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\ ABSTRACT

J
Several examples of the numerical evaluation of an integral

cquation for the calculation of the attenuation of a radio wave are given,

These waves are assumed to be pronagated over realistic, smoothly
varying irregular, inhomogeneous terrain. Results for propagation
over 2 cylindrical earth show an accuracy to 3-4 significant figures
whea compared with the classical residue series, Calculations for
propagation over smoo*h mixed land-sea paths agree with classical
mecthods. The applicability of the program to permit computation of
propagation over terrain with smooth height variation is demonstrated
by calculations of propagation over one and two Gaussian-skaped hills.
The ability of the program to allow treatment of variations in both
ground conductivity and height combired is illustrated by calculations
of propagation from the sea up a sloping beach and hy calculations of
propagation over an island, This last example illustrates the

importance of the terrain profile in mixed path calculatioas.
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1, INTRODUCTION

Despite numerous attempts, a numerically feasible way to
calculate the field strength of a radioc wave propagating over realistic,
smoothly varying, inhomogeneous terrain, has not yet hcen found,
Hufford (1952) developed an integral equation for such propagatiun by
using the free-space Green's function in Green's second identity and
slhiuowed that his solution yielded the c'assical result for propagation
over a smooth sphere, Berry (1967) succeeded in sulving the equation
numerically for vertically polarized radio waves, showing sample cal-
culations up to 10 MHz, If the normalized surface impedance is not
much smaller than 1, the numerical technigues are very inefficient,
however, and round-off errors accumulate so fast that the results are
not useful, For normal ground constants, this condition excludes all
horizontally polarized waves and all vertically polarizcd waves above
a few megahertz,

The method used in this paper is based on an elementary function
that is closely related to the Sommerfeld flat earth attenuation function,
This elementary function saiisfies a scalar ‘'parabulic' wave zquatiun,
The resulting integral equation is numerically feasible for bcth vertical
and horizontal nolarization and for normalized surface impedances in
the HF band,

The problem to be solved is illusirated in figure 1, which shows a

possible propagation path, The signal at the receiver is affecicd by the

mean curvature of the earth, height profile along the path, and the change

of surface impedance along the path, The changes may be abrupt (e, ¢.,

at a land sea boundary), or gradual (e,g., as the sea state, temperature,

or salinity change), The problem of abrupt changes in surface imped-
ance at smooth land-sea boundaries has been suvlved (Wait, 19¢41,
Numerical results for changes in surface impedance have been calcu-

lated by Rosich (1968, 1970),

et a2k

S S SRR




.2-

Receiver

Figure 1,

Isl(ﬂ

A possible propagation path.

Trans.

Seq



The present work allows the terrain to be represented by a
completely arbitrary profile in terms of the elevation versus distance,
The hills and valleys themselves are taken to be uniform in the direction
transverse to the propagation direction, The terrain may also be char-
acterized by a conductivity and dielectric constant which are functions of
distance,

The main body of the report describes the results of calculaticns
for several examples including paths similar to that in figure ., The
appendices contain the derivation of the integral equation, the necessary

numerical analysis, and a listing of the Fortran computer prougram,

2, THE INTEGRAL EQUATION

The derivation of the integral equation is given in appendix A, The
details will not be reiterated here, but the final result is (Ott, 1971)

X
i ~ikp =) - -
f(x) = g(x, y) Wiz, 0) - /‘T [ 1) e 0D Ly Wi, o) - XL

b S
o

+(p - g S E
(A Ar)I LTx-o 4T (1)
where x, £, y(x) and y(2) are defined in figure 2. The factor (.- ;r)

arises in mixed-path problems, That is, substituting 3, for v in (A-2)
and (A-9) will yield the difference (4- Ar)' The factor Ly is cunstant
with distance and is the relative value of the nuormalized surface
impedance, This facior is computed using the vaiues for - and . . for
the first section of a mixed path, The factor - varies with distance in
a mixed path problem, The variation of » with x may be cuntinuous or
contain abrupt changes. Thce factor (y- - l_) is zero for a single section

path, The remaining factors in (1) are defined as
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- (Abramowitz and Stegun, 1964)

A= {@ , vertical polarization

/n-1 , horizontal polerization

. 1180109 g
n- ¢ f(MHz)

o
"

frequency, in MHz

ground conductivity

Q
"

G = dielectric constant
g(x, y) = antenna pattern factor,

Equation (1) gives the integral equation for the attenuation function
normalized to twice the free-space field, The details of the

numerical solution of (1) are given in appendix B, Since the upper




limit of integration in (1) is x, the effects of backscatter are excluded,

That is, to inc'ude the effects of backscatter, the range of integration
would have to inciude the entire terrain, Also, the integral equation
in (1) neglects the effects of side-scatter since the derivation of (1)
assumed ridge: uniform in the direction transverse to the propagation
direction. In the case of small slopes and the transmitting antenna

near the earth, side-gcatter and backscatter are second order effects,

3. EXAMPLES

In this section we examine the behavior of the attenuation function,
fix), ior eight terrain profiles, y(x), Comparisons of results from (1)
with previous results for a flat earth, a smooth homogeneous cylindrical
earth, a smooth sea-land-sea path and a single Gaussian-shaped ridge
seem to validate the technique, Its more general applicability is illus-
trated by calculations for propagation over two Gaussian hills, over an
islard that rises above sea level, and over a sea-sloping beach with a
sana-dune path,

3.1 A Flat Earth

y(x) = 0, y’(x) =0, The solution of the :ntegral equation (1) is

trivial and 18 simply

ix) = Wix), (2)

where W(x) is the Somumerfeld flat-earth attenuation function (Wait,
1964).
3,2 A Parabodoidal Earth

y(x) =~ -x2/2a, y’(x) = -x/a, where a is the radius of the
cylinder and is taken to be about 6, 37 y 10° kilometers, The frequency
of the transmitting antenna is | MHz and is vertically polarized, The
ground constants are: g= 0,01 mho/m and €. = 10, The magnitude
and phase of the attenuation ‘unction versus horizontal distance, x are

given in table I, These results are compared in table I with those

-6-
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obtained using the residue series (Wait, 1964) for the attenuation function.
The agreement is seen to be very good out to the largest distance com-
puted. F¢r example, at 300 km, the difference in the phase between the
integral equation method and the residue series method is about 0. 009
rad. or about 0. 5°. The greatest error in amplitude occurs at a distance
of 150 km and is about 2 units in the third significant figure. The error
decreases on either side of this point, a characteristic common to many
numerical solutions. The rasults obtained in table I are for a step size,
h =1 km; hoviever, a step size of 2 km did not change the results
appreciably. A detailed error analysis is beyond the scope of this paper.

The last significact figure of agrzement in table I is underiined.

Table I. Attenuation function versus distance

Integral Equation Solution Residue Series Solution

Horizontal
Distance, x Phase Phase
(km.) Amplitude (rad.) Amplitude (rad.)
0 1.70 0 i.0 0
25 0. 51331 -1.9717 0.51332 -1.9709
50 0.28936 -2.5929 0.28970 -2.5921
75 0.17575 -2.9597 0.17595 -2.9556
100 0.11506 3.0902 0.11520 3. 0892
125 0.08944 2.9126 0.08000 2.9131
150 0.05914 2.7606 0.05939 2.7663
175 Q.04504 2.6169 0.04502 2, 6120
200 J.035]2 2.4736 0.03509 2.4680
225 0.02781 2.3278 0.02777 2.3213
250 0.02224 2.1780 J, 02221 2.1710
275 0.01790 2.0249 0.01788 2.1163
300 0.01447 1. 8681 0. 01446 1.8591
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The time required to compute the attenuation function at inter-
vals of one kilometer out to 2 maxirnum distance of 300 kin was about
25 min using a CDC 3800 computer. Tke time required to compute the
attenuation function for a specified profile is approximately proportional
to the square of the number of points used along the abscissa. Thus, in
the above example, if the maximum distance were 150 km rather than
300 km, the time required would be about 1/4 as much, or about 6 min.
The sample input and output data given in appendix C pertain to this

sample.

3.3 A Gaussian-Shaped Ridge
y= o ~lx=5P

» ¥/ = -2(x-5)y. This is a more interesting profile
at least from the standpoint of radio propagation. The profile together
with the magnitude of the attenuation function versus distance are shown
plotted in figure 3. The magnitude of the attenuation function |f(x)| ,
is normalized to twice the free space field, 2 exp( -ikro)/ro. The ob-
server is located on the terrain and the transmitter is located at the
coordinate origin. The ground constants are o = 0, 01 mho/ m and
€. 10. The transmitter is vertically polarized and the frequency is
1 MHz. The terrain profile shown in the insert has a maximum height
of 1 km and the hill is centered at a point 5 km from the transmitter.
The solid straight line in figure 3 is the attenuation function, W(x),
for a flat earth.

The data in figure 3 represented by crosses was obtained by
replacing the Gaussian-shaped ridge with a rounded knife-edge
and computing the field on the surface shown dashed in figure 4
using ''4-ray theory' (Schelleng, et. al., 1933), The radius of the

roanded knife-edge is 500 m (which is the curvature of the Gaussian
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hill at its crest) and the knife-edge is located 1 km above the plane

y = 0. The four rays are the two rays that strike the knife-edge on the
illuminated side plus the two rays that reach an observer in the shaded
side i.e,, a direct diffracted ray and a ray which is diffracted and then
reflected before reaching the observer. The results in figure 3 show
excellent agreement between the points computed using ''4-ray theory"
and those obtained solving the integral equation numerically.

The open circles in figure 3 were computed 1sing the Hufford
integral equation (Hufford, 1952). Since there arc fewer approximations
in the Hufford integral equation than in the results presented in thiz
paper, the former should be considered the most accurate. Hufford's
integral equation shows a slight dip in the attenuation function at a
distance of about 9 km which is exaggerated by the solid circles but
does not appear in the knife-edge results. Also, the open circles dif-
fer somewhat in the shadow frum the results presented earlier by
Berry (1967}, There were projection factors, of the form JW,
omitted from Berry's results since in most applications these factors
are nearly unity, i.e., y’ is small. However, in the present example
these factors become important,

The solid circles in figure 3 present the attenuation function
computed numerically using the integral equatioa in (1). We find some
error in the results obtained using the integral equation presented in
tLis paper around 6 km and 9 km. However, the erro» i3 small and is
exaggerated in this particular example because of the large slopes
encountered on the terrain profile. The error is a result of the

assumptioa that

-]
3____‘?_,.0 .

dx8 T
or that the fast phase variation of @ with x is in the term exp(-ikx).
In most terrain profiles, this will indeed be a good approximation and,

in fact, in the present example yields adequate accuracy.

-11-




The physical characteristics of the results in figure 3 are inter-
preted most easily using the ray picture. The attenuation functioa
decreases at the flat earth rate for the first 2% km. Then, as the
observation point moves up the crest of the hill, the attenuation function
increases due to focusing of the direct ray and the surface ray on the
lit side of the crest. The attenuation function reaches its maximum
value very close to the point on the terrain where there is an inflection
point. This increase in the amplitude to a maximurm on the lit side near
the crest has also been predicted analytically by Wait and Murphy
(1958). Just over the top of the hill the attenuation function decreases
since the direct ray is no longer present and then the attenuation func-
tion partially recovers again due to the constructive interference of a
direct diffracted ray and a diffracted ray traveling along the surface

before reaching the observer.
3.4 A Sea-Land-Sea Path

The terrain profile is flat in this examnple and the ground con-
stants change abruptly at the sea-land, land sea interfaces. This
example was selected as a check on the mixed path capabilities of the
method, The results for the magnitude of the attenuation function
normalized to twice the free space field are plotted in figurs 5 versus
distance from the antenna in km. The antenna is vertically polarized
and the frequency is 10 MHz. The solid circles represent the attenua-
tion function computed numerically using (1). The open circles in
figure 5 represent the attenuation function computed by Rosich (1968,
1970) using a perturbation approach. The data givea by the crosses in
figure 5 represents the attenuation function computed using a method
based upon the classical residue series (Furutsu, et., al., 1964). This
method is equivalent to that of Wait (1964). This latter method makes

the fewest approximatious for the three section earth considered in

-12-
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this example., The agreement between the solid circles representing (1)
and the crosses, appears to demonstrate the validity of the formulatioa
in treating mixed path propagation problems. The abrupt changes in
conductivity and dielectric constant used in this example do not repre-
sent a realistic sea-land interface. The method is, however, capable of

treating a continuous variation of conductivity and dielectric constant.
3.5 A Sea-Land-Sea Path With An Island

This example combines terrain features and mixed-path effects,
The island is drawn to scale in figure 6 and its elevadion is 250 m at the
higiest point. The magnitude of the attenuatioa function normalized to
twice the free space field veraus distance is plotted in figure 6. The
antenna is vertically polarized and the frequency is 10 MHz, For com-
parison, the magnitude of the attenuation function for a flat island is
also shown in figure 6. The most significant feature of figure 6 is that
the terrain profile has a greater effect on the attenuation function on the
island than do changes in the ground constants, and the residual effect
of the profile well beyond the island is comparable to that of the change

in ground constants,
3.6 A Sloping Beach At High And Low Tides

The profile is drawn to scale in figure 7 and the assumed ground
constants used for the wet and dry sand are given in the figure, The
transmitter is out at sca. As the tide rises, the wet sand in figure 7 is
covered by water and as the tide recedes it exposes the wet sand. The
magnitude of the attenuation function versus distance is shown p.otted in
figure 7. There is little difference in thc attenuation functioa at high
and low tide. However, the presence of the crest in the beach produces
a peak in the attenuation function on the lit side and a shadox in back.
This illustrates the importance of the terrain profile in mixed path

problems,

=14«
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3.7 Two Gaussian Hills

The profile is drawn to scale in figure 8, Thc separation of the
hills is such that a null instead of a peak in the attenuation function is
produced on the lit side of the second hill. Obviously there are an infinite
number of combinations of hills that will in turn produce an infinite
number of possible combinations of nulls and psaks in the attenuation
function. The method will, in principle, treat any number of hills and
valleys. The hille need not have Gaussian profiles; any smooth func-
tion of distance is acceptable.

3.8 A Gaussian Hill (transmitting frequency of 10 MHz )

The profile as well as the magnitude of the attenuation function
versus distance is shown in figure 9. The results in figure 9 differ
somewhat from those published earlier by Berry (1967). Near the
crest of the hill small oscillations in the attenuation occur which were
not present when the transmitting frequency was . MHz. One possible
explanation for these wiggles is numnerical instability. However, this
explanition was discarded when finer subdivisions of thc integration
interval failed to remove the oscillatione. At present, they can only be

explained in terms of an interference effect between a ground-reflected
wave angd the ground wave the former beoing stronger at 10 MHz than

at 1 MHx., This case represents a quasi upper limit in the capability of
the computar program in Serms of frequency and slopes. That is,
higher frequencies can be treated but the terrain cannot change as fast
as it does in figure 9. Conversely, more rapid changes in terrain can
be treated provided tke frequency is less than it is in figure 9. Sance
the slopes in figure 9 are near unity, we have a heuriatic uacertainty

principle for our computer program

y' { s 10 (MHz) .
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4, RECOMMENDATIONS AND CONCLUSIONS

The numerical evaluation of an integral eqQuatioa for the propaga~
tion of radio waves over irregular, inhomogeneous terrain is demon-
strated for several examples. Some of the examples provide a realistic
picture of the attenuation of a radio wave when it encounters a terrain
anomaly, such as a large conducting ridge. The Gaussian-Hill example
at 1 MHz yields physicial insight into a focusing phenomenon of the field
just before the crest of a hill that cannot be predicted on the basis of
simple diffraction theory, but is in fact predicted by the numerical
solution of the integral equation. However, ray theory in a concave
region with multiple reflections may work.

It appears that the results discussed in this report represent a
useful tool for analyzing the attenuation loss of a radio wave as it en-
counters terrain anomalies such as hills, valleys, land~sea interfaces,
etc. The computer program for this analysis is listed in appendix C.
However, there are improvements that should be studied. They 2re
listed below in an order not necessarily representing their relative

imporiance.

1) A three-dimensional model of the terrain. It should be
determined if the energy follows a geodesic and if the

effects of transverse curvature are important or not.

2) Since the sclution represented by the integral equations
does in fact represent a solution of the wave equaiion
plus boundary conditions, it applies to VHF frequencies
as well as HF frequencies. Consequently, numerical
techniques should be studied so that the program will
handle VHF frequencies efficiently.




3) Real antennas rather than an idealized point source with
an arbitrary pattern factor should be investigated;
especially when a large difiracting obstacle is within

the first Fresnel zone of the antenna.
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APPENDIX A: Derivation of the integral equation

Consider a solution, @, of the wave equation

2 2
(i) %;f’r g;? + Ko=-2tT(x,y) , y>ylx

which satisfies an impedance boundary condition of the form

. 09 _ ikAg -
(ii) 5o _JT:(%')Q s Y = y(x)

where ¢ represents the vertical component of E for the case of verti-
cal polarization or the vertical component of H for horizontal polariza-
tion. The time depend2nce is exp(ivt) and the normalized impedance,

A, near grazing is

An-d
M

’ vertical polarization
N =
J n=1 » horizaoatal polarization
with
= .49
Nt we
o

where ar is the dielectric constant, O is the condu:tivity and u the
angular frequency.
The source distribution is T(x,y). Let

¢z O ¥(x, y)

.

SN R,




and i) becomes

~9 2 .
0 Q ! . aﬂ - . ikx
v 57 - 2ik =2 217 (x,y) e

Asgsuming that the fast variation with x occurs in exp(-ik x)

Ry
s?‘*"

or that 3°y/3x° is small compared with remaining terms we find

2 .
g—)} - Zik%i-= -21T(x,y) elk'x (A-1)

An elementary function for (A-1) is (Ott and Berry, 1970)

[2ik | ~ik(n-y)? / 2( -x)
V) znlk G%,y;i8,N) = e
J €-x
. -iktn @ .
¢ ‘l/kﬁe j exp{ ~ik(t-y)* 7 2(8 -x)]e"kﬁt dt, x < 2
d 8 -x

o kn-y)* / 28 -x)

W(x, ), x < 3.

JE -x
i 2ik '
VT Glx,y:5,n) = 0, x> %
225,




The function satisfies

3%G . 3G _
Wa + Zxk—a-; = 2ngx-€,¥Y-7m) (A-3)

The constant on the left-hand-side of (A-2) comes from integrating both
sides of (A-3) over the region R = {x, Y - w<X<€ o Y(X) <Y <o) .
Multiplying (A-1) by G, (A-3) by ¢, and subtracting and inte-
grating over the region R yields
2y 33G . 3% 3G
62t . 428 ax dy-2ik [[(G2L + ¢3S
Jeiw - vop) & @ ledxt v ax gy
R R

= -2n J’Fe"‘"Todxdy+n¢(p) (A-4)

X

where P is the observation point (¢,n), and y is a region around the

source, The divergence theorsm yields on the surface y(x)

{‘_Y‘Gﬂ-,“__q dxd:"G-?—!.t”C'e‘e dc
R C (A-5)

where e, is the outward directed normal (into the surface)and C is a

contour cnclosing R and
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and along y = y(x)

=~/1+(y')° dx

Also
i 9—'- f a—g = 1 _a_
2ik ﬂ(c 3 T V35 dxdy = 2ik i) 33 (G¥) daxay
R R
=2k G¥g e de (A-6)

C

From (ii} and neglecting 3%¥/3x compared with other terms

oy _ . syt s .
ay-lkzﬂ’ iky' ¥ (A-7)
and substituting (A-5), (A-6), and (A-7) into (A-4), and assumin3 % =0,
for x = 0, which means neglecting backscatter from the regioa x:= 0,

and all sources are in the region x> 0,

g ‘:
- [ikAG - iky’ VG - t ]dx Zxkj Gy’ d«

o o

FLIRE e*G dxdy = = ¢ (P)

3
<a
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4 .
| [-ikﬁvG-iky’tG+t% Tax+2n [ 7G e axdy =m 4 (P)

o ph (A-8)

Substituting (Ott and Berry, 1970)

[‘—zm ks r——c+xkexp{ -m@ Bl (227 e

in (A-8) gives

-xkj {y VG - exg{-xk(n, 3/Z(§-xa[___x‘ndx

o JE -x

+2n “ rce™ ay=ny(p) .
R

-ik(§ -x)

Reintroducing = and defining G =G e yields

ik °? - exp-ik{(Z-x}+ [ (n-y)’/ 2(%-x)3} ~ n-y "
2 * ) L E-x J

} éx

'3
C wlb -X

- 1 .
TG axdy =3 A(P)e ™ (4-10)

t.
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We assume that the antenra has a phase center where the source

distribution, T(x,y), is located. Then we write

= oo x(x £ ] [ et a1

where (x + y*/2x) is the first two terms in the binomial expansion for
the distance between the source point O and the observation point at P.
The function g(P) represents the antenna gain or pattern facto-, We

also introduce an attenuation function f(P) defined as
. , ﬁ\ 1 _
o(P) = 24(F, Xxp, - i kix+ ZX/, __\/'/x (A-12)

When these two equations are substituted into (A-10), we find (inter-
changing (§,n) with (x,y))

f(x) = glx, y) W(x, o)

ik ‘xr "ikm(xbg) ' -r X "}
el e VIEIW -5 | e 48
o
(A-13)
where
g - .ris + rsf- -
el T T E T &
= y{x)
oz y(%)

which differs slightly from the result ;n Ott and Rerry (1970); sce for
example Ott (1971).
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— 1
Wi(x,E)=1-i Jup ™% erfc (iu?)

-l 2 -
- R ) Aota

\2

-T] e
P {1-%():5} ,» 8<x

[
n
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APPENDIX B: Numerical Analyeis

The integral equation (1) or equivalently (A.-13) is of *he form of
a linear Volterra integral equation of the second kind, i.e.,
X ]
f(x) = g(x) - ¢ 3 f(s) K(x, s) ds (B-1)

(]

where f(x) is the unknown attenuation function whose value is to be
determined in the interval 0< s < x . The function g(x) and K(x, s)
are known, and c is a constant, If g(x) is bounded and continuous
and if
x
I |K(x,s)| dssL<w (B -2)

o

then the solution will be unique and continuous (Wagner, 1953). This integral
equation can be solved by a stepwise calculation that divides the interval

x into subintervals of arbitrary width,

That is, consider the subdivision

[

PR S
fe) = W) - (i) { | Hs)K(x , ) as
(o]

X

* n
+ | He)K (x_ys)ds + -oe + | ok b, 5)as)
b.<} Xn-l (B-3)

The unknown function, f(s), is fitted with a polynomial of the form

f(s) =ag +ays +ay s° (B-4)
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Increasing the degrze of the polynomial to 3 or higher would
result in even higher accuracy; howevar, the algebra becomes more
complicated and sufficient accuracy can be obtained with the polyncmial
of degree 2. In some examples, the solution may become unstable for
the higher degree polynomial and oscillate between the fitted points.

The solution of the integral equation requires special starting
procedures, We suggest that the interpolating polynomial be of the form

1
1 3/2
f(S)=ao+a152+°~25+0‘35/ y 0585 % (B-5)

and to use (B-4) for x < s< x - The choice in (B-5) is a logical one if
we assume the terrain is flat in the immediate vicinity of the transmit-
ting antenna. If the terrain is flat th2 exact answer for the attenuation
function is then in fact a half-order power series in the numerical dis-
tance. Requiring the polynomial in {B-5) to pass through the first four

consecutive points yields

a, =1.0 (B~-6a)
0, =Ry f(x) + Roflx) + Rafl(x) + Ry (B -6b)
az = Ref(x) t Reflx) + Ry f(x) + Re (B-6c)
0z = Rgf(x) + Rof(e) + Ry, f(x3) + Ry {B-64)

The constants in (B-4) are found by requiring the polynomial to pass

throuzh the points X, 50 X5 and x; . It is a simple exercise to show

1
that
2 = Rigflx) + Rig fx; ) + Rusilx, ) (B-72)
3 =Rygflx) + Ripflx, ;) + Rigflx; ) (B-7b) #
% =Rigilx) + Reoflx, ) + Req flx; ,) (B-7c)
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where the R's in (B-6) and (B-7) are defined as

D= (%% )%[xx (’%%'Ye%)""% (xl%%a%) tx (xp.%-xx%)] (B -8a)
R = %% (xﬁ-xe%)/D (B-8b)
Ro = x % (xlé-xﬂ%)/D (B-8c)
Ry =x1% (x‘a%-xx%)/D (B-84)
R, = [ 5 (5 3/2 :&3/2) % { 13/2 3/2) ():S/Z-xflz)]/n (B -8e)
Rs =(xexe) (% -%)/D (B-8f)
Rg = (xlxs)% (% -3 )/ D (B-8g)
R, =(x1x9)%(xl - )/D (B -8h)
R, = [ z( 32 3/2) %( 3/2_ 3/.2)+ ;,( 3/2_ 3/2):\/0 (B-81)
R, -(x‘ax-a)l(%1 %/D (B-8j)
R, = (xma)i (xlé-&%)/D (B -8Kk)
Ry, = (xlxﬂ)% (XB%'XI%)/D (B-8L)
Ry = [&%b% -x9)+>a%(x1 % ) +xs%(xp, - )]/ D (B-8m)
Dy = bty =) [ - 0ot )% ] (B-8o)
Rig =% y % , (x;_, =% _,)/D; (B-80)
Rig =%, %, _, (x, - _,)/D, (B-8p)
Ris =x, %, ; (x, ; -x)/D; (B-84q)
Rig = (6 _; =% )/ D, (B-8r)
Rip =% _, -%)/D; (B-8s)
Rieg = (& - xai_l)/Di (B-8t)
Rig = (x, , =%, 1)/D; (B-8u)
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Rgo = (x, - xi-Z)/Di (B -8v)

RQI = (xi'l = xi)/Di (B-s‘”)

Using our polynomial interpolation formulas for £(s) we find

that the integrals in (B-3) all have the following generic form

X,
P, (xi » X xk) = j ’ s'{'lzK(xi , 8) ds (B-9)
*x
with
0< ks j-1
1< js<i
25 1i<n (B=10)

‘t:=0, 1, 2, 3, 40

These integrals are evaluated numerically using a five point Gaussian
integration formula with special attention given to those integrals having
singularities at either of the endpoints of integration.

Substituting (B -4) through (B-10) into (B-3) yields the following

general expression for f(x) at the ith point

1
£(6) { 14 (1/0) % Rug (i i iy i=11+Re g (00 iy 1y i-1)+R (06 3, 1,3-1) ]}

1 ‘2 3 3
= WA ) B (3 5-1R ) B G 5-1)4Ra ) By (o)
i=1 j=1 j=1

<

3 3 3
#Ryz ) B (5 J - IHE [ Ra ) Py (i doj=1) + Re) By ad-1)
j=1 j=1 j=1
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3 3 3
+R, ) B (430 3-1) |+ Re ) o (50 3-104Ra ) s (3o 5-1)
j=1 =1 =1

3
+R102p3 (is ja j'l) Rl ) (4)P° (io 4: 3)+R18 (4)P.? (is 49 3)+Re 1 (4)111 (is 4: 3)]
j=1

3 3 3
+£3) R ) (03, 5-104Ry ) pa (L da3=1) + Ry ) o (i Jo3-1)
j=1 j=1 j=1

tRy 4 (4)R) (iy 4, 3)+Ry 5 (4)Pa (i, 4, 3)+R4ao (4)ps (i, 4, 3)+Ry 5 (5)130 (i, 5, 4)

i-2
+Rya (510, (1 5, Rey ()R (1,5,4) | + ) ') [ Ryg (m)py (i, m, m-1)

m=4

+Ry 4 (m+1)p, (i, m+1, m) +R, 5 (m+2)p, (i, 142, m+1)

+R, g (im)p; (i, m, m=1)+Ry 4 (m+1)p, (i, m+1, m) +R; g (m+2)p; (i, m+2, m+1)
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+R;g (m)p (i, m,m-1)+Rg, (m+1)p, (i, m+1, m)+Rg; (m+2)R, (i, m+2, m+1)]

+£(1-1)[ Ry o U-1IRo 5, 1-1 42) + Ry (DR, (i 1, i-11¥Ra (D) (4, 81, 1-2)

+Ry ()ps (3,1, i=1)+Ry o (i~1)py (1,i-1,1-2) +Rg o (1) (i, 1, i-l)]} (B-11)

Reference

(B-1) Wagner, Carl (1953), "On the numerical solution of Volterra
integral equations, "' J. Math. and Phys. 32, pp. 289-401.
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APPENDIX C: The Computer Program and Flow Chart

Program Wagner implements the procedure given in Appendix B
for solving the integral equation derived in Appendix A. Flexibility is
obtained by using appropriate versions of three subroutines:

(1) TERRANE, which returns the height, slope, and ground con-
stants (0, € r) as a function of distance, x. By writing appropriate
statements in this subroutine the user can define any propagatioa path he
needs. The general form of the subroutine TERRANE is shoan on page 49,
and two particular implementations used for examples in this report are
listed on pages 50 and 51 ,

(2) DISTX, which returns the set of distances x(I) at which the
function F(x) will be calculated. The general form of DISTX is shown
on page 45, and two particular implementations are shown on pages 46
and 47.

{(3) KERNL, which computes the kernel of the integral equation.
Program Wagner can be used to solve other integral equations of the
form (B-1) if the kernel includes the factor [ s(x-s)] -4 by modifying
subroutine KERNL, For example, WAGNER can solve Hufford's
integral equation.

Comment cards in the listings that follow explain the program's

operation. The input card sequence for Programm WAGNER is
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Card

2 through 4

5 through N+4

N+5

N+5§

Following is a flow chart together with a statement listiag
(Fortran 3800) of the computer program, and a sample output.

Cols.
1-10

3-33 & 36-66

1-10

1-10
11-20

21-30

Description

The number of Gaussian quadrature abcissas
and weights (5 recommended)

Values for the Gaussian weights and abcissas.

The N points at whizh the attenuation func-
tion is to be calculated. These distances
are read in kilometers, by DISTX.

A blank card which siguals the end of the
distance deck when the form of DISTX is

that given on page 47. When DISTX takes
the form given on page 46, no blank card
i¢ required.

Source height in kilometers.

Frequency in Megahertz.

Polarisation, 1. = vertical, 2. = horizontal.
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[aNaXa)

laNaNaNaNalal

(aXal

1000

1010

1040

PROGRAM WAGNER

A PROGRAM TO COMPUTE HF GROUND WAVE ATTENUATION
IRREGULAR, INHOMOGENEOUS TERRAIN. REFERENCE:
TELECOMMUNICATIONS RESEARCH REPORT, No, 7, 1970.

(sNeNeNeNe)

DIMENSION IPOL(2)

COMMON 70/ F{2000)92R131(2000)sR16(2000)R15(2000/9R16(2000!
1 R1712000):R18(2000)9R19¢(2000)sR20( 2000} sR21¢2000)
COMMON /1/ HA

COMMON 72/ DosHoINHP

COMMON /737 DELTARWAVE

COMMON /&7 FREQPOL

COMMON /57 NGrABL4B) 9GH{48)

COMMON /767 N»X(2001) 9!

TYPE DOUBLE DAB»OGH

COMPLEX FEWH?F osALAMZ 9SUMsDELTARSIETAR

COMPLEX KERNL sPQ9sP1l9P2yP39sP&CTMP

IPOL(1)=8H VERTIC $ [1POL(2)=8HHOR]ZONT

READ GAUSSIAN QUADKATURE ABCISSAS AIiD WEIGHTS

READ 1000» NG
FORMAT(110)
NR=(NG+1) /2

DU 1 L=1,NR
READ 1010s DAB»OGH
FORMAT (2D33.2%)
JaNG=L+]
AB(L)=DAB
ABlJ)==AB(L)
GH(L ) =0GM
GH(J)=GHLL)

CALL SUBROUTINE TO SET UP DISTAICE ARRAY X IN METERS
START WITH Xi2)e X(1)i=0e HAS ALREADY BEEN SET.

THE DISTANCES DO NOT HAVE TO BE EGualLlY SPACED.
SUBROUT 11,.E C(STX SHOULD MAKE SURE N < 2000

X{1)=q.
Ftl)s{len04!
CALL DISTX

MAKE SURE THERE ARE AT LEAST & DISTANCES
IF (N.GEea) GO TO &
PRINT 1040
FORMAT (eONUMBER OF DISTANCES 0 &°)
CALL EXIT

SORTX2=SORT(X(2))

SORTX3=SORT(X(3))

SORTX4sSORT(X(&))
D1=SORY(X(2)OX(3)OX(4)1O(X(2!®({SURTXA~SURTXIDN+X(AI®(SURTYZ-SURTXG)
1 ¢X(&)®(SORTXI-SORTX2)}

R1=X(3)10X(4)®ISORTX4-SQRTXI /D1

R2=x(2)1oX (a8 (SORTX2-SO0RTX&: /D]

RIsX(2)eX(3) e SORTX3I-SORTX21/01
RA=(X(2)0({SUNTXA®®3-SURTXI®23)eX{3)S{SURTX2001-SURTXA®])

1 *X(4)®{ISQRTX3I®e3I-SQRTX2e3))/D]
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R5=SQRT(X(3)*X(4) )*(X(3)=X(4))/D1
R5=SQRT(X(2)*#X(4) )*(X(4)=X(2))/D1
R7=SQRT (X (2)%#X(3))*(X(2}=-X(3))/D1
R8=(SARTXZ2* (SURTX3*#3=-SQRTX4*#3)+SARTX3* (SQRTX4*#3-SWRTX2#%*3)
1 +SQRTX4* (SORTX7##3-SQRT1X3%*%3)1/D1
R9=SWRT(X(3)%#X{4) )% (SWURTX4-SQRTX3)/D1
R10=SQRT{X(2)#X(4))*(SQRTX2-SQWRTX4) /D]
R11=SQRT(X(2)#X(3))*(SQRTX3-SQRTX%2)/D1
R12={SQRTX2* (X(4)=X(3))+SURTX3*(X(2)=X(4))+SQRTX4*{Xx!{3)=X(2)))/D1
DO 1C M=5,sN
M1=M-1
M2 =M-2
D2=(X(M2)=X (ML) )% (XIM)¥#2=X(M)®(X{M1)+X(M2) 14+X(M1)*X(M2))
R13(M)=X'M1)#X(M2)*(X(M2)=X{M1))/D2
R14(M)=X(M)*X(M2)%(X(Mt=X(M2))/D2
R15(M)=X(M)®#X(M1)*(X(M1)=X(M))/D2
R16(Mi=(X(M1)*#%#2-X(M2)%52)/D2
R17(M)=(X(M2)*#2=X(M)*%2)/D2
R18(M)=(X(M;%*%#2-X(M1)*%2)/D2
R1G(M)=(XI{M2)=X(M1)}/D2
R20(M)=(X (M) =X(M21)/D2

10 R21(M)=(X(M1)=X(M)})/D2

READ SOVURCE HEIGHTs FREQUENCYs AND POLARIZATION
coL DESCRIPTION
1-10 SOURCE HEICGHT» K
11-20 FREQUENCY»y» MHZ
21-30 POLARIZATIONs 1e = VERTICALs 2. = HORIZONTAL

20 FEAD 2000 HASFREQsPOL
2000 FORMAT (3F10.4)
IF (EOFy69 €922
22 HA=HA#1,.,E3
KPOL=POL
ALAM=2,997925E2/FREQ
WAVE=6¢283185307/ALAM
ALAMZ = ((0e707106781290e7071067812)/SQRTF (ALAMI )
CALL .:EADING
PRINT 2590y FREQs» IPOL (KPOL) sHA
2500 FORMAT (*OFREGQUENCY =%#9F1042910X9A8s#*AL POLARIZATION*5:(GX9* ANTENNA
1 HEIGHT =#yF6¢29% METERS*//
2 OXoX¥ 914X Z2% s 10OXs*CONDUCTIVITY* 93X o *DIELECTRICH 915X s *¥F(X)#*922X
3 RTIMING*/8X e (M) %y 12X ¥ (M) *s12X9* (MHO/M) %y 6X 9 *CONSTANT* 98X 9 ¥MAGH,
4 13X9#ARG¥ 516X ®#({SEC)X)
To=KLOCK(O0)

LOOP ON DISTANCE

DO 100 I=1»sN

CALL TERRANE (X(I)eHsHPsCONDSEPSsCONDRYEPSR)
IF (I.EQel) GO TO 75

D=XiI)+(H®%2)/(2,%#X(]))

ETAR =~ CMPLX(EPSR»=17975,*CONDR/FREQ)

DELTAR = CSQRT(ETAR - 1le)
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IF{KPOL+EQe1) DELTAR = DELTAR/ETAR
| FOI)=FEWH(HsX (1))
| IF (I1.LEe6) GO TO 75

2 THROUGH &

r C
| C J
C
SUM=z(0e306¢)
DO 40 J=2v4
PO=P1=P2=P3=(0e90e)
K=J-1
XP2=0e5%(X(J)+X(K))
XM2=0 5% (X(J)=X(K))
0O 35 M=15NG
XO=XP2+AB(M) %#XM2
CTMP=KERNL (X0 ) *GH (M)
P1=P1+CTMP*SQRT (X0)
P2=P2+CTMP#*X0
P3=P34+CTMP*SQRT(X(Q) *#%*3
IF (KeNEel) GO TO 33
X0=0e25%#X (J) % (1,+AB(M) ) *#x2
PO=PO+SQRT (X0 ) *KERNL (X0 ) *GH(M)
GO TO 35
33 PO=PO+CTMP
35 CONTINUE
P1=P1%#XM2
P2=P2%#XM2
P3=P3%#XM2
IF (KeNEel) GO TO 38
PO=PO#SQRT(X(J))
GO TO 40
38 PO=PO*XM2
40 SUM=SUM+PO+R4%*P]1 +RB8%*P2+R12%*P3 +F(2)* (R1*P1+R5%#P2+R9%*P3)
1 +F(3)#(R2¥P1+R6*#P2+R10#P3)4F (4 )% (R3*#P1+R7*P2+R11%*P3)

C J = 5 THROUGH [-1

11=1-1
DO 50 J=5,11
PO=P2=P4=(0e30e)
XP220.5%(X(J)+X(J=1))
XM27045%(X(J)=X(J=1))
DC 45 M=1sNG
X0=XP2+AB (M) *#XM2
CTMP=KERNL (X0) #GH (M)
PO=P0+CTMP
P2=P2+CTMP*X0
45 P4=P4+CTMP*XQ*#2
PO=PO*XM2
P2=P2#XM2
P4=P4*XM2
50 SUM=SUM+F (J=2)#(R15(J)*PQ+R18(J) *#P2+R21(J) *P4)
1 +F(J=1)#(R14(J)*PO+R17 (J)#P2+R20(J) *P4)
2 +F(J)  *(R13(J)*PO+R16 (J)*P2+R19(J)*#P4
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J=1

THETA=ASINF(SQRT(X(I1)/X(I)))
CTHETA=COSF(THETA)
PO:PZ:PQ:(O. 90e¢)
DO 55 M=14sNG
TEMP=1e-0e25%CTHETA®%2% (14,+AB(M) ) #%2
X0=X(1)*TEMP
CTMP=SQRT(X(1)=X0)*KERNL (XQ)*GH (M)
PO=PO+CTMP
P2=P2+CTMP*TEMP

55 P4=P4+CTMP*TEMP*%2
PO=PO*CTHETA*SQRT(X(I))
P2=P2%*CTHETA*SQRT(X(]))%*u3
P4=P4*CTHETA®*SQRT(X(]) ) *%5

EQUATION (B-11)

FOI)=(F({(I)=-ALAMZ* (SUM+F(]-2)%#(R15(1)*PO+R18(1)*P2+R21(1])*P4)
1 +F(I1)*(R14(1)*PO+R17(1)*P2+R20(1)*#P4)) )/ (14+ALAMZ®(R13(])*PO
2 +R16(1)*P2+R19(1)%*P4))
75 AMP = CABSI(F({I))
PHA = CANGI(F(]I))
TIME=(KLOCK{(0)-TO}*0,001
PRINT 80009 X(I)9sHICONDSIEPSsAMPPHA S TIME

8000 FORMAT (#0*9F12¢29F18e99F1l4e69F13¢47E18e89E16489F1503)

C

100 CONTINUE
GO TG 20

999 CALL EXIT
END




SUBROUTINE DISTX

READ DISTANCES IN KM AND CONVERTS THEM TO METERS
(A DISTANCE OF ZERO SIGNALS END OF DISTANCE DECK)
COMMON /6/ N»X(2001)s1

NN

IN THIS SUBROUTINE THE USER MUST FILL
THE X(I) ARRAY WITH N VARIABLES.

aa0Q

RETURN

END
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SUBROUTINE DISTX
COMPUTES EQUALLY SPACED DISTANCES
COMMON 76/ N9X(2001)»1
INPUT
DMIN == FIRST DISTANCE IN KM
DMAX == MAXIMUM DISTANCE IN KM
DINC == INCREMENT ON DISTANCE IN KM

READ 1000s DMINsDMAX9sDINC

1000 FORMAT (3Fl0e2)
IF (DMINeEQeQe¢)} DMIN=DMIN+DINC
N=(DMAX=DMIN)/DINC+2
DO 10 I32sN
X(I)=(DMIN+(1-2)*DINC)#14E3

10 CONTINUE

RETURN

END

Note, this is an example of subroutine DISTX.
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SUBROUTINE DISTX
C READ DISTANCES IN KM AND CONVERTS THEM TO METERS

C (A DISTANCE OF ZERO SIGNALS END OF DISTANCE DEZK)
COMMON /67 NsX{(2001)s1
DO 2 1=242001
READ 10209 X(I)
1020 FORMAT (F10e5)
IF (X(I)eEQeOe) GO TO 3
X(I)=X(]1)*1eE+3
2 CONTINUE
PRINT 1030
1030 FORMAT (#0ONUMBER OF DISTANCES EXCEFEDS DIMENSTON#*)
CALL EXIT
3 N=I~1
END

Note, this is an example of subroutine DISTX,
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FUNCTION KERNL(X0)

C

C SUBROUTINE OF WAGNER. COMPUTES
C KERNEL OF INTEGRAL EQUATION. SEE
C EQ. (A-13),

C

COMMON 71/ HA

COMMON 72/ DsHsHP

COMMON /3/ DELTARsWAVE

COMMON /4/ FREQ»sPOL

COMMON 75/ NG1AB(48)sGH(48)

COMMCN 76/ NX9X(2001),41

COMPLEX KERNL sFEWHIDELTASDELTARSETA

CALL TERRANE(X0O9HOsHPO »CONDEPS9sCONDRIEPSR)
ETA=CMPLX(EPS»=17975,*COND/FREQ)

DELTA=CSQRT(ETA-1e)

IF(POL«EQele) DELTA=DELTA/ETA

XMS=X(1)=X0

HD=H-HO

R1=SQRT(XO**#2+HA*#2)

RW = WAVE®(X0 + ((HO®##2)/(2,%#X0}) 4 XMS + ((HD*%#2)/(2,#XMS)) - D)
KERNL=CMPLX(COSF(RW) s=SINF(RW) )#SQRT(X(])/(R1#XMS))#( (HPO+DELTA
1 -DELTAR)*FEWH(HDsXMS) - (HD/XMS))

C

C THE FACTOR (DELTA-DELTAR) ARISES IN
C MIXED-PATH PROBLEMS.,

C

RETURN

END
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SUBROUTINE TERRANE (X9sHsHP »CONDsEPS »CONDRIEPSR)
SUBROUTINE FOR WAGNERe. DEFINES TERRAIN, PROFILE AND

GROUND CONSTANTS.

INPUT IS DISTANCE X IN METERS,

OUTPUT IS TERRAIN HEIGHT, H, SLOPE, HP,
GROUND CONSIINTS, CONDR, EPSR, COND, EPS,
IN MIXED PATH CALCULATIONS, CONOR AND EPSR

ARE RELATIVE VALUES FOR ¢ AND €p e
THEY ARE USED TO COM™UTE

DELTAR IN PROGRAM WAGNER.

IN FUNCTION KERNL THE DIFFERENCE
(DELTA-DELTAR) IS

COMPUTED. THIS DIFFERENCE TAKES INTO
ACCOUNT CHANGES

IN ¢ AND ¢, WITH DISTANCE,

CONDR AND EPSR ARE USUALLY

TAKEN TO BE THE VALUES OF

c AND ¢_ FOR THE FIRST

SECTION OF PATH,

IN THIS SUBROUTINE THE USER MUST DEFINE THE FOLLOWING
VARIABLES

H=

HP =

CONDR =

EPSR =

COND =

EPS =

PRINT HEADING
ENTRY HEADING
PRINT 50sA

50 FORMAT (*A SMCOTH SPHERE WITH RADIUS#*sE12.3)

RETURN
END




50

SUBROUTINE TERRANE (X9sHsHP sCONDsEPS»CONDRIEPSR)
SUBROUTINE FOR WAGNER. DEFINES TERRAIN.
SMOOTH SPHERE
COMMON /1/ HA
DATA (A=8.5E6)

COMPUTE HEIGHT »SLOPE »CONDUCTIVITY AND DIELECTRIC CONSTANT AT X
HP==X/A
H=o 5#X#HP- HA
CONDR = 401
EPSR = 10.
COND = .01
EPS = 10.
RETURN

PRINT HEADING
ENTRY HEADING
PRINT 50sA
FORMAT (#A SMOOTH SPHERE WITH RADIUS#,E1243)
RETURN
END

Note, this is an example of subroutine TERRANE.
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SUBROUT INE TERRANE (X9sH9sHP9»COND9EPS»CONDRSEPSR)

SUBROUTINE FOR WAGNERe

DEFINES TERRAIN.

TABLE MOUNTAIN PATH WITH KBOL AS TRANSMITTER

20

30

40
10

50

COMMON /17 HA

COMPUTE HMEIGMT»SLOPEsCONDUCTIVITY AND DIELECTRIC CONSTANT AT X

H = 500#TANHF ( (X=5000¢)/100¢)+50¢~HA
HP=0e5#(1e~(TANHF ( (X=5000¢) /1000 ) ) ##2)

CONDR = ,01
EPSR = 10.

A FOUR SECTION PATH

>
[
"

28574.0
X2 = 35000.
X3 = 45000.0

IF(XeGTeX1eANDeXeLEeX2) GO TO 20
IF(XeGTeX2eANDeXoLEeX3) GO TO 30

IF(XeGTeX3) GO TO 40
COND = .01
EPS = 10.
GO TO0 10
COND = 2.0
EPS = .81
GO 70 10
COND = .01
EPS = 10.
GO TO 10
COND = 2,0
EPS = 81,0
CONTINUE
RETURN

PRINT HEADING
ENTRY HEADING
PRINT 50

FORMAT(#TACLE MOUTAIN PATH WITH KBOL AS TRANSMITTER®)

RETURN
END

Note, this is an example of subroutine TERRANE.,
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COMPLEX FUNCTION FEWH!'HD»XD)

THE ATTENUATION FUNCTION,

EQ (A-13), OF TELECOMMUNICATIONS RESEARCH
REPORT No, 7_, 1970, INPUT IS THE

HEIGHT HD AND THE DISTANCE

XD.

eNeNeNeNeRe NS

COMMON /3/ DELTAR sWAVE
COMPLEX FEWH+TEMP+QsZ022+22 yHWERF sWERFZ s WERF » ZWERF sDELTAR
TEMP=(0+70710678129-047071067812) #SQRT { « S#WAVE)
XD2=SQRT ( XD)
Q=~-TEMP#HKD/ XD2
Z=TEMP*DELTAR®XD2 + Q
222-2
Z1=AIMAG(22)
IF (21eLToe00eURe(ABSIREALIZZ) ) oLTob60eANDeZIsLTo6s)) GO TO 10
22222002
HWERF=(22-241/(223(22-345))
G0 TO 12
WERFZsWERF(22)
HWERF=22-0¢5*WERF2/ ( ZZ#WERFZ+(00e+-0056418958) )
IWERF =2 +HWERF
FEWH= (Q¥2WERF~045) 7 (Z#2WERF=045)
RETURN
END

e52.




COMPLEX FUNCTION WERF(222)

THE FUNCTION w(z),
ABRAMOWITZ AND STEGUN, 1964)
WRITTEN BY DR. GEORGE HUFFORD, AND MODIFIED BY

DR. R. H. OTT

aaoaoaoaan

COMPLEX Z+222+2ZVoeVe22+CoWsS

OIMENSION C(12)9sW(594)

EQUIVALENCE (S»Cl12))

DATA (C(1) = (e09=e5641895835))

DATA (((W(]1eJ)el=195)9J=194)3(1e9:0)
(3.678794411T714423E~-0196¢071577058413937€E~01)»
11¢831563888873418E-0293¢400262170660662E-01)»
{162340v780%0866T788BE-0492¢011573170376004E~01)»
(16125351747192646E-0791¢459535899001528E-01)»
(40275835761558070E-01+0+000000000000000E+00) »
(34047442052569126E-01+20082189382028316E-01)>
{1e66402395813662779€E-01920222134401798991E-01)»
(66531777728904697E-0291739183154163490E-01)»
(3.628145648998864E-029163583E€9510006551E-01)»
(2¢9553¢ 6763105058E-01+0.C00000000000000E+00)»
(2e1B8492815274890TE-01996299780939260186E-02)
(la7952 35120158E-0191¢311797170862178E-01)»
(Fe271076:.92644332E-02+1:283169622282615E-01)»
(56968692961 044990E-02+1¢132100551244882E-01)»
{1¢79001:511813930E-01+00000000300G0000E+00)»
(1e64261i363329861E-01+5e0197135135:4966E-02}»
(1e307574696698522E-0198011126504776454T2E-02)
(9:¢64025055830643%E-02+9¢123632600421258E-02)»
{66979096164964750E-02+8¢934000024036461E-02))

Xx=REALtZZ22)

YY=AIMAG(Z222)

XzABSF { XX)

YzABSF (YY)

ZalMPLX(XsY)

L22=0

IFIXeGEe4e5¢0ReYeGEe36e5) GO TO 100

P 3 D I D D I I I M I I M I I X X XX X

Cc
C CONVERGING SERIES
c

«5la




[=X+e5 i
J=Y+e5 i
V=CMPLX(SLOATF (1) oFLOAT(J}) g
2v=2-V
Cl2)=W(I+1lsJ+1)
Al=0.
DO 10 I=3+12
Al=Al=e5
C(I)=(v*ClI-1)+C(I-2))/Al

10 CONTINUE '
J=12 1
DO 11 I=2411
J=J=~1

11 S=S#ZVv+C(J)

20 IF(YY.GE«Oe! GO TO 30
IF(eNOTWL22) 22=2%2
S=2 . #CEXP(=22}~-5
IF(XXeGToDe) S=CONJGI(S)
GO TO 200

30 IF(XXelTeOo) S=CONJGI(S)

200 WERF=S
RETURN

100 L22=1
22=2%2

C o
c ASYMPTOTIC SERIES !

Cc

S = Z*((0e9004613135279)/(22 - 041901635092) + (0650409999216168)/
X{(Z22 ~ 147844927485) + (0e90.0028838938748)/(22 -~ 5052534374379))
GO TO 20

END ]
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Input data for the case of 2 smooth cylindrical earth:

Card #1: 5 (Column 5)

Card #2: 0.9061798459 0.2369268851
Card #3: 0.5384693101 0.4786286704
Card #4: 0. 0000000000 0.56888888888
Card #5

through 62: 1' 0, 2. 0’ ® 00 0000y 58'

Card #563: 0.0 (column 8) 1.0 fcoiumn 18)

Following is the output from this example.

=55«

1. 0 (column 28)
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e

A SMONTH SPHERE WITH RA31U>

FREQUEALY =

X
")

0400
103000
2096400
300000

«00L.00

10635530
1109600
12035430

13010.08

20014:60
2104740
2260LaLE
23uiie 30
26458400

250N0«20

1.0

4
(M)

0.030000000
-0.038823529
04235296110
«0.529411765
=~3s9u1176471
“1.47050803%
=2.117647059
~24332352941
=3. 734705482
-4, 736705882
~5.832352941
-7 s 117847059
-8,470538235
=3,8411 706671

“11.%29611765
«13.2852941138
-15.0138823529
-17,71900023000
-19.05>882353)
=21.23524G41138
=23.529411765
259411760713
“28.647058L235

=?1.11764705%3

~3u.754705882

8.500+000

VERTICAL POLARIZATION

LONDUCTIVITY
LMHE/M D

2,010900
0.010000
6,020000
2.010009
0,040309
0.016300
¢,010000
0.010000
0.020000
9.010009
9,510000
0.010200
0,010000
0.010000
9.010200
2.910300
0,.,010000
3.610008
0.510000
0,016002
0.010008
g.c1p000
34010003

0.0109000

DIELECTRIC
CONSTANT

10,0000
10.0000
10.0000
10.0000
10,0000
10-0000
10.0000
10.0000
10,0000
10.0000
10,0000
10,0000
10.0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,2000
10,0000
10.0000
10,0000
10,0008

10.0000

0401000 onp=- 10,0000

ANTENNA HEIGHT = 0,00 METERS

¥

MAG
1,00000000+000
9.,6278570b-U01
9.34092451-001

3,07383383-001

8,481391252-301

8.57663738-001

8,36825345-0051
8412513617-001
7.90993050-001
7.70208750-~001
7.50115518-G01%
7.30675486-001
7.11856902-0304
6.93627836-001
6.75965320-00i
6.58844737-001
6.42261356-901
©,26164100~50i
6.10525209~001
5,9537010i~00i
5,80662214~001
5,66385892-001
5.525262 81001
5,39069260-001
5.26001367-001
5 15309F4 =008

ARG
0.0000004%35000
~ue24blbT T =00
=5:97765375=001

~1.3337713540350
-14353253%34+000
1416576334060

«1.8639407{¢56Y
=1 IHESEPESH I
a1 GIFE LTI U0

1.6V 168245000

TIMING
{SEC)

.00
0.0l

0.032

3.2

4,098




<ollu. .0
¢7000.00
28000.00
29000.00
30000.00
31000.00
32000.00
33000.00
34000.00
35000.00
3600000
37000.00
38000.30
39000.00
4%0000.00
41000.00
42000.00
43000.00
44000.00
45000400
46000.00
47000.00
4%8000.00
49000.00
50000.00
©TQu.00
52000400
53000.00
5400020
5500000
56030.30
57000.00
58000.00

=39 Fol/ UBY UL
-42.832352942
-46.117647058
-49.470588235
=52494117€470
=560 529411764
-60.235294118
-64,058823530
-68.010000000
-72,058823530
~76.235294119
-80.529411763
-84.941176470
-89.470583237
=94, 117647059
-€8.882352901
-103.764705881
-108.764705881
-113,082352941
-119.117647059
-124.470588233
~129.941176470
-135.529411763
-1061,235294219
-147,058823530
~177,030000000
-159,0358823530
-165.235294115
-171.529411767
-177.9%1176470
-184.470588233
-191,117647056

=197.832352941

velluuvy
0.010000
0.010000
0.010000
0.010300
0.010000
0.010000
0,010000
0.010000
0.010000
0.010000
0.010000
0.010000
0.,010000
0.010000
0.010000
0.010000
0.010000
9.010000
0.013000
0.0146000
0D.C10000
9.010000
6.010030
d.010000
0.010277
9.010000
0.010000
0.G10000
0.010000
0.510000
0.010203

0.610000

lUsluuy
10,0000
10,0000
10,0000
10.0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0000
10,0009
10,0000
10,0000
10.0000
10,0000
10,0000
10,0000
100000
10,0000
-57- 10,0000

2eduUd8cIULI"UUL
%.89006649-001
4e77372092-001
4.66067577-001
4455082679-001
4ot 4t07365-001
4¢34031984-001
4023947239001
4e16144178-001
4.04614181-901
3.95348947-001
3.863406088-001
3.77579473-001
3.69060501-001
3.60775578-001
3.52717656-001
3 .44879922-001
3437255794-001
3.29838903-001
3.22623091-001
3415602395-001
3.08771065-001
3402123453-001
2495654207-001
2489358067-9701
2483229953-001
2477264947-001
2471458281-001
2465805333-001
2.60301624-001
2454942815-001
2.49724697-001

2444643190-001

=deUUUBHICIPULY
=2.03707782+000
=2.06840402+000
=2.05687556+000
=2412853262+000
=2.15741220+000
=2.28554855+000
=2421297341+000
=2.23971633+000
=2.26580489+000
=2429126493+4000
=2431612073¢+000
=2434038399+000
=2.36409375+000
=2.38726194+000
=2040990741+000
=2.43204799+000
=2.45370059+000
*2,47488123+4000
=24 49560513+0G0
=2.51588681+000
=2.53574010+000
=2.55517817+000
=2.57421367+000
=2459285867¢+000
-2.611124/4+000
=2:62902301+000
=2.64656414+000
=2.66375842+000
=2.68061575+000
=2.69714566+000
=2471335735+000
=2472925972+000

16 9¢e
15.002
1b4113
17.270
184462
19.696
20.371
224274
23.624
25.009
264429
27.891
29.339
3049061
32.518
34.150
35.803
37.498
39.216
40.390
42.806
444655
4bbe 549
hd.476
50.031
52 bbb
Sheudl
564555
58.664
60.818
63.016
654205

67.516
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