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Abstract: We need data sets of images and subjective scores to develop robust no reference (or blind)
visual quality metrics for consumer applications. These applications have many uncontrolled
variables because the camera creates the original media and the impairment simultaneously.
We do not fully understand how this impacts the integrity of our subjective data. We put forward
two new data sets of images from consumer cameras. The first data set, CCRIQ2, uses a strict
experiment design, more suitable for camera performance evaluation. The second data set, VIME1,
uses a loose experiment design that resembles the behavior of consumer photographers. We gather
subjective scores through a subjective experiment with 24 participants using the Absolute Category
Rating method. We make these two new data sets available royalty-free on the Consumer Digital
Video Library. We also present their integrity analysis (proposing one new approach) and explore
the possibility of combining CCRIQ2 with its legacy counterpart. We conclude that the loose
experiment design yields unreliable data, despite adhering to international recommendations. This
suggests that the classical subjective study design may not be suitable for studies using consumer
content. Finally, we show that Hoßfeld–Schatz–Egger α failed to detect important differences between
the two data sets.

Keywords: image quality; data integrity; consumer camera; blind quality assessment; evaluation;
subjective data; no reference; NR metrics; subjective study

1. Introduction

Consumer cameras are becoming more and more intelligent. Exciting possibilities await once
cameras can evaluate visual quality problems “on the fly“. The camera could tell the user about
problems and how to fix them—change the framing, avoid back-lit subjects, or move farther away
(so the camera can focus adequately). The possibilities are virtually endless. All those functionalities
require a set of technologies to be in place. Apart from object detection and scene understanding,
a robust, No-Reference (NR) image and video quality metrics, designed to work with consumer
cameras, are of key importance.

NR (or blind) visual quality metrics operate on pixel-level information (as decoded from
a compressed image or an individual video frame). They objectively assess the subjectively
perceived quality of visual materials. Due to its origins rooted in Quality of Service (QoS), this
subjectively perceived quality relates to the quality of a stimulus after degradation (e.g., compression or
lossy transmission). The naming convention reflects this property. Hence, “no-reference“ corresponds
to quality evaluation performed without any reference to the original, non-distorted material.
This is in contrast to more classical Full-Reference (FR) algorithms. Those explicitly compare
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a distorted visual footage to its unaltered version. Although the research in the domain of NR
image quality assessment (IQA) is still active, there exist well-established solutions. One such example
is the BRISQUE model [1] with its characteristic property of using natural scene statistic-based features.
This allows it to operate in a distortion-generic fashion. This is in contrast to other solutions that
provide distortion-specific quality indication [2]. Importantly, one of the newest trends is to use
the existing neural network architectures (dedicated for object detection) and, building upon them,
propose better performing NR IQA solutions [3].

Our purpose is to encourage and advance the research of quality evaluation for user-generated
content. We are specifically focused on the development of NR IQA algorithms. An automated
method of assessing consumer content may prove significant for a multitude of applications. Apart
from the already mentioned photographer assistance (requests to change the framing or lighting
conditions), NR metrics could serve more general purposes. If considered as aesthetic evaluators,
they could predict how people would judge a given content. This could help build more attractive
multimedia services. NR metrics could also suggest which images a user may want to delete first from
their device (to free up storage). Similarly, they could recommend a potentially best looking profile
picture or wallpaper.

In the internal computational pipeline of NR metrics, digital image processing extracts meaningful
information. Still, this and related techniques alone are not enough. Robust subjective data sets
are crucial to train and verify NR metrics. These data sets must reflect the myriad of scenes,
lighting conditions, and camera capture problems that users encounter. Only by doing so can
they claim to be genuinely referenceless. The ideal NR metric should be able to judge the quality
of any content, including user-generated content. It should respond gracefully to all possible content
varieties: outdoor and indoor shots, panoramas and close-ups, static and dynamic scenes, as well as
those of low and high dynamic range.

Unfortunately, most of the freely available subjective image and video quality data sets only
analyze coding, network, and artificially introduced impairments [4–9]. This is the classical approach,
where original material (also referred to as Source Reference Circuit, SRC) is processed through
a set of degradation mechanisms (conventionally called Hypothetical Reference Circuits, HRCs)
to produce the test materials of interest (also called Processed Video Sequences, PVSs). This approach
has several consequences. First, the HRCs span mainly transcoding and transmission impairments
(e.g., different compression algorithms and various bit-rates, packet loss ratios, resolution reductions,
and format conversions). It is hard to imagine that this set exhaustively represents distortions
encountered by users of consumer cameras. Second, analogue noise is rare and is usually only
artificially introduced to photos (although it can be found in consumer images). Third, the source
(reference) images and videos (SRCs) are restricted to “good quality or better.“ This is not in line
with typical consumer conditions. There, we expect algorithms to respond gracefully to low-quality
visual input. They stand no chance of providing this functionality if tested only on good quality visual
stimuli.

Additionally, since subjective data sets contain scores gathered in subjective assessments
(also called subjective experiments) [10], the subjective experiment design influences the content
of the data sets. Each experiment has a limited number of SRCs and HRCs. Camera impairments are
a confounding factor that would complicate the analysis of the results. Thus, most freely available
data sets intentionally exclude SRCs with flawed camera capture. Furthermore, the extensive
use of the Absolute Category Rating with Hidden Reference (ACR-HR) test method [11,12]
further intensifies this phenomenon. This test method explicitly prohibits SRCs that are fair,
poor, or bad quality.

All of the typical data sets described are ill suited for consumer content evaluation.
For user-generated content, impairments come from the camera capture pipeline (e.g., lens, sensors,
image processing, encoder, decoder, and display) and human factors (e.g., the skill of the photographer,
framing, and subject matter aesthetics). Codec impairments are typically minimal due to adequately
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high bit-rates. The only way to exercise other variables (not related to the codec) is to create a large
variety of photos and videos; the impairments from consumer cameras cannot be simulated with
software. These requirements are challenging, so there are few data sets available to train NR IQA
metrics for consumer content evaluation.

A number of existing data sets do contain a sufficiently broad scope to provide training data
for NR metrics aimed at evaluating consumer content. The “CID2013 Camera Image Database“ [13]
contains photographs from a variety of consumer cameras (DSLRs, compacts, and phones). Thus, there
is a greater possibility that this database offers a good representation of consumer camera impairments.
“ITS4S“ [14], “ITS4S2“ [15] and “ITS4S3“ [16] data sets present a series of image and video quality
experiments designed specifically to provide training data for NR metrics. Thus, they mostly contain
material with distortions stemming purely from the capturing process. Furthermore, they emphasize
a large variety of unrepeated content. This means that there are only a few multimedia materials that
are repeated in the same session of a subjective evaluation test. (The three data sets can be found
on the Consumer Digital Video Library (CDVL, www.cdvl.org) [17] by searching for the keywords
“its4s“, “its4s2“ and “its4s3“, respectively.) Next is the “LIVE In the Wild Image Quality Challenge
Database“ [18]. It includes 1,162 unique photographs from mobile devices. Containing a huge
variety of subject matter and camera impairments, it also fits the consumer-related scope well. There
is also its video counterpart called “LIVE-Qualcomm Mobile In-Capture Video Quality Database“
[19,20]. It contains 208 videos captured using eight mobile devices. The database content models
six common capture related distortion categories. Importantly, each video is paired with subjective
assessments of 39 subjects. To the best of our knowledge, the largest existing data set of authentically
distorted images is the “KonIQ-10k Image Database“ [21]. It contains 10,073 unique photographs,
each scored by 120 crowd workers. The KonIQ-10k images are a subset of an even larger, diverse data
set of 100 million multimedia objects [22]. The authors of [21] use a specially developed technique
to sample the larger data set properly. This, combined with the data set size, highlights its value for
NR metrics development. The same team has also prepared the “KoNViD-1k Video Database“ [23,24].
Utilizing a similar processing pipeline, it contains 1,200 natural, real-world videos accompanied by
subjective scores of crowd workers. Finally, the “Consumer-Content Resolution and Image Quality“
(CCRIQ) data set [25] focuses on consumer content evaluation by design.

The key idea of this paper is to encourage NR IQA algorithms development for consumer content.
To this end, we address three aims. The first one is to provide subjectively evaluated consumer content.
Thus, we put forward two new data sets. Use of those data sets should allow better NR metrics to be
built. In particular, we expect them to widen the scope of NR metrics and improve their predictive
abilities. The second aim is to explore the applicability of the classical subjective study design for
evaluating the quality of consumer content. It seems logical to apply the classical approach to this new
stimulus type. We check whether proceeding this way produces consistent results. This also leads to
our last aim. We want to provide guidelines on subjective data integrity analysis. For this, we use two
classical approaches and propose one non-standard method.

When designing our subjective data sets, we hypothesize that images that better reflect
consumer camera usage can be used in the classical subjective experiment setup (hypothesis #1).
Specifically, we use post-processed images, as well as a mix of vertical and horizontal shots
in a single test session. These two choices diverge from recommended practices. We also theorize
the Hoßfeld–Schatz–Egger (HSE) α coefficient [26] can be used to assess whether our results are similar
to typical image quality subjective studies (hypothesis #2). We expect such a similarity to indicate
results integrity. (In the original paper, the parameter is called SOS. We call it HSE (from Hoßfeld,
Schatz, and Egger) because of SOS being traditionally used to denote standard deviation of opinion
scores.)

Two main conclusions result from our work. First, we present a case where the classical
subjective study design ceases to work. This finding sheds some light on a trade-off between
experiment repeatability and resemblance of a laboratory design to actual conditions of interest
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(i.e., its ecological validity). Second, we show that promising HSE α should not be used as an ultimate
measure of the similarity of data sets. Two studies may report similar HSE α parameters, where,
in reality, one presents consistent, and the other, inconsistent results.

As you read, remember that our goal is training data for NR metrics. The subjective
experiment designs presented in this paper would not be appropriate for comparing and contrasting
the performance of different cameras. To this end, a more methodical approach would be required.
Specifically, dedicated test charts and a strictly controlled environment would be necessary. For more
details, please refer to the IEEE 1858-2016 standard [27].

The remainder of this paper is structured as follows. In Section 2, we present the new CCRIQ2
and VIME1 data sets. With Section 3, we put forward our results. Specifically, Section 3.1 provides
a high-level review of the data sets, Section 3.2 verifies their integrity, and Section 3.3 explores
the possibility of combining CCRIQ2 with its legacy counterpart. Finally, materials and methods we
use are described in Section 4. Our conclusions in Section 5 close the paper.

2. New Data Sets

With this work, we present two IQA data sets: CCRIQ2 and VIME1. The two contain scores from
two subjective tests (subjective assessment) sessions. The first session, CCRIQ2, expands the CCRIQ
data set. The second session, “Video and Image Models for Consumer Content Evaluation Data-set One“
(VIME1), is entirely new. The combined data set, CCRIQ2 + VIME1, is freely available for research
and development purposes and royalty-free to download from CDVL [17] (search for keyword
“ccriq2+vime1“). See the CDVL [17] for licensing terms. Table 1 comprehensively compares our data sets
with those already existing. The following sections further describe the two in more detail.

2.1. CCRIQ and CCRIQ2

We start by describing the legacy, CCRIQ data set. Its description helps to explain the design
choices of the newer, CCRIQ2 data set introduced with this paper. The CCRIQ data set [25]
contains the same 18 scenes, photographed with 23 digital cameras. The cameras range from
1 to 20 megapixels (MP) and include an approximately equal distribution of phones, tablets,
point-and-shoots, and higher-end digital single-lens reflex (DSLR) cameras. CCRIQ evaluates consumer
cameras, so amateur photographers held each camera (no tripods) and used automatic settings.
All photos of a single scene were taken by a single photographer, who tried to achieve uniformity
of lighting, composition, and framing. The images were subjectively rated on the Absolute Category
Rating (ACR) scale at three labs: Intel, National Telecommunications and Information Administration’s
Institute for Telecommunication Sciences (NTIA/ITS), and the University of Ghent. The images
and ratings are available on the CDVL [17]. The 18 scenes selected for the CCRIQ data set were
drawn from a broader set of 69 scenes. The choice of which scenes to retain was difficult, with many
of the remaining 51 scenes having appealing content and desirable characteristics.

The new CCRIQ2 data set contains 88 photographs that depict four (4) scenes that were excluded
from the original CCRIQ data set due to size constraints. They are captured with the same set
of 23 cameras and also come from the larger set of 69 scenes. However, there is no overlap with
the scenes used in the original CCRIQ data set. Importantly, this data set not only uses the same
cameras as CCRIQ, but also retains the same image capture methodology (for more details, see [25]).
Figure 1 presents the four scenes. We show a pair of sample images for each scene. One image
from the pair represents a low quality sample (the LQ label) and the other a high quality sample
(the HQ label). We have chosen the image samples manually with the intention of showing the quality
spectrum of this data set. Only four scenes are used to not make the subjective study too long. This is
a concern since each one new scene translates into 23 new images for which a number of subjective
scores has to be gathered. The next paragraph details why we chose to use those specific four scenes.
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Table 1. A comprehensive comparison of the new CCRIQ2 + VIME1 data set with the similar, existing
data sets. We choose to include in the comparison only the data sets that contain user-generated content.
This is to assure our comparison addresses only the data sets targeting NR metrics development.
The mod. ACR label means a modified version of the classical 5-level ACR method [11] (p. 6) is
used in a data set. C+V stands for CCRIQ2 + VIME1, LIVE ItW for Live In the Wild Image Quality
Challenge, LIVE QM for LIVE-Qualcomm Mobile In-Capture, KonIQ for KonIQ-10k Image, KoNViD
for KoNViD-1k Video, CID for CID2013 Camera Image Database and CQ for CCRIQ. cs stands for
crowdsourcing and n/a for not available.

Data Set CID CQ LIVE ItW LIVE QM KonIQ KoNViD ITS4S ITS4S2 ITS4S3 C+V

Year 2013 2014 2016 2017 2017 2017 2018 2019 2019 2020
Data Type image image image video image video 1 video image video image
No. of Stimuli 480 392 1162 208 10,073 1200 813 1473 594 189
Avg. No. of Ratings per Stim. 31 26, 27, or 53 175 39 120 >50 33 16 15 19
No. of Unique Scenes 8 18 1162 54 10,073 1200 813 1473 594 11
Total No. of Subjects 188 53 >8100 39 1467 642 51 16 87 24
Scoring Method mod. ACR ACR mod. ACR mod. ACR 2 ACR ACR mod. ACR ACR mod. ACR ACR
Content Res. [MP] 1.92 2.073 and 8.294 0.25 2.074 0.786 0.518 0.922 0.135 to 233.293 0.307 to 2.073 0.922 to 19.962
No. of Devices 79 23 >15 8 1265 n/a n/a >240 ∼15 34
Env. lab lab cs lab cs cs lab lab public venue lab-like

1 The only video data set that contains audio. It is present in 97% of stimuli. 2 One more, custom scoring method is
utilised. It is referred to in [20] as “distortion-guided”.

(a) BouquetPastel LQ (b) BouquetPastel HQ (c) DenverBotanic... LQ (d) DenverBotanic... HQ

(e) PipesNight LQ (f) PipesNight HQ (g) Senior LQ (h) Senior HQ

Figure 1. Sample of the CCRIQ2 scenes with Low Quality (LQ) and High Quality (HQ).

The Bouquet Pastel scene depicts a pastel flower arrangement on a blue table in front of a cream
curtain. The flowers were ≈0.5 m to 0.8 m from the camera, and the curtain was 1.5 m behind
the flowers. The camera faces away from a wide bank of NE facing windows with bright diffuse
light (35 lx). Bouquet Pastel shows interesting differences among the 23 cameras that may not be
obvious from CCRIQ’s 18 scenes. Denver Botanic Gardens Rocks, photographed in the early afternoon
at the Denver Botanic Gardens, depicts fine-textured gravel and, on occasion, lens flare. The camera
was in dappled shade on a sunny day with no clouds. The lighting at the camera was ≈2000 lx;
the lighting in the sun was ≈10,000 lx. Pipes Night shows an interesting night composition mostly
devoid of vertical and horizontal lines. Pipes Night demonstrates camera response to the challenges
of night photography. Senior depicted an older woman in front of a brick wall and was chosen to
evaluate the camera’s response when depicting people (e.g., skin tones, shading of the face). Senior has
a mix of dim natural lighting (from the left) and camera flash. Light measurements are not available
for these two compositions.
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The CCRIQ2 camera names (A through X) are identical to those used in the CCRIQ data set.
An important difference between the data sets is the resolution of monitors used to conduct subjective
studies. Where CCRIQ used High-Definition (1920 × 1080) and 4K (3840 × 2160) monitors, CCRIQ2
used (1440 × 900). Importantly, CCRIQ2’s testing software imposed a limitation on image resolution.
All images were presented re-scaled to 720 pixels in height.

2.2. VIME1

Video Quality Experts Group (VQEG) formed the VIME group [28] to investigate NR perceptual
quality evaluation for consumer cameras and user-generated content. VIME focused on collaboration
and information sharing with regard to NR image and video quality assessment for consumer devices.
With the significant changes over the years in how consumers are capturing, manipulating, and sharing
images and videos, VQEG felt it was time to develop assessment tools for such scenarios. VIME builds
on the years of expertise that VQEG has around subjective and objective methodologies. VIME was
recently replaced with the No-Reference Metric (NORM) group, which has a broader scope.

VIME organized events to capture photos of the same (or very similar) scenes, using various
consumer cameras. The VIME Image Database, stored at Flickr and currently containing 670 images,
is designed for developing and testing image models for consumer content evaluation [29].
The VIME Image Database contains photographs contributed by interested people, plus photographs
taken during events organized at VQEG meetings. Attendees brought their cameras and went as
a group to photograph the same scenes with different cameras.

The new VIME1 data set contains a selection of 101 photos from the VIME Image Database.
Photos are limited to the same scene captured by 11 cameras. Only a few of the images from
the VIME Image Database satisfy this requirement. Having such a set, it is possible to at least roughly
compare the cameras amongst each other (although this would not replace a more methodical
comparison [27]). This also resembles the CCRIQ2 design, as each camera performance is exercised by
taking images in various conditions. However, this time there are many photographers taking shots
simultaneously and hence the data set can be created faster. In other words, more test stimuli can be
created in a shorter time. All the selected photographs depict cityscapes taken in the early evening
in Glasgow, Scotland, during the September 2015 VQEG meeting. This makes the images thematically
consistent. Again, this is uncommon among the photos from the larger database, where most images
are one of a kind. VIME1 contains seven scenes, which are shown in Figure 2. As previously, we show
both low quality (the LQ label) and high quality (the HQ label) image pairs for each scene. Since,
unlike the CCRIQ2 data set, each scene was photographed by multiple photographers, VIME1 contains
more significant variations in composition, framing, and camera location. The data set design is not
a full matrix, as some people did not attend the entire event. (Full matrix means here each location
photographed by all photographers. Since the VIME1 data set does not include images of all locations
taken by all photographers, it is not a full matrix design.)
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(a) alley LQ (b) alley HQ (c) cathedral LQ (d) cathedral HQ

(e) blackwhite LQ (f) blackwhite HQ (g) clocktower LQ (h) clocktower HQ

(i) construction LQ (j) construction HQ (k) statue LQ (l) statue HQ

(m) riverview LQ (n) riverview HQ

Figure 2. Samples of the VIME1 scenes with Low Quality (LQ) and High Quality (HQ).
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3. Results

We now continue with a more in-depth analysis of the combined data set. We examine the two
individual data sets by applying a two-step procedure. First, we perform a high-level review of the data.
This includes considering its positive and negative features, as well as comparison with similar,
legacy data sets. Second, we verify data integrity. Here, we apply an informal overview of a set
of scatter plots and two more formal methods. Those include a post-experimental screening of subjects
(as recommended in Recommendation ITU-T P.913 [30]) and HSE α parameter analysis [26].

3.1. Experiment Design Review

The following subsection presents our subjective review of CCRIQ2 and VIME1 data sets. We go
through their properties, underlining those especially important for NR metrics. We also highlight
the differences between the two and existing data sets. This provides insight into the new contributions
those data sets bring to the field of NR metrics development.

3.1.1. CCRIQ2

We start by considering the positive features of CCRIQ2. Its primary advantage is the use
of realistic impairments. All distortions come entirely from properties of a given camera. It guarantees
the quality range does not have to be manually selected. It is naturally generated by responses
of the cameras used. Taking into account the broad spectrum of resolutions, contents, and devices
utilized, this quality range appears sensible. Especially important are differences in color reproduction
between the devices. Following the authors of [31], we expect color naturalness to be one of the most
important factors influencing the quality judgement. Having many photographs of the same scene,
each with differently reproduced colors, further assures that we well explore the quality range.

Another positive side of this data set is its applicability to train and test NR metrics.
Although many artifacts are superimposed in every single image, it is the overall quality that is
interesting (and is captured in the subjective test). Furthermore, the appearance of artifacts is only
loosely controllable or not controllable at all. In addition, the lack of a reference image to compare
to makes the usage scenario of this data set clear. Only NR models for image quality assessment
may be trained with this data. We consider this a positive feature since there are not many data sets
strictly dedicated to those models. The existence of such data sets is crucial to sustaining NR models’
development.

When it comes to disadvantages of the CCRIQ2 data set, the superposition of multiple distortions
(artifacts) is one crucial example. Dynamically changing lighting conditions, different shot angles,
and the different internal processing of device all add up together and appear in the final image.
What makes this problem even more severe is that all of those individual artifacts are difficult or
impossible to control. This hinders data set applicability for performing artifact-specific analyses.

Another shortcoming of CCRIQ2 is its limited scope. This is because only four scenes are
represented. Thus, although applicable, this data set alone is probably not sufficient to train and test
a full-fledged NR metric. One possible mitigation is to combine this data set with its legacy counterpart,
namely CCRIQ. We explore this idea in Section 3.3.

A comparison of CCRIQ2 with legacy data sets highlights a few critical differences. The first one is
a redefinition of the SRC and HRC. Here, the SRC represents a scene and the HRC is a mixture of factors
like device used, lighting conditions, and position of dynamic objects. This mixture comes from scenes
not being static. Lighting conditions change from one image to another. The same is true for objects
and people present on the scene. It contradicts a traditional design where most factors are controlled.
Nevertheless, this dynamic nature of the data set is in line with conditions specific to the consumer
scenario. Another significant difference is the amount of time necessary to create such a data set.
One must take multiple shots of the same scene, each time changing the camera. The process is much
more time consuming than an automatic injection of distortions (widespread in standard data sets).
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Although there are many differences, there is one property that makes CCRIQ2 similar to legacy data
sets. It is the precise selection of cameras, their properties, and scenes captured. All span a range
wide enough to provide meaningful results. This careful selection resembles standard data sets; most
influencing variables are strictly controlled.

3.1.2. VIME1

Following are general thoughts about the second data set, namely VIME1. Similarly to CCRIQ2,
it represents realistic, consumer-scenario related impairments. The range of those is also defined purely
by the limitations of the cameras used. Therefore, it is perceived as a good source of data for training
and testing of NR image quality assessment models. A distinct and essential property of VIME1 is
its consideration of selected post-processing operations. Some captured scenes appear in different
versions, each representing a different post-processing operation (contrast adjustments or framing).
This approach addresses the not so well-researched area of image aesthetics.

Inevitably, the VIME1 data set has some disadvantages. The parallel existence of many
impairments makes it more difficult (or impossible) to identify the main factor influencing the quality.
In addition, the severity of most of the impairments is not controlled. A narrow range of contents
(mostly buildings and statues) and a small spectrum of resolutions are two scope-limiting factors. In
addition, different scenes are captured by different devices. This impedes device-to-device comparisons.
Another disadvantageous source of variability is the lack of a single photographer. In other words,
the same scene is captured by many people. Finally, there are both portrait and landscape orientation
shots. Taking into account that our subjective software rescales all images to be 720 pixels in height,
vertical images may seem to be of worse quality (even when it is not the case).

Let us now compare VIME1 with similar legacy data sets. Due to its intrinsic coherence
with CCRIQ2, VIME1 also uses a different notion of SRC and HRC: the first represents a scene
and the second a mixture of factors related to a hand-held shot. The lack of full control over
quality degrading factors is not in line with legacy data sets designs (and also resembles CCRIQ2).
Furthermore, the creation of a data set like VIME1 takes a lot of time. Nevertheless, its loose
restrictions on content and devices used make this process faster than in the case of CCRIQ2. Among
all of the differences, the most important one is the use of post-processing. In particular, VIME1 contains
images with post-processing aimed at improving the aesthetic properties of an image. This includes
operations such as: adding a frame, applying the sepia filter, performing color and shadow correction,
vignetting, or adapting contrast and exposure. The post-processing makes VIME1 particularly useful
and valid for consumer-related scenarios.

A comparison of VIME1 and CCRIQ2 leads to a couple of observations. VIME1 uses
convenience sampling to select cameras; CCRIQ2 uses a strict camera selection procedure to choose
devices spanning a wide range of classes (smart-phones, tablets, point-and-shoots, and DSLRs),
resolutions (from 1 to 20 MPs), and production dates (from 2000 to 2014). VIME1’s loose experiment
design can be rapidly implemented with the aid of several assistants using their own devices; CCRIQ2’s
strict design requires a regimented procedure of camera selection, subject matter specification,
and photography technique. VIME1 contains more scenes, but the camera association is haphazard
(e.g., three photographs from one camera and none from another); CCRIQ2 has fewer scenes but
systematic photography (i.e., a full matrix of scenes and cameras, with only a few missing photographs).
Counter-intuitively, the broader set of scenes in VIME1 does not correspond to a broader range
of subject matter and impairments. VIME1 contains images of buildings and statues but lacks
everything else (e.g., people, landscapes, building interiors, night scenes). CCRIQ2 actually has
a broader range of subject matter and impairments because each scene was carefully selected.
One significant upside of VIME1 is its use of post-processing, which CCRIQ2 omits. Basically,
VIME1 realistically reproduces real-life consumer conditions, while CCRIQ2 systematically evaluates
camera performance.
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3.2. Data Integrity Check

Having described our subjective assessment of the new data sets, we now follow with an objective
evaluation. We start with the subjective scores from the CCRIQ2 data set. Then, we present
a corresponding analysis of VIME1.

3.2.1. CCRIQ2

Following [26], we expect the data set to have an HSE α parameter in the range of 0.01 to 0.22.
However, this is not the case. It has a value of 0.2370 instead. Figure 3 presents a corresponding
quadratic function fit (with mean squared error (MSE) of 0.0421). This value suggests a level
of variability larger than in traditional image quality assessments. In particular, it makes the data
set similar to crowd-sourced subjective studies—those being known for higher score variability.
The probable reason is the consumer-oriented nature of the data set. It introduces several factors
related to larger variability. Section 3.1 lists and details each of those.

1 2 3 4 5
0

0.5

1

1.5

2

MOS

SO
S

CCRIQ2, HSE α: 0.2370, MSE: 0.0421
VIME1, HSE α: 0.2547, MSE: 0.0514

Figure 3. A comparison of HSE α parameters between the VIME1 and CCRIQ2 data sets. We use
the α parameters to fit the quadratic function proposed in [26]. It models the dependency between
mean opinion scores (MOS) and standard deviation of opinion scores (SOS). We analyze both data sets
without unreliable subjects (screened according to [30] with the threshold correlation set to 0.6).

Scatter plots comparing each subject’s opinion with the opinion of all subjects (see Figure 4) show
a sufficient level of consistency. A few subjects deviate from the general opinion, but they constitute
only a small fraction of all subjects.

The application of post-experimental screening of subjects with a threshold for minimal correlation
of 0.75 (a value recommended in [30] for subjective testing of entertainment videos with opinion scores
expressed on the 5-level categorical scale. We use this value first since our subjective experiment is using
the same scale) discards 8 (out of 19) subjects. Looking at Figure 4 (with generally consistent opinions)
and considering high HSE α of this data set, we can suspect that this screening is too conservative.
Hence, we lower the threshold correlation to 0.6. It results in five discarded subjects.
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Overall, we conclude that this data set is sufficiently consistent. Its slightly higher variability
most probably stems from its consumer-oriented nature. However, we underline that the 14 subjects,
who pass the post-experimental screening do not constitute a large sample of subjects population.
We thus advise treating those subjective scores with a grain of salt.
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Figure 4. Scatter plots of each subject’s MOS (vertical axis) compared with the MOS of all subjects
(horizontal axis). The data comes from the CCRIQ2 data set. We calculate per-subject MOS scores by
aggregating individual scores by camera types. In general, opinion scores are consistent and correlated.
There are few outliers like subjects number 259 and 279. We do not show a scatter plot for tester 283.
This way, it is easier to compare this plot with the one in Figure 5. Due to the same testers being
included in both data sets, there is a one-to-one scatter plot correspondence between the two figures.

3.2.2. VIME1

As previously, we start with a consideration of the HSE α parameter. This time, its value is even
higher and equals 0.2547. Figure 3 shows the corresponding quadratic fit (with MSE of 0.0514).

Although the HSE α parameter does not seem outright wrong, scatter plots draw a completely
different picture (see Figure 5). There is almost no consistency in opinion scores. Where the scattering
of subject opinions in Figure 4 shows that each subject generally agrees with other subjects about
the relative ratings (i.e., a tight scatter of noise around a line), the scattering of subject opinions
in Figure 5 shows large differences of opinion (see for example subjects 263, 271, 275, and 280).
It is especially interesting if we consider that the same pool of testers is utilized in both data sets.
Although fatigue seems to be a potential explanation, we must rule it out. The VIME1 images were
the first ones presented to all testers.

The data inconsistency is further highlighted when we apply the screening. Using a threshold
correlation of 0.75 discards 17 subjects (out of 21), and lowering the threshold to 0.6 filters out nine
subjects (almost half of the total pool).

There are a few potential explanations for the inconsistency. First, to the best of our knowledge,
this is the first subjective test with this design. Therefore, we can treat it as an exploratory, pilot study.
Our choice of design comes from its similarity to the real-life consumer behaviors. The inconsistency
of the results draws a line marking the limitation of this design. When adapting the classical approach
to subjective testing, this design moves too far away from its area of applicability. Apart from having
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an exploratory nature, we theorize that the design has properties that can be considered flawed. It
contains too few scenes and mixes vertical and horizontal shots.
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Figure 5. Scatter plots of each subject’s MOS (vertical axis) compared with the MOS of all subjects
(horizontal axis). The data comes from the VIME1 data set. We calculate per-subject MOS scores
by aggregating individual scores by camera types. There is almost no consistency in opinion scores.
Only a few subjects are close to the general opinion. Among those are subjects 262 and 274. We do not
show scatter plots for testers 273, 276, and 281. This way, it is easier to compare this plot with the one
in Figure 4. Due to the same testers being included in both data sets, there is a one-to-one scatter plot
correspondence between the two figures.

Furthermore, different shots of the same scene come from different photographers. This results
in multiple compositions in shots of the same scene. Finally, the pool of scenes represents a convenience
sampling (and not a well-controlled choice). The photographs contain scenes of places that were easy
to visit and capture for a group of people over about two hours.

We conclude that the subjective data from this data set is undoubtedly inconsistent. We do
not recommend using it for training NR metrics. However, the images alone are a useful sample
of photographs captured in real-life conditions. They also contain consumer-type post-processing,
which is rare to find in existing data sets. One additional property of this data is that it can be used
to explore potential explanations for its inconsistency. Maybe there is a way to analyze this data
set in a way that produces inter-rater correlated results. We invite the community to use it for this
and similar investigations.

3.2.3. HSE α Reliability

As we show in Section 3.2.2, the HSE α parameter may misleadingly indicate results integrity.
We theorize this is the case since according to its authors the parameter both tests for subjective
results reliability and shows whether two subjective studies can be directly compared (or even pooled).
If we follow these suggestions and take a look at VIME1’s HSE α (0.2547), we could conclude that VIME1
contains consistent results. This conclusion could be justified for at least three reasons. First, the HSE
α value does not exceed the range of values reported in [26] for various types of subjective studies
(0.0377 to 0.5902). Second, the corresponding MSE (0.0514) is also in the interval of values reported
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in [26] (0.0047 to 0.2204). Third, even if we compare VIME1’s HSE α to those of classical image
and video streaming subjective studies (approx. 0.01 to 0.22; also taken from [26]), the slightly
higher value can be attributed to the utilization of natural consumer device generated distortions
(and not those artificially introduced).

With Section 3.2.2, we hope to highlight that the seeming consistency of VIME1
(as indicated by its HSE α) does not represent the actual state. To see the full picture, it is necessary to
calculate other data integrity indicators as well. Two such examples are the post-experimental screening
of subjects (as defined in Recommendation ITU-T P.913 [30]) and our suggested method of comparing
each subject’s opinion with the opinion of all subjects (see Figures 4 and 5). Thus, we do not recommend
using the HSE α parameter alone to decide whether subjective data are consistent. Similarly, we think
it would be unreasonable to pool multiple subjective data sets based just on their HSE α parameters
having similar values.

Although our results suggest that the HSE α parameter is not a reliable tool for comparing multiple
data sets, it would be unfair not to acknowledge its added value when compared to solely using MOS
scores. It captures an important notion of scores variability that is completely ignored by MOS. We also
point out that the HSE α parameter authors do not test in their work [26] how it responds to consumer
content data sets like ours. Though not very probable, it may suggest that consumer content data sets
fall outside the scope of HSE α applicability.

3.3. Comparison of CCRIQ and CCRIQ2

We now present a statistical comparison between subjective scores given to images from
the CCRIQ and CCRIQ2 data sets. Those two are compared as they test the same set of 23 cameras.
Although the same cameras are used, different scenes are captured. This means there is no
shared content between CCRIQ2 and CCRIQ. Such a situation contradicts the classical design
of subjective tests, whose results are intended to be combined. Two reasons justify our approach.
First, CCRIQ and CCRIQ2 data sets are aimed at testing NR metrics. All classical designs do not
consider this goal so other practices may be of interest. One of them is to not provide any content
that is shared between tests. The second reason is the architecture of CCRIQ and CCRIQ2 data sets.
Adding shared content would require amending CCRIQ2 with 23 images already tested in CCRIQ.
Naturally, this would eliminate other not yet tested images and reduce the scope of the test.

Since subjective scores come from two different tests, there are further natural differences.
In particular, there are different tester groups and different testing environments. The latter forced us
to narrow the comparison. We only analyze a subsection of CCRIQ scores. To be more precise, CCRIQ2
images are presented during our subjective study in a resolution much smaller than 4K. Not wanting
to make the resolution gap the most probable reason for differences in scores, we only consider scores
for the High-Definition Monitor from CCRIQ. Importantly, in CCRIQ2, images are presented in a
resolution not only smaller than 4K but also smaller than High-Definition. (During the subjective
study, all images are scaled to have a height of 720 pixels.) This allows us to expect similarity in scores
for low-resolution images. On the other hand, we expect high-resolution images to show significant
differences between CCRIQ and CCRIQ2.

We start the formal comparison with the HSE α parameter. CCRIQ scores result in an HSE α

of 0.2427 (and MSE of the corresponding fit of 0.032). (Please keep in mind that we provide this
value for only a subset of all CCRIQ scores. Namely, we utilize only the ratings for a High-Definition
monitor.) CCRIQ2 scores correspond to HSE α equal to 0.237 (and MSE of the corresponding fit
of 0.0421). Figure 6 shows the quadratic fits. Interestingly, this comparison presents CCRIQ2 as a data
set of lower scores variability. We treat this result carefully since CCRIQ2 contains reliable scores from
only 14 subjects. Although CCRIQ has a higher α, its 47 reliable subjects provide a better quadratic
fit (represented by the lower MSE). This many subjects also means we can generally express greater
confidence about information the results convey (just because of the larger sample from the subjects
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population). Summarizing our findings this far, we conclude the comparison of the HSE α suggests
the two data sets are compatible.
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CCRIQ, HSE α: 0.2427, MSE: 0.0320
CCRIQ2, HSE α: 0.2370, MSE: 0.0421

Figure 6. A comparison of HSE α parameters between the new CCRIQ2 and legacy CCRIQ data sets.
We use the α parameters to fit the quadratic function proposed in [26]. It models the dependency
between MOS and SOS. We analyze both data sets without unreliable subjects (screened according
to [30] with the threshold correlation set to 0.6 for CCRIQ2 and 0.75 for CCRIQ).

Staying in line with Recommendation ITU-T P.913 [30], we use the two-sample unpaired Student’s
t-test to check if CCRIQ and CCRIQ2 are different. Specifically, we check whether the same cameras are
scored differently. For this, we use MOS scores of all images taken with a given camera. This generates
one sample from CCRIQ and one sample from CCRIQ2. We then compare sample pairs for each camera
(there are 23 cameras, and hence there are 23 pairs). Importantly, we only use scores of reliable subjects.
(We filter out unreliable subjects using post-experimental screening of subjects. The method comes
from Recommendation ITU-T P.913 [30]. We use a threshold correlation of 0.6 for CCRIQ2 and 0.75
for CCRIQ.) We apply the two-tailed test at the overall significance level of α = 5%. To compensate
for multiple comparisons, we apply the most conservative, Bonferroni correction [32]. The correction
results in testing each comparison with a stricter significance level of α/23, which is ≈0.0022. The tests
show that no camera is scored significantly differently between the two data sets.

Since individual scores are ordinal data, we now compare CCRIQ and CCRIQ2 using
the Mann–Whitney–Wilcoxon two-sample rank-sum test (also called Mann–Whitney U test). This test
is recommended explicitly for comparing ordinal results. First, we group individual scores by a camera
type. Then, we perform comparisons for pairs of groups, with each pair corresponding to a single
camera type (there are 23 camera types, and hence there are 23 pairs). We apply the two-tailed
test at the overall significance level of α = 5%. As previously, we use the Bonferroni correction
(as a countermeasure for a multiple hypotheses testing problem). Some tests reject the null hypothesis
that scores in both data sets come from populations with the same distribution. We see this outcome
for 4 out of 23 cameras. Running a one-tailed test further shows that three (3) cameras receive higher
scores in CCRIQ2 and one (1) camera scores higher in CCRIQ. Exact significant p-values are in Table 2.
Differently put, the table shows only those cameras which are scored significantly differently in CCRIQ
and CCRIQ2 data sets.
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Table 2. Significant p-values of the two-sided (fourth column) and the one-sided
(fifth and sixth columns) U tests. The tests compare the new CCRIQ2 and legacy CCRIQ data
sets. We group individual scores by a camera type. Then, we apply U test for pairs of groups
(one group of scores in the pair comes from CCRIQ and one from CCRIQ2). The third column
presents sensor sizes of each camera. We show them to verify the hypothesis of low resolution images
being similarly scored in both data sets.

Camera Type Camera Label Sensor Size [Million Pixels]
p-value

CCRIQ 6= CCRIQ2 CCRIQ < CCRIQ2 CCRIQ > CCRIQ2

smartphone H 5 0.000631 0.000316

smartphone I 5 0.000336 0.000168

DSLR K 8 0.000827 0.000413

smartphone R 13 0.000132 0.000659

There is no unified trend explaining which cameras perform better in one data set or the other.
For example, one cannot say that cameras with high pixel count perform better in CCRIQ. The analysis
contradicts our expectation that low-resolution images will have similar scores in both data sets.
Due to many factors having a possible influence on all scores, we are not able to make per-camera-type
conclusions. The differences may come from content dissimilarity between the two subjective tests but
may also be caused by the different testing environment. We conclude that, even when exploring new
designs of subjective tests, care should be taken not to introduce too many factors that might have
a potential influence on subjective scores.

The different outcomes of t-test and U test show the two cannot be used interchangeably. They test
two different hypotheses. t-test tests a null hypothesis of equal means in two groups. On the other
hand, U test tests a null hypothesis that the probability of randomly drawing an observation from
one group that is larger or smaller than a randomly drawn observation from the other is equal to 0.5.
In other words, it tests whether two groups have the same median.

Significant differences coming from the U test should be analyzed with caution. The authors of [9]
point out that MOS scores may always be study-relative. Put another way, degradation conditions
(here different cameras) may be similarly ordered in two tests, but absolute scores can still differ
significantly. This does not mean the U test results are false. It means they should not be used as
an ultimate measure of test dissimilarity.

Summarizing the results from this section, we conclude that CCRIQ and CCRIQ2 are compatible.
Our findings do not present evidence for significant differences between the two. This suggests that
both data sets can be combined. Such a combined data set should result in more accurate per-camera
analyses. It also provides enough data points to train and test an NR metric.

4. Materials and Methods

We introduce the methods used grouped according to their use. We start by describing
the subjective study performed. Then, we present the tools we used for the subjective scores
integrity check.

4.1. Subjective Study Design

We carried out the subjective experiment at AGH University of Science and Technology,
in Kraków, Poland. The experiment constituted a part of the teaching course “Multimedia Information
Processing and Communications.“ The course consisted of several multimedia topics, including
subjective quality evaluation. The class lesson allowed us to conduct a 90-minute long experiment.
However, students needed, on average, only 35 minutes to complete it.

The laboratory (see Figure 7) allowed for a controlled environment as specified
by Recommendation ITU-T P.913 [30]. Illumination control was possible yet limited
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(to: “dark,“ “dim,“ and “bright“). We did not measure the precise illuminance level and color
temperature of the lighting conditions. However, the study took place around sunset so stable
artificial lighting was the main source of illumination. The subjects self-selected a comfortable viewing
distance. Twenty-four students took part in the experiment at once. Hence, they could cross-watch
their screens. The students used homogeneous Windows/Linux personal computers with 4+ gigabytes
of random-access memory. They all had homogeneous Dell P1913 1440 × 900 (wide extended graphics
array plus, WXGA+) screens. We did not measure the colorimetric properties of these displays.

Figure 7. A photograph of the room next to the laboratory where we carried out the test. We show
the neighboring room since the actual laboratory is not available at the time of writing this
paper. The original laboratory has the same lighting conditions (concordant with Recommendation
ITU-T P.913). This picture show very similar conditions.

As far as the demographics of the subjects is concerned, they were all “naïve“ (“fresh“) viewers.
They were all around 23–24 years old and students of AGH University. The subjects were 78% male
and 22% female. All the subjects had a background in Information and Communication Technologies
(ICT). Polish was their native language, but they also had command of English.

The experiment itself used the 5-level Absolute Category Rating (ACR) scale. We chose to use
this scale as our goal was to provide training data for NR metrics. Since NR metrics should be
referenceless by nature, we found the ACR method more appropriate than, for example, the pair
comparison method [11] (p. 8). Differently put, we sought to provide training data for ACR-like NR
IQA algorithms and hence using the ACR scale was the natural choice.

Custom, web-based software (Figure 8) was used to present the content and to collect scores.
The presentation order of images was randomized for each participant. Importantly, there was no time
limit on displaying an image. Each study participant could watch the image for as long as necessary.
In order to provide their rating, participants had to click the image. Only then was a separate screen
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with the rating scale displayed. Participants took, on average, approximately 10 s to watch and rate
a single image.

Due to many subjects taking the experiment simultaneously, we were not able to control all
of them at once. This resulted in non-identical subject pools in the training session and the two target
sessions (VIME1 and CCRIQ2). Of the 24 subjects, 18 took part in the training session, 21 took part
in the VIME1 session, and 19 took part in the CCRIQ2 session. This means some subjects participated
in the VIME1 or CCRIQ2 session but had not been through the training session. This situation could
have been avoided if a different subjective testing software has been used. The situation occurred
because our testing interface had a limitation of having only one active session at a time for all study
participants. Before switching from the training session to the next session, the one experimenter
present in the laboratory asked whether all participants had finished the training. Everyone confirmed
that they had, but the results presented a different picture.

(a) Image presentation screen (b) Assessment submission screen

Figure 8. Two screens from our web-based software interface for conducting the subjective assessment.

The test started with a training session that consisted of 11 images (four from CCRIQ2 and seven
from VIME1). After this, we presented the testers with 101 images (the VIME1 session). Again, after
those, we showed them 88 images (the CCRIQ2 session). Importantly, the 11 images from the training
session did appear in the VIME1 and CCRIQ2 sessions.

Although not perfect, we decided to use this experiment design since it had previously proven to
be functional. Specifically, we were able to reproduce the results of selected classical subjective studies
(i.e., those with visual content having artificially introduced distortions). For the sake of scientific
correctness, we nevertheless underline the shortcomings of our design choices. No vision acuity or
color blindness screening was performed. Furthermore, not all test participants took part in the training
session. Finally, no control over the viewing distance was imposed and there was no precise control
over lighting conditions and acoustic noise isolation. All those factors may have a confounding impact
on our results.

4.2. Subjective Scores Integrity Check

We check the data integrity using three methods: (i) HSE α parameter analysis, (ii) comparing
the MOS of each subject with the MOS of all subjects and (iii) applying the post-experimental screening
of subjects. We choose to go beyond a simple comparison of MOS values as existing works [33,34] point
to the weakness of this approach. Specifically, they highlight its inability to provide a comprehensive
view of the judged quality.

We use the HSE α parameter as, according to the authors of [26], it both comprehensively
summarizes results and checks their reliability. Furthermore, it also allows for checking comparability
between different subjective studies. In short, the parameter describes the degree of variability in data
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(referred to as the standard deviation of opinion scores (SOS) by the authors). It does so across
the whole range of the MOS scale (a continuous scale from 1 to 5 in our case). This is possible because
of assumptions about no variability at scale extrema and highest variability in its middle (MOS equal
to 3 in our case). The authors’ hypothesized quadratic relationship (described by a quadratic function)
between variance and MOS reflects the two assumptions. The HSE α parameter expresses the exact
shape of this relationship. Its value is a result of fitting the quadratic function into actual MOS–SOS
pairs (one pair for each test material). To describe the accuracy of this fit, we follow the authors
and report its mean squared error (MSE). As highlighted by the authors of [26], classical subjective tests
of images or video streaming have an HSE α parameter with a value roughly between 0.01 and 0.22
(higher α corresponds to higher variability). We expect to observe similar or higher values for CCRIQ2
and VIME1 data sets. This potentially higher variability of our data sets may arise from the use
of consumer content. A design using such content is in general less controlled than the classical
approach (with artificially introduced distortions).

The second method we use compares each subject’s opinion with the general one (averaged over
all subjects). To get a more reliable comparison, we aggregate individual opinion scores over camera
type. In other words, we average opinion scores given by one subject to all images taken by a given
camera type. It gives us the MOS for each subject (instead of less stable individual scores). Having a set
of MOS scores for all camera types for a given subject, we compare it with MOS scores computed
from opinion scores of all subjects. We end up with two vectors: (i) a personalized MOS score for
each camera and (ii) a general MOS score for each camera. We then visualize the relation between
the two using a scatter plot. Repeating the procedure, we get a set of scatter plots, one for each subject.
If the data are consistent, we should see a positive linear relationship in most (or all) of the scatter
plots.

A careful reader will notice more than 11 points in each scatter plot related to VIME1 (see
Figure 5). This may seem unusual since we refer to camera type and there are 11 cameras in this
data set. There are more data points in the scatter plots because we treat each post-processed version
of an image as a separate camera type. In other words, the same image content with and without post
processing constitutes two distinct camera types. This results in 26 camera types and thus 26 data
points in each plot.

Importantly, we perform the scatter plot analysis not to compare the cameras, but to verify whether
each study participant is following the general opinion trend. We specifically focus on the per-camera
approach because it gives a sufficient number of data points. Differently put, there are enough points
to visually see whether there is a correlation between personalized and global MOS. This analysis
can be repeated by aggregating by other factors as well (e.g., by scene). However, we do not show
scatter plots resulting from other aggregation strategies since none of them provide a sufficient number
of data points.

Finally, we perform a post-experimental screening of subjects. Following Recommendation
ITU-T P.913 [30], we check the correlation between the raw scores of each individual subject
and the average raw scores of all subjects. We perform the computations on a per-image basis.
Having the correlations for all subjects, we discard the worst outlier, then repeat the procedure.
We treat as outliers subjects with a correlation below 0.75 (a value recommended for subjective tests
of entertainment videos). We finish the procedure when there are no subjects with a correlation below
0.75. We expect to discard up to 10% of subjects.

5. Conclusions

With this paper, we hope to encourage the development of NR IQA algorithms for consumer
content. We describe two new data sets, CCRIQ2 and VIME1, that provide consumer images
and corresponding subjective scores. Those shall help train and test better NR metrics. We make
CCRIQ2 and VIME1 available royalty-free through the CDVL [17] (search CDVL using the keyword
“ccriq2+vime1“).
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We also check data integrity of the two data sets (thus addressing hypothesis #1). We show that
scores from the VIME1 data set are inconsistent. This represents a case for which the classical subjective
test design fails to work. The situation is unusual since evaluations of the similarly designed CCRIQ2
provide consistent results. This suggests a series of questions. Maybe the VIME1 design is too close to
consumer camera usage? Where then is the borderline beyond which the classical subjective study
design ceases to work? Can we think of developing NR metrics if we do not know how to design
subjective studies that correctly generate ground truth data? We put forward these questions as they
are crucial for advancing consumer content evaluation and NR metrics research.

Our work may as well be used as a benchmark for data integrity checking tools (thus addressing
hypothesis #2). Let us boil this down to the following recommendations. The results indicate that
the HSE α parameter does not seem to be a reliable mechanism for comparing subjective studies.
In particular, it should not be used as an ultimate measure of similarity. Even though two studies may
have similar HSE α parameters, one may be consistent, and the other may not be. We recommend
investigating the distribution of scores through scatter plots to alleviate this problem. The plots should
show each tester’s opinion juxtaposed with the general opinion among all testers (for details, see
Section 4.2). The apparent correlation between testers suggests data integrity. To further verify this
claim, we advocate using the post-experimental screening of subjects (as defined in Recommendation
ITU-T P.913 [30]).

Our last contribution is the comparison of CCRIQ2 to its legacy counterpart, CCRIQ.
The qualitative and quantitative analyses indicate that the two data sets are compatible. This means
they can potentially be combined. Such a combined, more extensive data set should allow for
performing more trustworthy per-camera inferences. It would also constitute good training data
for NR metrics. We leave exploring the benefits of the combined data set for future research.

Similarly, we let explaining VIME1 inconsistency be another future goal. Among the potential
causes for the lack of integrity are mixing of vertically and horizontally aligned images, inclusion
of post-processed images, utilizing a narrow range of contents, allowing many photographers to
capture the same scene, substantially redefining the meaning of content degradation condition (HRC),
and, finally, performing the study as an element of a teaching course. At this point, we theorize that
the mixing of vertical and horizontal images may be the most probable reason for the inconsistency.

Supplementary Materials: The following is available online at http://www.mdpi.com/2313-433X/6/3/7/s1.
Spreadsheet S1: ccriq2_vime1_tidy.csv contains 3,745 opinion scores for images from the VIME1 and CCRIQ2
data sets. Each row corresponds to a single opinion score of a single study participant. The CSV file has 10
columns: (i) lab—The location the subjective study has been performed (i.e., AGH UST); (ii) Tester_id—A unique
identification number of each study participant; (iii) Exp—A name of a test session (either “vime1“ or “ccriq2“); (iv)
PVS—A name of an image presented to a study participant; (v) Scene—A scene, of which a photograph constitutes
a test material (a.k.a. PVS); (vi) Camera—An identification string of a camera used to capture the image (a.k.a. PVS
or test material); (vii) OS—An opinion score of the study participant expressing his/her judgment of the overall
image quality; (viii) Timestamp—A timestamp of the opinion score submission; (ix) Camera_w_ver—A string
combining the camera identifier with a version of the test material (versions other than “ver1” mean the image is
post-processed); (x) Orientation—The test image orientation (horizontal or vertical; applicable only to the VIME 1
session).
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