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ABSTRACT

We propose a model for rating behavior based on subject bias
and subject error. Evidence for subject bias can be found in
freely available subjective experiments. When subject bias
is removed from ratings, the sensitivity of statistical compar-
isons between stimuli usually improves. According to our
model, subject biases characterize the subject pool. These
between-subject differences are important when analyzing
and comparing people. On the other hand, it is advantageous
to remove subject bias when analyzing mean opinion score.
We conclude that bias acts like a random variable within
ratings.

Index Terms— design of experiments, mean opinion
score, QoE, subjective ratings, video quality assessment

1. INTRODUCTION

Subjective video quality experiments are wildly used to as-
sess opinions about telecommunication services. In a typical
experiment, a pool of 24 people rate the perceptual quality
of various video sequences. It is important for our analysis
that we understand the human factors influencing the subject
ratings.

Pinson et al. [1] describes a systematic study of audiovi-
sual subjective quality testing conducted by six laboratories
from four countries. The stimuli and scale were held constant
across experiments and labs; only the environment of the sub-
jective test was varied. This indicated that after the number of
subjects, the most important variable was how opinions dif-
fered among people.

Cermak and Fay [2] examined the T1A1 subjective
dataset1 and observed that subjects center their scores around
different fulcrum points, resulting in a bias in scores. Cermak
and Fay theorized that these biases were meaningful and im-
portant, and could be explained if sufficient information were

∗The work of L. Janowski has been supported by the AGH University
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1This dataset is from tests conducted in 1994, as the first independent
validation of objective video quality models. For more information, see [3].

known. They tried to prove this hypothesis using the scores
and questionnaire data gathered for the 114 subjects (i.e.,
gender, experience with video teleconferencing, age, visual
acuity, color vision test). Their conclusion was that, “From
a practical standpoint, subject differences are not meaningful
in predicting ratings of video quality.” [2]

Cermak and Fay proposed two different methods to re-
spond to subject bias:

1. Collect data from more subjects, or
2. Remove subject mean from the data
So far, the subjective testing community has embraced

the first option. A few researchers have removed both mean
and variance from each subject’s scores. Ostaszewska and
Żebrowska-Łucyk [4] convert each subject’s ratings into z-
scores with zero mean and unit variance. Also, van Dijk et
al. [5] used z-scores to span the same range on the rating scale.

Nevertheless, those methods are not commonly used. One
reason could be insufficient proof that that this technique is
valid for video quality tests. Also Cermak and Fay [2] do not
recommend removing variance. Their theoretical justification
for only removing subject bias is that this describes the sub-
ject without impacting the subject’s relative ranking of pro-
cessed video sequences (PVS). This can be justified if mean
opinion scores (MOS) are relative rather than absolute, which
the results presented in [1] support.

This paper proposes a model for subject behavior that in-
cludes subject bias. We do not treat subject bias as an error,
rather as a natural feature. Our goal is to better understand-
ing scoring behaviors. We will show that subject bias can be
observed in a variety of subjective datasets, that subject bias
does not depend upon the stimuli, and that it has a consis-
tent behavior. We will then explore the impact of subject bias
normalization on data analyses by showing that the obtained
results precision can be increased by removing subject bias.

2. DATASETS

We will use four sets of subjective ratings to analyze our sub-
ject model.

First, dataset AGH/NTIA is from an experiment con-
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structed by Pinson and Janowski for the purposes of exploring
this subject model. Dataset AGH/NTIA contains a sparse ma-
trix of 94 source video sequences (SRC) and five hypothetical
reference circuits (HRC) for a total of 110 PVSs. Data from
28 subjects was collected using the five-level absolute cate-
gory rating (ACR) method, in accordance with ITU-T Rec.
P.910. For a full description of dataset AGH/NTIA, see [6].

Second is a collection of six high definition television
(HDTV) experiments conducted by the video quality experts
group (VQEG) to validate HDTV objective quality metrics.
These datasets are named vqegHD1, vqegHD2, vqegHD3,
vqegHD4, vqegHD5, and vqegHD6. The individual subject
ratings are available in the VQEG report [7]. Each of these
six experiments was designed according to identical specifi-
cations, to contain a full matrix of 9 SRCs by 15 HRCs, plus
a common set of 24 PVSs, for a total of 168 PVSs. The sub-
jective data were collected using the same ACR method.

Third, dataset vqegMM2 is an audiovisual subjective
dataset that contains 60 PVSs. Subjective data was collected
at six different labs in ten different environments, for a total
of 213 subjects. The subjective data were collected using
the ACR method. This dataset was the basis for the Pinson
et al. [1] analysis mentioned earlier. For a summary of the
experiment and access to the subjective scores, see [8].

Fourth, dataset NTIA/Verizon [9] compares the perfor-
mance of MPEG-2 and AVC/H.264 on HDTV, both coding
only and in the presence of transmission errors. This exper-
iment contains a partial matrix design, drawn from 12 SRC
and 9 HRCs, for a total of 144 PVSs. The subjective data
were collected using the ACR method.

3. PROPOSED SUBJECT MODEL

We propose that subject rating behavior within an experiment
is governed by the following model:

oij = ψj + ∆i + εij (1)

where
• oij is the observed rating for subject i and PVS j
• ψj is the true quality value for PVS j;
• ∆i is the overall shift between the ith subject’s scores

and the true values (i.e., opinion bias)
• εij is the error (i.e., scoring imprecision)

We assume that:
• there is an underlying true value ψj , despite our inabil-

ity to measure this value in absolute terms
• random variable ∆i has a zero mean for all PVSs
• random variable εij has a zero mean both generally

(over all subjects and PVSs) and conditionally (for a
particular subject or PVS)

• ψj and ∆i are continuous variables, and thus ∆i + εij
is a deviation from a true value ψj

Our goal is to prove that each subject has a bias and that
this bias is stable. By stable, we mean that subject bias does

not change depending on distortion, source sequence or other
factors. Depending on a source sequence would result in scor-
ing better than average one source sequence and worst than
average the other source sequence.

Variable εij is influenced by multiple factors, such as the
subject’s imprecision and the PVS scoring difficulty (e.g.,
subjects may have trouble deciding how to rate a PVS with
a brief transmission error). Variables oij and εij should have
a third subscript, r, that denotes the number of times that
subject i has rated PVS j. A detailed analysis of εij and r
will be presented in a follow-up paper.

Our estimate of ψj is the mean value denoted by µψj and
given by:

µψj =
1

Ij

Ij∑
i=1

oij (2)

where
• µ denotes estimation from the data
• µψj

estimates ψj
• Ij is the total number of subjects for PVS j

By substituting our subject model for oij , we get:

µψj
=

1

Ij

Ij∑
i=1

ψj +
1

Ij

Ij∑
i=1

∆i +
1

Ij

Ij∑
i=1

εij (3)

Assuming 1
Ij

∑Ij
i=1 ∆i and 1

Ij

∑Ij
i=1 εij approach zero as Ij

approaches infinity, we get:

µψj
≈ ψj (4)

Our estimate of ∆i is the mean difference between µψj

and the ith subject’s ratings. It is denoted by µ∆i and given
by:

µ∆i
=

1

Ji

Ji∑
j=1

(oij − µψj
) (5)

where
• µ∆i

estimates ∆i

• Ji is the total number of PVSs rated by subject i
Put another way, we take the difference between the average
of the ith subject’s ratings and the average rating computed
over all subjects and all PVSs.

By substituting our subject model for oij , we get:

µ∆i =
1

Ji

Ji∑
j=1

(ψj − µψj ) +
1

Ji

Ji∑
j=1

∆i +
1

Ji

Ji∑
j=1

εij (6)

Given (4) and assuming 1
Ji

∑Ji
j=1 εij approach zero as Ji ap-

proaches infinity, we get:

µ∆i
≈ ∆i (7)
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4. ANALYSIS OF ∆i

By the Central Limit Theorem, we can assume that the mea-
surement error of µ∆i

is normally distributed. It is not ob-
vious that this assumption is true, especially for both ends of
the scale. We validated this assumption on the AGH/NTIA
dataset using Kolmogorov-Smirnov test run for each subject
separately. For more than 64% of subjects the distribution of
(oij−µψj

) is statistically the same as the normal distribution.
Since the visual investigation of the normality plot shows the
strong influence of discretization, the obtained results support
normality of the samples used to calculated µ∆i .

With such an assumption, variable (oij − µψj
) can be

treated as a random variable drawn from a normal distribu-
tion with mean µ∆i and standard deviation σi. The goal of
the analysis is to estimate the mean. The confidence interval
(CI) for that estimate is:

µ∆i
± z1−α/2

σi√
Ji

(8)

where z1−α/2 is the inverse of the normalized normal distri-
bution. This is the CI of µ∆i for subject i, which indicates
how well we have estimated ∆i.

Table 1 shows the range of µ∆i and σi for the datasets
identified in Section 2. We see that the span of µ∆i is similar
for all datasets except vqegHD4 and vqegMM2. In the case
of vqegMM2, the increased range of µ∆i

is probably caused
by the large pool of 213 subjects i.e. greater chance to draw
a strongly bias subject. Dataset vqegHD4 should be investi-
gated in more detail. From Table 1 we can estimate a typical
pool of µ∆i

being between (-0.6, 0.6).
Standard deviation is also similar for all datasets. Again

vqegMM2 has the largest pool of subjects and so naturally has
the widest range of σi. This time, the NTIA/Verizon dataset
has a larger range. Similarly to the µ∆i

analysis, a deeper
investigation is needed to understand the reasons or decide
that it is caused just by luck.

If the span of µ∆i
is very small, it could indicate that our

subject pool is specific and we should be careful about very
general conclusions. On the other hand if the span of µ∆i

is
very wide, a careful analysis of possible outliers is suggested.
Dataset vqegHD4 provides an example.

The confidence intervals obtained for different values of
µ∆i

cannot be shown for each experiment. As an example,
Fig. 1 shows µ∆i for dataset AGH/NTIA with subjects sorted
by µ∆i .

A detailed analysis of different SRCs and HRSs is dif-
ficult, because the number of answers for a single group is
small and the discrete nature of oij becomes an important fac-
tor. The influence of SRC and HRC needs further investiga-
tion, since some irregularity can be seen for some subjects,
especially considering different HRCs.

Nonetheless, we have shown that µ∆i
has a small stan-

dard deviation (see small CI at Fig. 1). This suggests that µ∆i

Table 1: Range of µ∆i and σi

Dataset Subjects µ∆i
σi

[min,max] [min,max]
AGH/NTIA 28 [-0.59, 0.60] [0.44, 0.95]
vqegHD1 24 [-0.54, 0.40] [0.51, 0.68]
vqegHD2 24 [-0.67, 0.49] [0.49, 0.83]
vqegHD3 24 [-0.56, 0.88] [0.50, 0.83]
vqegHD4 24 [-1.18, 0.95] [0.47, 0.80]
vqegHD5 24 [-0.69, 0.70] [0.50, 0.86]
vqegHD6 24 [-0.79, 0.45] [0.48, 0.78]
vqegMM2 213 [-0.95, 0.90] [0.43, 1.18]

NTIA/Verizon 21 [-0.65, 0.60] [0.52, 1.08]
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Fig. 1: Observed distribution of subject bias (µ∆i ) with con-
fidence intervals, for dataset AGH/NTIA.

does not depend upon j, and so we can reasonably treat this
as a variable that depends only upon i. It appears to be rea-
sonable to ignore the underlying complexities that we know
occur (e.g., like or dislike SRC, different impact of different
HRCs).

5. NORMALIZING SUBJECTIVE DATA

Our analysis of µ∆i in Section 4 indicates that we should
be able to remove the influence of µ∆i

from any subjective
dataset. This normalization will not impact µψj

. However,
the standard deviation of scores will change, and should de-
crease from:

sj = σ
i
(oij) (9)

to
s̃j = σ

i
(rij) (10)

where
rij = oij − µ∆i (11)

and where
• σ is standard deviation
• sj is the standard deviation of subject ratings for PVS j
• s̃j is this same standard deviation, computed on subject

data with the subject bias µ∆i removed
We expect to see:

s̃j < sj (12)
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Fig. 2: Normal probability plot of µ∆i indicates an approxi-
mately normal distribution.

while µψj
remains constant.

5.1. Distribution of µ∆i , sj and s̃j

To test this theory, let us examine µ∆i , sj and s̃j for several
freely available datasets. Fig. 2 shows the normal probability
plot of µ∆i

for all nine datasets mentioned in Section 2. From
this, we can see that µ∆i

has a normal distribution, and spans
more than 25% of the rating scale.

Fig. 3a shows the distribution of µ∆i values for the six
VQEG HDTV datasets. Fig. 3b shows the difference between
sj and s̃j for the six VQEG HDTV datasets. The dot size in-
dicates the data density. While s̃j is generally less than sj , s̃j
is larger for small values of sj . These smaller standard devi-
ations usually correspond to the saturation of the MOS scale,
as we can see in Fig. 4. Further investigation of saturation
and its impact on ∆i estimation will require an improved un-
derstanding of εij and the influence of the discrete, five-level
scale.

Fig. 4 shows the relationship between µψj
and σ for the

raw data (Fig. 4a) and when µ∆i is removed (Fig. 4b). On
average, σ decreases by 0.035 to 0.167, depending on the
dataset. The red arrow on the bottom of the scatter plot in-
dicates the change to the minimum σ as we move from raw
data (Fig. 4a) to normalized data (Fig. 4b). The red arrow at
the top of the scatter plot indicates the change in maximum σ.
Removing µ∆i usually moves the minimum and maximum σ
value toward the median, thus eliminating extreme values. It
means that for the minimum variance, (12) is not satisfied. We
believe that the small variances seen before µ∆i

is removed
are caused by clipping of the MOS scale and not an imperfec-
tion of the model given in (1).

The six scatter plots in Fig. 4a show a pattern typical of
discrete rating scales like ACR. Variable sj is larger near the
middle of the scale and smaller at both ends—raising con-
cerns of scale compression, although studies fail to indicate
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Fig. 3: Impact of removing µ∆i
from the six VQEG HDTV

datasets (a & b) and datasets vqegMM2, AGH/NTIA, and
NTIA/Verizon (c & d). Scatter plot shows bins, where larger
dots indicate more data.

an inherent superiority of continuous rating scales [10, 11].
After normalization (Fig. 4b), the s̃j values are more stable
over the ACR scale.

Figs. 3c and 3d show the distribution of µ∆i values and
the difference between sj and s̃j for datasets vqegMM2,
AGH/NTIA and NTIA/Verizon. These figures show the same
trends we saw in Figs. 3a and 3b. Variable µ∆i

spans a
similar range. Equation (12) appears to be satisfied except for
small values of sj and a few small increases.

5.2. Impact of ∆i Removal on MOS Data Analysis

Although removing µ∆i
does not impact µψj

, the significant
difference between PVSs can change. According to our sub-
ject model, this change should be beneficial (i.e., removing
the part of subjects’ differences that are important from the
correctness of the subject pool point of view but not impor-
tant from the MOS point of view). The consequences should
be the ability to differentiate between more pairs of PVSs.

For all PVS pairs within each of the six VQEG HDTV
datasets, a Student’s t-test was used to calculate whether or
not the PVSs had equivalent MOS at the 95% significance
level. This calculation was repeated on the normalized scores
(with µ∆i

removed). Based on the combined results from all
six datasets, removing µ∆i had the following impact:

• 97.22% no change
• 2.69% increase in sensitivity (equivalent→ different)
• 0.08% decrease in sensitivity (different→ equivalent)
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Fig. 4: Impact of removing µ∆i
from the six VQEG HDTV datasets. Long red arrows indicate a large change in the minimum

or maximum standard deviation of scores. Short red arrows indicate a small change.

• 0% inversions (opposite conclusions)

Inversions are impossible, because µψj
only changes due to

rounding error.

Overall, normalizing each subject’s scores by µ∆i
seems

to improve our ability to distinguish between PVS MOS for
the VQEG HDTV datasets. This supports the correctness of
our subject model and provides corroborating evidence for the
term ∆i.

Now let us consider an applied example. The NTIA/Veri-
zon experiment evaluates the hypothesis that H.264/AVC en-
coding yields equivalent perceptual quality at half to one third
of the bitrate of MPEG-2. This hypothesis is evaluated at four
different encoding bitrates. Each comparison includes eight
HDTV SRC (see Pinson et al. [9] for details).

Table 2 shows the impact of µ∆i
removal when a Stu-

dent’s t-test analyzes this hypothesis for specific PVS pairs
(e.g., H.264 at 2 Mbps versus MPEG-2 at 6 Mbps, for SRC
”NTIA Red Kayak”). The third column (µψj

equivalent using
oij) shows the number of SRC that had statistically equivalent
MOS, based on the raw ratings and a 95% significance level.
The fourth column (µψj

equivalent using rij) shows the num-
ber of SRC that had statistically equivalent MOS, when µ∆i

is removed from the subject ratings.

For three of the 24 comparisons, the normalized data al-
lows us to detect a significant difference, while the raw data
does not. This is a 12% increase in sensitivity, when the anal-
ysis is limited to the question that the experiment was de-
signed to answer.

Table 2: Impact on Student’s t-test Sensitivity

H.264 MPEG-2 µψj
equivalent µψj

equivalent
using oij using rij

10 Mbps 18 Mbps 8 of 8 7 of 8
6 Mbps 12 1

2 Mbps 7 of 8 5 of 8
3 1

2 Mbps 8 1
2 Mbps 4 of 8 4 of 8

2 Mbps 6 Mbps 3 of 8 3 of 8

6. CONCLUSION

We propose a linear model for subject behavior, which in-
cludes three variables: true quality (ψj), subject bias (∆i),
and subject error (εij). We have shown evidence supporting
the existence of the term ∆i and shown that subjective ratings
are influenced by the subject’s bias (∆i). When subject bias
is removed from subject ratings, the sensitivity of statistical
comparisons between stimuli usually improves.

Whether or not to remove ∆i depends upon the type of
data analysis.

• When the analysis focuses on MOS comparisons, then
∆i should be removed. The NTIA/Verizon dataset [9]
provides an example. Most subjective tests use this type
of MOS analysis, and thus would benefit from remov-
ing ∆i.

• When the analysis compares objective and/or subjec-
tive data with user descriptions (e.g., from blogs, fo-
rums, or questionnaires), then MOS and subject bias
should be taken into consideration.
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• When the analysis focuses on subject behavior, then
the analaysis could focus only on ∆i. The vqegMM2
dataset [1] provides an example.

The authors are conducting further investigations into the
subject model and subject error (εij). Another interesting
researcher area is finding a typical pool of bias in different
groups, like different countries.

7. APPENDIX

The following MATLAB® code implements the equations
seen in this paper. Input argument oij is oij from (1). Out-
put argument rij is rij from (11); deltai is µ∆i

from (5);
deltaistd is σi from (8); and array ni holds Ji for each
subject.

1 % SYNTAX
2 % [rij, deltai, deltaistd, ni] = ...

normalizationByDelta(oij)
3 % SEMANTICS
4 % Input: oij matrix with subjects ratings ...

where rows are different PVSs and ...
columns are different subjects.

5 % Output: rij normalized matrix with the ...
same structure as oij (that is, rij = ...
oij - deltai).

6 % deltai is the subjects bias
7 % deltaistd is the standard ...

deviation of a subject bias
8 % ni number of correct ratings per ...

subject
9

10 function [rij, deltai, deltaistd, ni] = ...
normalizationByDelta(oij)

11

12 psi = nanmean(oij,2);
13 temp = bsxfun(@minus, oij, psi);
14 deltai = nanmean(temp);
15 deltaistd = nanstd(temp);
16 rij = bsxfun(@minus, oij, deltai);
17 ni=zeros(1,length(deltai));
18 for i=1:length(deltai),
19 ni(i) = sum(˜isnan(rij(:,i)));
20 end
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