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Abstract—This paper presents new recommendations for the 

discrete sampling of a mobile radio with non-line-of-sight 

Rayleigh fading and a Jakes power spectrum. The results are 

derived from a new analytical result for the variance of the local-

mean voltage using discrete, spatial sampling with uniform 

spacing. The variance presented here accounts for the correlation 

between the samples and significantly changes the number of 

samples that are required to estimate the local mean voltage with 

a 1 dB spreading factor.  
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I. INTRODUCTION

Mobile channel measurements can be carried out using a 
continuous-wave (CW) channel sounding system [1]. This 
system transmits a CW signal from a fixed location to a 
receiver located in a van moving at a constant speed shown in 
Fig. 1. The van is driven over prescribed routes and records the 
received signal. The signal is received by a vector signal 
analyzer (VSA), which down-converts the signal into a 
baseband IQ data stream. Data can be collected on either a 
continuous-time basis or sampled at uniformly spaced, discrete 
intervals.  

The local mean voltage is obtained by averaging the IQ 
voltage envelope over the spatial interval 2L, shown in Fig.1 (a 
linear receiver is assumed). We present analytical results for 
the mean and variance of the local mean voltage for both 
continuous and discrete sampling [2]. The analytical result for 
the discrete variance yields the recommendation in Section III 
for both the required number of samples and spacing to achieve 
a spreading factor of 1 dB (±1/2 dB). This result differs 
significantly from a procedure given in Parsons [3].  The 
differences are attributed to the correlations between samples 
that are not accounted for in Parsons’ analysis. 

II. CONTINUOUS AND DISCRETE WINDOW AVERAGING

The received complex baseband signal is given by 

 𝑠(𝑡) = 𝑟(𝑡)𝑒𝑖𝜑(𝑡),  (1) 

where 𝑟(𝑡) and 𝜑(𝑡) are the envelope and phase of the signal. 
An estimate of the local mean 𝑚̂  at a location x can be 
obtained by averaging the IQ envelope r(y) over a distance 2L 
from x-L to x+L 

Figure 1. A van collecting mobile channel data from a CW transmitter. The 

averaging interval is centered about the receiving antenna. 
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For a non-line-of sight (NLOS) channel with a uniform 
distribution of scatterers around a receiving with a Jakes power 
spectrum [4], the resulting probability density function (PDF) 
of the received voltage envelope r(t) is a Rayleigh distributed 
random variable given by 
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where r ≥ 0 and b is the Rayleigh scaling parameter. 

The estimated local mean for discrete sampling is 
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where 𝑟𝑖 ≡ 𝑟(𝑥𝑖) are samples of the signal envelope.

From [2], The variance of the continuous average (2) is 
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where Jo is a zeroth order Bessel function of the first kind, b is 
the scaling factor, L is the averaging interval, and λ is the 
wavelength of the CW signal. Eq. (7) corrects the variance 
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originally reported by Lee [5].  For discrete sampling with N 
uniformly spaced samples, the variance is [2] 
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= 𝜎𝑢𝑛𝑐𝑜𝑟𝑟
2 + 𝜎𝑐𝑜𝑟𝑟

2  ,  (8) 

where 𝜎𝑟
2 is the variance of the Rayleigh PDF (3), and d is

distance between samples. Eq. (8) is analogous to the 
continuous-average result (7). The first term on the right-hand 
side of (8) is the usual expression for the variance 𝜎𝑢𝑛𝑐𝑜𝑟𝑟

2  of
the mean obtained by averaging N uncorrelated samples. The 
sum of Bessel functions 𝜎𝑐𝑜𝑟𝑟

2  accounts for correlations among 
the samples. 

III. RECOMMENDATIONS FOR DISCRETE CHANNEL SAMPLING

In order to quantify variations (in dB) about a local mean at
a location x, Lee [4] defines the “2 𝜎𝑚̂  spread” (spreading
factor) in decibels as 

2 𝜎𝑚̂ 𝑠𝑝𝑟𝑒𝑎𝑑 = 20 𝑙𝑜𝑔10

𝑚𝑟 + 𝜎𝑚̂

𝑚𝑟 − 𝜎𝑚̂

 (𝑑𝐵),  (9) 

where 𝑚𝑟 is the mean of the Rayleigh PDF (3), and 𝜎𝑚̂ is the
standard deviation derived from either (7) or (8). For the 
continuous case, Eq. (7) and Eq. (9) yield a spreading factor of 
1 dB (±1/2 dB) for an averaging interval 2L=60λ. This corrects 
the recommendation of a 40λ averaging interval originally 
proposed by Lee [5]. 

Fig. 2 shows linear plots of the standard deviations 
obtained from (7) for the continuous case, and discrete results 
obtained from (8) for the range of  0.25λ ≤ d ≤ 2.0λ. The 
specified averaging interval is 2L=60λ and b=1.  The red trace 
is the continuous result obtained from (7) and (9). As the 
sample spacing decreases, the standard deviation decreases in a 
staircase-like fashion, with rapid transitions occurring at half 
wavelength intervals. This is caused by the oscillitory behavior 
of the Bessel functions in (8). Close agreement is seen between 
discrete and continous averging for d ≤ 0.45λ,  with an absolute 
difference of less than 0.0002. A spreading factor of 1 dB is 
obtained over this range when (9) is invoked.   

Figure 2. Linear plots of the standard deviations for discrete window 

averaging from (8) (blue trace) and continuous averagingfrom (7) 

(red trace) for an averaging interval 2L=60λ. The Rayleigh scaling 

factor is b=1.  

Parsons [3] provides a discrete channel sampling criterion 
for an NLOS Rayleigh channel with a Jakes power spectrum. 
Parsons makes two primary assumptions. First, the envelope 
autocovariance between two adjacent samples is given by 

Bessel function expression 𝐽0
2 (

2𝜋𝑑

𝜆
). Second, it is assumed that 

all adjacent samples are uncorrelated, yielding a spacing of 

d=0.38, corresponding to the first zero of the Bessel function. 
The variance is then computed from the 𝜎𝑢𝑛𝑐𝑜𝑟𝑟

2  term in (8), 
which implies that all samples are uncorrelated. 

Table 1 shows the required sampling parameters needed to 
achieve a spreading factor of 1 dB. using both the analysis 
presented here and that of Parsons. Eq. (9) is used to compute 
the spreading factor for both cases.  

A self-consistent sampling criterion is now proposed, based 

on (8) and (9). Selecting an averaging interval of 2L = 60, a 

sampling spacing of d=0.45, and noting that d=2L/(N-1), the 
resulting number of samples is 𝑁 = 135. This accounts for the 
correlations among the channel voltage envelope samples.  

Parsons’ method yields significantly different results 
yielding a shorter averaging interval of 2L=31λ, a sample 
spacing of d=0.38λ, and N=83 samples to obtain a spreading 
factor of 1 dB. This significantly underestimates both the 
required number of samples and the averaging interval.  This 
difference is directly attributable to the assumptions of 
uncorrelated samples and using the continuous autocovariance 
to set the sample spacing for uncorrelated samples.  

Table 1. Sampling configurations to obtain a 1 dB spreading factor 

using our proposed method and that of Parsons [3].  

Method Averaging 
Interval 2L 

Sample 
Spacing d 

Number of 
Required 
Samples N 

Johnk, 
Lemmon, 
Dalke 

60λ 0.45λ 135 

Parsons 31λ 0.38λ 83 

IV. CONCLUSIONS

A new and self-consistent approach for the discrete spatial 

sampling of an NLOS radio channel with Rayleigh fading and 

a Jakes power spectrum has been presented. This approach 

results in more accurate discrete channel sampling parameters. 
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