factors differ. The variance 𝜎𝜎𝑚𝑚�2  should be 
proportional to 𝑏𝑏2, which is the case for our result (15). Lee’s 
result, therefore, is inconsistent since 𝜎𝜎𝑚𝑚�2  is proportional to b, 
and it is incorrect. A direct comparison of (15) and (16), along 
with validation results, are presented in Section VI. 

IV. VARIANCE OF A DISCRETE-TIME WINDOWED AVERAGE 
In current propagation measurements, local mean voltage is 

generally estimated by averaging a finite number of discrete 
samples. We derive an expression for the variance of the 
estimated local mean using discrete samples, in analogy to what 
we did for the case of continuous averaging. 

Applying (8) to (10) yields the expression for the variance of 
the discrete case 

 
Fig. 4. Histograms of a window-averaged Rayleigh-faded IQ envelope 
with averaging window widths: (a) No averaging, (b) 2L=0.25λ, (c) 
2L=1λ, and (d) 2L=60λ. 
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𝜎𝜎𝑚𝑚�2 =
1
𝑁𝑁2

�〈��𝑟𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖=1

�

2

〉 − �〈�𝑟𝑟𝑖𝑖

𝑁𝑁

𝑖𝑖=1

〉�

2

�

=
1
𝑁𝑁
〈𝑟𝑟𝑖𝑖2〉 −

1
𝑁𝑁
𝑚𝑚𝑟𝑟
2 +

1
𝑁𝑁2 ����1 − 𝛿𝛿𝑖𝑖,𝑗𝑗�

𝑁𝑁

𝑗𝑗=1

�〈𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗〉 − 𝑚𝑚𝑟𝑟
2�

𝑁𝑁

𝑖𝑖=1

�

=
𝜎𝜎𝑟𝑟2

𝑁𝑁
+

1
𝑁𝑁2 ����1 − 𝛿𝛿𝑖𝑖,𝑗𝑗��〈𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗〉 − 𝑚𝑚𝑟𝑟

2�
𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

� ,            (17) 

where 𝛿𝛿𝑖𝑖,𝑗𝑗 is a Kronecker delta function. 

The expression (〈𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗⟩ − 𝑚𝑚𝑟𝑟
2) is the covariance of the voltage 

envelope, which is well-known to be [3] 

〈𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗� − 𝑚𝑚𝑟𝑟
2 = 𝜎𝜎𝑟𝑟2𝐽𝐽02 �

2𝜋𝜋�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
𝜆𝜆

�                                       (18) 

for the Jake’s channel. Since the covariance depends upon 
|𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗|, the double sum in (17) can be simplified as 

���1 − 𝛿𝛿𝑖𝑖,𝑗𝑗�𝐽𝐽02 �
2𝜋𝜋�𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�

𝜆𝜆
�

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

= 2 �(𝑁𝑁 − 𝑛𝑛)
𝑁𝑁−1

𝑛𝑛=1

𝐽𝐽02 �
2𝜋𝜋𝑛𝑛𝑑𝑑
𝜆𝜆

� .                 (19) 

This simplification of the double sum to a single sum is 
analogous to the conversion of the double integral in (12) to the 
single integral in (13). Substituting (19) into (17), the final 
expression for the variance is 

𝜎𝜎𝑚𝑚�2 =
𝜎𝜎𝑟𝑟2

𝑁𝑁
�1 +

2
𝑁𝑁
�(𝑁𝑁 − 𝑛𝑛)𝐽𝐽02 �

2𝜋𝜋𝑛𝑛𝑑𝑑
𝜆𝜆

�
𝑁𝑁−1

𝑛𝑛=1

�

= 𝜎𝜎𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟2 + 𝜎𝜎𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟2    .                        (20) 

Eq. (20) is analogous to the continuous-average result (15). 
The first term on the right-hand side of (20) is the usual 
expression for the variance 𝜎𝜎𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟2  of the mean obtained by 
averaging N uncorrelated samples. The sum of Bessel functions 
is a correction that takes into account correlations among the 
samples, and is denoted by 𝜎𝜎𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟2  . 

V. EXPERIMENTAL VERIFICATION 
In order to verify the corrected result (15), we performed an 

experiment using the benchtop setup shown in Fig. 5. The test 
setup consisted of a channel simulator, vector signal analyzer 
(VSA), and a laptop computer. The channel simulator generates 
a CW signal at a user-selected frequency, and it modulates the 
signal to emulate Rayleigh fading in a NLOS mobile channel. 
The VSA captures the channel simulator signal and down 
converts it to a data stream of baseband complex IQ samples. 
The VSA data is then transferred to a laptop computer for post 

processing and analysis. A more detailed description of this 
setup is provided in [1].  

The channel simulator was configured to operate at 
430 MHz at a power level of -50 dBm and a constant speed of 
30 mph (13.4 m/s) with Rayleigh fading. The VSA was 
configured to capture IQ samples at a rate of 1,284 samples/s. 
The VSA recorded a continuous record for a period of 15 hours. 
A record of this length was necessary to provide enough 
uncorrelated samples for a high-accuracy verification. The 
recorded time series was first converted to a distance series using 
the speed-time relation 

𝑑𝑑 = 𝑣𝑣 𝑡𝑡 ,                                                                                     (21) 

where 𝑑𝑑 is the distance travelled in meters and 𝑣𝑣 is the velocity 
in m/s (in this case, 13.4 m/s). We chose a 13.4 m/s for our 
simulator, since this is a typical speed for drive tests in urban 
areas. 

The transformed record was then segmented in time into a 
sequence of P contiguous blocks, each of width of 2L, as is 
shown in Fig. 6. We set the number of blocks at P = 17,300 
throughout the analysis to provide both high accuracy and a 
constant number of terms as a baseline. We used 12 different 
block widths of 2L that ranged from a minimum of 5λ to a 
maximum of 60λ. For each case, we computed the mean value 
for each data block to obtain a sequence of sample means given 
by 𝑚𝑚𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏  (𝑖𝑖 = 1,2, …𝑃𝑃) where the superscript “blk” denotes a 
data block within the ensemble of averages.  

 
 
Fig. 5. Block diagram of the benchtop setup for the experimental 
verification. 

 
Fig. 6. Segmenting the simulator IQ envelope data into P contiguous 
blocks of width 2L. P = 17,300 for the analysis. 
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The resulting sequence is first used to compute sample mean 
given by 

𝑚𝑚𝑠𝑠   =  
1
𝑃𝑃
�𝑚𝑚𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏
𝑃𝑃

𝑖𝑖=1

 .                                                               (22) 

The sample standard deviation of block averages is then 
evaluated to yield 

𝑠𝑠𝑠𝑠 = �
1

(𝑃𝑃 − 1)
�(𝑚𝑚𝑖𝑖

𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑚𝑚𝑠𝑠)2
𝑃𝑃

𝑖𝑖=1

 .                               (23)  

The selection of contiguous data blocks of width 2L results in a 
sequence with weakly correlated mean values. 

Fig. 7 shows a direct comparison of the experimental results 
obtained from both (15) and (16), with the Rayleigh PDF 
parameter of the governing distribution set to b=1. The 
experimental data was normalized to obtain a Rayleigh PDF 
parameter b=1. The experimental data closely agrees with the 
new corrected result (15). Lee’s formula (16) exhibits a 
noticeable offset which is due to the error in the multiplying 
factor. 

In order to quantify variations (in dB) about a local mean at 
a location x, Lee [8] defines the so-called “2 𝜎𝜎𝑚𝑚�  spread” (in dB) 
as  

2 𝜎𝜎𝑚𝑚�  𝑠𝑠𝑝𝑝𝑟𝑟𝑒𝑒𝑠𝑠𝑑𝑑 = 20 𝑙𝑙𝑙𝑙𝑙𝑙10
𝑚𝑚𝑟𝑟 + 𝜎𝜎𝑚𝑚�
𝑚𝑚𝑟𝑟 − 𝜎𝜎𝑚𝑚�

   (𝑑𝑑𝑑𝑑),                    (24) 

 
where 𝑚𝑚𝑟𝑟  is the mean given in (9), and 𝜎𝜎𝑚𝑚�  is the standard 
deviation derived from either (15) or (16). Fig. 8 shows three 
curves with the Rayleigh parameter set at b = 1. The red trace is 
the corrected result (15). The blue trace is Lee’s result (16). The 
“+” tick marks are obtained from (24) using experimental data 
in conjunction with (22) and (23). Close agreement is seen with 
results obtained from (15). A spread of 1 dB is seen at 2L = 60λ. 
Lee’s variance (16) generates a 2 𝜎𝜎𝑚𝑚�  𝑠𝑠𝑝𝑝𝑟𝑟𝑒𝑒𝑠𝑠𝑑𝑑 spread of 1 dB for 
2L = 40λ. Thus, the 40λ criteria, which is one of the primary 
claims of [8] and widely cited, should be corrected to 2L = 60λ. 

VI. CONTINUOUS AND DISCRETE AVERAGING COMPARED 
So far, we have developed analytical expressions for the 

variances encountered in continuous and discrete window 
averaging. A question that arises is how do these two types of 
averaging compare? We performed a direct intercomparison by 
applying windows to a fading-simulator-generated IQ time 
series. Fig. 9 shows a comparison of standard deviations 
obtained from the continuous window average (red trace) to 
those obtained as a function of discrete averaging as depicted in 
Fig. 2.  

The red trace is the continuous average for a fixed window 
width of 60λ. The blue trace depicts the discrete averages. The 
overall window width is fixed at 60λ, and the sample spacings 
are computed from (7) by varying the number of samples N over 

the range 13 ≤ N ≤ 241. The range of the resulting sample 
spacings is 0.25λ ≤ λ ≤ 5λ. 

The discrete results are plotted as blue diamond tick marks 
and interconnecting lines. As the sample spacing decreases, the 
resulting standard deviations are reduced. Close agreement is 
observed with the continuous case for d < 0.5λ. A distinct 
“staircase effect” is seen in the discrete case for d < 3λ. This is 
due to the series of Bessel functions on the right-hand side of 
(20) which become more oscillatory as the spacing decreases 
and the samples rapidly become more correlated. Although not 
shown here, we performed similar comparisons for averaging 
window widths of 5λ, 10λ, 20λ, 40λ, and 100λ. 

In all cases, the same general characteristics are seen. First, 
close agreement occurs with d < 0.5λ for continuous and discrete 
windows, yielding virtually identical averages and variances for 

 
Fig. 7. A comparison of the estimated local mean variances obtained from 
the corrected result (15) (red trace), Lee (16) (blue trace), and channel 
simulator measurements (+ tick marks). 

 
Fig. 8. A comparison of the estimated 𝟐𝟐 𝝈𝝈𝒎𝒎�  spread obtained from the 
corrected result (15) (red trace), Lee (16) (blue trace), and channel 
simulator measurements (“+” tick marks). 

 
Fig. 9. Standard deviation of discrete window averages as a function of 
sample spacing (blue trace) for a window width of 2L = 60λ. The red trace 
is the continuous window result. 
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sample spacing less than 0.5λ. This makes sense given that the 
sum in (8) closely approximates the integral in (2) as the number 
of samples becomes large. 

In order to better understand the impact of the series term on 
the right side of (20), the following ratio provides a useful metric  

𝑃𝑃𝑟𝑟𝑟𝑟𝑡𝑡 =  𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2

𝜎𝜎𝑢𝑢𝑢𝑢𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  ,                                                               (25)  

where 𝜎𝜎𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟2  is the uncorrelated term in (20) and 𝜎𝜎𝑢𝑢𝑛𝑛𝑢𝑢𝑢𝑢𝑟𝑟𝑟𝑟2  is the 
sum of Bessel functions that accounts for the correlation 
between the samples. Eq. (25) provides a direct metric of the 
correlatedness in (20).  

Fig. 10 shows 𝑃𝑃𝑟𝑟𝑟𝑟𝑡𝑡  obtained with an averaging window 
width of 60λ and sample spacings ranging from 0.25λ to 5λ. As 
the sample spacing increases beyond 2λ, the fraction of variance 
contributed by the series in (20) decreases below 0.2, and the 
samples are weakly correlated. For separations less than 2λ, 𝑃𝑃𝑟𝑟𝑟𝑟𝑡𝑡  
rapidly increases as the samples become more correlated. A 
“staircasing” effect is seen in the results once again, due to 
oscillations in the Bessel functions. The Bessel function series 
becomes dominant with d < 0.5 λ.  

We performed further analyses at window widths of 20λ, 
40λ, and 100λ and similar trends were seen. Some variability is 
seen for the sample spacing for which 𝑃𝑃𝑟𝑟𝑟𝑟𝑡𝑡 < 0.2. The sample 
spacings for which this condition was met occurred for 2𝜆𝜆 <
𝐿𝐿 < 3.5 𝜆𝜆.  A rapid increase in  𝑃𝑃𝑟𝑟𝑟𝑟𝑡𝑡  is always seen with 𝑑𝑑 <
0.5 𝜆𝜆. Pronounced “staircasing” occurs for sample spacing d <
2 𝜆𝜆.  

VII. CONCLUSIONS 
We have presented an analysis of both continuous and 

discrete window averaging in a NLOS Rayleigh fast-fading 
channel. An updated result for the variance of a continuous 
averaging window is given, along with an associated 2 𝜎𝜎𝑚𝑚�   
spread. Our results correct an error in the variance derived by 
Lee [8]. Our correction to variance results in a 2L = 60λ 
averaging length to achieve a 1 dB  2 𝜎𝜎𝑚𝑚�  spread. Lee originally 
predicted a 2L = 40λ to achieve a 1 dB spread. 

We have also developed a new and highly useful variance 
expression for an averaging window that uses uniformly spaced 
discrete sampling with a separation d. For a sample spacing of 
d < 0.5λ our analysis shows that discrete sampling is virtually 
identical to continuous averaging for window widths 
5λ ≤ 2L ≤ 100λ. Our results also show a rapid increase in the 

amount of correlation between samples for spacings of less than 
2λ. As the sample spacing is increased beyond 3λ, the samples 
are weakly correlated—the variance (20) is well approximated 
by uncorrelated samples. We have derived a new and significant 
result for discrete sampling that modifies the established 
independence criteria for channel sample spacing in a Rayleigh 
NLOS channel. 

ACKNOWLEDGMENT 
The authors thank Dr. Roger Dalke, formerly with ITS, for 

his assistance in simplifying the variance expressions and many 
helpful and illuminating discussions about fast-fading mobile 
channels.  

REFERENCES 
[1] Robert Johnk, Chriss Hammerschmidt, Irena Stange, “A high-

performance CW Channel Sounder,” IEEE Int. Symp. EMC and 
Signal/Power Integrity, Aug, 7-11, 2017, pp. 698-703. 

[2] Chriss Hammerschmidt and Robert Johnk, “Extracting clutter metrics in 
the 1755-1780 MHz band, Proc. of the IEEE Military Communications 
Conf., Baltimore, MD, Nov. 1-3, 2016. 

[3] W.C. Jakes, Ed., Microwave Mobile Communications, IEEE, Inc., New 
York, 1994, p.38 

[4] Steven Kay, Intuitive Probability and Random Processes using 
MATLAB®, Springer, New York, New York, 2006. 

[5] J. D. Parsons, The Mobile Radio Propagation Channel, John Wiley & 
Sons, New York, New York, 2000. 

[6] A. Papoulis, Probability, Random Variables, and Stochastic Processes, 
McGraw-Hill, New York, 1965, p. 325. 

[7] Garry C. Hess, Handbook of Land-Mobile Radio Radio System Coverage, 
Artech House, Norwood MA, 1998, Chapter 3. 

[8] W.C.Y. Lee, “Estimate of local average power of a mobile radio signal,” 
IEEE Trans. Vehicular Tech., VT-34,no. 1, Feb 1985. 

 

 
 
Fig. 10. The fractional contribution of the Bessel function series in (20) to 
the overall variance for a discrete averaging window of width 2L = 60λ. 

U.S. Government work not subject to copyright in the United States. This paper was presented at and will appear in  
the Proceedings of the 2022 IEEE International Symposium on Electromagnetic Compatibility, Signal & Power Integrity, 

Spokane, WA, August 2-5, 2022. EMC+SIPI Proceedings are Copyright © IEEE.


	I. Introduction
	II. Continuous and Discrete Windowed Averaging
	III. variance of a continuous windowed average
	IV. variance of a discrete-time windowed average
	V. experimental verification
	VI. continuous and discrete averaging compared
	VII. Conclusions
	Acknowledgment
	References




