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Abstract-Interference coefficients describe the non-Lorentzian effect that arises as pressure 
broadening causes lines to overlap. These coefficients, one for each line, are at moderate 
pressures related linearly to absorption and dispersion. They are determined here for the 5-mm 
wavelength oxygen lines broadened by air. The method includes four a priori constraints 
on off-diagonal elements of the relaxation matrix, which produce the interference effect: 
(1) detailed balance; (2) intra-branch submatrices are assumed to be identical; (3) coupling 
between the + and - branches is ignored; (4) coupling between the (positive-frequency) 
resonances and the nonresonant and negative-resonant branches is represented by a small bias 
term in the interference coefficients. The linear equations relating measured dispersion to the 
interference coefficients are solved by the Twomey-Tikhonov method, which minimizes a cost 
function, subject to the condition of constant measurement-error variance. The cost function 
is chosen to minimize the variation of elements along diagonals of the intra-branch relaxation 
submatrix. Implications for atmospheric radiative transfer are briefly discussed. 

1. INTRODUCTION 

When pressure broadening causes two or more lines to overlap, deviations from a sum of 
Lorentzian line shapes are often observed. This effect is termed interference, mixing, coupling, 
blending, or merging of lines. Some of the molecules for which it has been observed to be significant 
are O2,‘-3 C01,4,5 CO,5q6 N2,6 and N,O.’ Theoretical expressions for the shape of bands of over- 
lapping lines were first developed by Baranger’ and Kolb and Griem,8 and rederived in a more 
general context by Fano.g The influence of collision dynamics on the spectrum is expressed through 
a relaxation matrix. This matrix can, at least in the limit of instantaneous collisions (impact 
approximation), be calculated from first principles and a given intermolecular potential (see 
Refs. lo-13 for 0,). 

These calculations are highly computation-intensive; therefore, models for the relaxation matrix, 
such as the strong-collision,4 exponential-gap4 and tridiagonal14 model have been found useful to 
interpret measurements. Models certainly have a place in interpretation of spectra; however, when 
computations based on models with restrictive assumptions show small disagreements with 
radiometric measurements (e.g., Ref. 15), it may be unclear where to seek resolution of the 
discrepancy. 

It should be fruitful to consider the experimentalist’s task of measuring parameters from the 
standpoint of estimation theory. If one considers 1 lines, a relaxation matrix has dimensions 21 x 21. 
At moderate pressure, its influence on the spectrum can be reduced to 21 parameters: I linewidths 
and I interference parameters. I4 Moderate pressures may be defined as roughly those for which the 
dimensionless interference parameters are smaller than unity. We describe a method of inverting 
the linear equations relating measured dispersion (or absorption) to the interference parameters, 
at moderate pressures. This method is robust in the presence of measurement errors. The 
spin-rotation band of O2 will be the subject of the discussion. 

2. MILLIMETER-WAVE ABSORPTION AND REFRACTION IN OXYGEN 

Oxygen is a paramagnetic subtance, with a molecular dipole moment of two Bohr magnetons 
due to the presence of two unpaired electron spins. r6 In the electronic ground state, the spin vector 
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combines with rotational angular momentum (Hund’s coupling case b) to form a triplet of energy 
levels with total angular momentum J = N - 1, N, and N + 1, for each value of rotational 
quantum number N. Symmetry of the molecular wavefunction with respect to the two identical 
nuclei restricts N to odd values, and states up to N N 33 are significantly populated at atmospheric 
temperatures. With one exception, the transition frequencies for J = N to N - 1, denoted vN_ , and 
J=NtoN+l,denotedv,+, lie between 50 and 70 GHz. The magnetic dipole moment also has 
nonzero diagonal matrix elements which, as a result of reorientation by collisions, contribute 
nonresonant absorption throughout the microwave spectrum.16 

At pressures approaching 1 bar, the lines are broadened by collisions to form a continuous band. 
Within the impact approximation, the power absorption coefficient can be written as’,*.” 

yi + yi(v - vi) + yi - Yi(V + Vi) 

(v -vi)2+yy (V +VJ’+yf 1 ’ 
(1) 

where v is the observation frequency, n, is the number of absorbing molecules per unit volume, 
T is temperature, vi is a line frequency, yi is a line half-width, Y is a line interference parameter, 
and ai is proportional to a line strength. The partition function is Q = &3(2N + l)exp( -E,/kT), 
where E,., is the energy of the level J = N. Corresponding to Eq. (1) there is an associated equation 
for the refractive index.” The dispersive part is given by 

vi - v + Y,r, Vi+V + Yjyi 
(v - vi)2 + yf - (v + Vi)2 + y’ 1 * (2) 

In Eqs. (1) and (2), the approximation v+kT/h has been employed, and c, k and h have their 
standard meanings. 

To first order, vi and ai are independent of pressure: vi = v,,,+ or vN_ and a, = pfexp( - E,/kT), 
in which pi is the reduced dipole moment matrix element; i.e., pi_ = 4pi(N + 1) (2N - 1)/N and 
pi+ = 4pkN(2N + 3)/(N + l), where PLg is the Bohr magneton. The nonresonant component of 
absorption is included in the summations as i = 0, with line frequency and interference parameter 
set to zero, and with a, = 1.40 p;Q. The absence of first-order pressure terms in vi and ai is a 
consequence of the pure-imaginary character of the relaxation matrix for this band of 02.‘3.‘8.‘9 

To lowest order, yi and Y are proportional to pressure; they can be related to the elements of 
a relaxation matrix by’4,‘9 

yi= ‘M;, (3a) 

y;,l i fi* 

Pij=_/Vi-VI 
j#i 

W) 

Ml” is the negative imaginary part of the relaxation matrix defined by Fano.’ The summation in 
Eq. (3b) extends over negative resonant frequencies v_~ = -vi as well as the positive vj and v,, = 0. 
The v_~ are associated with the second term inside the square brackets in Eqs. (1) and (2). From 
the fundamental requirement that a(v) and N(v) be even functions of v, it follows that yPi = yi and 
Y_i = - Yi; these equalities have already been taken into account in writing Eqs. (1) and (2). The 
first-order equations provide an accurate approximation to the band shape, even at pressures near 
1 bar where the line overlap is appreciable, because of partial cancellation of higher order terms.” 

3. INVERSION OF REFRACTION MEASUREMENTS 

Determination of the relaxation matrix (or of the y s and Y s) is the central problem in describing 
bands of overlapped lines. When pressure is sufficiently low that line overlap is negligible, the line 
shape near resonance is nearly Lorentzian, and interpretation of measurements to obtain linewidth 
parameters is unambiguous. ‘O The effect of the interference parameters becomes detectable only as 
the pressure is increased. Dispersion can be measured more precisely than absorption, so the 
discussion here will focus on interpretation of the dispersion measurements at pressures of 
400-800 torr (533-1067 mbar) described by Liebe et al;’ however, similar comments would apply 
to absorption. Liebe’s spectromete?O measures the quantity AN = N(v) - N(v/2). Table 1 lists the 
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Table 1. Measured’ and calculated dispersion in dry air at 300 K. Estimated measurement uncertainty is 
+ 10 ppb (I ppb = 10w9). Calculations use the coefficients in Table 2. 

289 

Vacuum Nearby Dispersion (ppb) at 

tuning line 400 torr 500 torr 600 torr 000 torr 

frequency center mea- calcu- mea- calcu- mea- calcu- mea- calcu- 
sured lated sured lated sured lated sured lated 

(GHz) 

53.5957 25- 300 301 430 439 

54.1300 23- 350 338 500 490 

55.2214 19- 400 406 580 574 

55.7838 17- 420 420 510 506 600 587 720 734 

56.3634 15-,l+ 410 397 590 563 

56.9682 13- 380 347 450 499 650 628 

58.4466 3+,9- 200 172 280 249 

59.1642 7- 80 73 120 105 

59.5910 5+ 30 24 30 26 

60.3040 5-,7+ -75 -89 -90 -140 

60.4330 7+,5- -155 -127 -170 -177 

61.1490 9+ -275 -257 -383 -369 

61.7980 11+ -335 -347 -510 -530 

62.4090 13+,3- -480 -482 -685 -695 

62.4840 3-,13+ -510 -501 -650 -611 -720 -714 

62.9960 15+ -590 -586 -680 -701 -790 -810 

63.5670 17+ -610 -596 -690 -723 -841 -842 -1080 -1058 

measured values of AN. For air, the frequency of measurement v is related to the vacuum tuning 
frequency vR by’ 

v = v,(l - 1.0356 x 10-4P/T), (4) 

with P given in torr and Tin Kelvin. The frequencies vR were chosen to lie on or near line centers. 

3.1. Weighting factors 

Let the measurements be indexed by a subscript k and let AN! be the value of AN, computed 
by setting the Ys equal to zero. Having measurements at several values of pressure P, it is more 
convenient to work with the coefficients yi = Yj/P. Then Eq. (2) implies that 

AN,--AN;= f: Wkiyi+ck, (5) 
i= I 

where, because the interference coefficients have virtually no influence on refraction near 30 GHz, 

w = 27WPvai Yi Yi 
ki 

3kTQ (v - vi)’ + y; - (v + vi)2 + yf 1 ’ 
and ck is the combination of error in measured ANk and the error resulting from use of experi- 
mentally determined linewidths (from resolved lines) to compute AN;. The fundamental difficulty 
in solving the system of Eq. (5) for the ys is that it is ill-conditioned. At low pressure, the interference 
effect, AN - AN’, is small, and increasing pressure broadens the lines so that each measurement 
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Fig. 1. Weighting factors for the contribution of interference coefficients to dispersion measured at the 
9+ line center. The lines are plotted by frequency. 

is a superposition of effects from several interference parameters. Figure 1 is a plot of the weights 
W, for a measurement at the 9+ line, illustrating the significant amount of broadening even at 
400 torr. The overlap of the + and - branches of the oxygen spectrum only increases the difficulty 
of the problem. 

In general, there are two approaches to solving an ill-conditioned system in the presence of 
measurement errors. One is to employ a model having a small number of adjustable parameters; 
this is the method used by Liebe et al.lm3 The other appproach is to stabilize the inversion operation 
by incorporation of a priori information or constraints. Many techniques for accomplishing this 
stabilization have been developed for inverse problems occurring in remote sensing.2’ Preferably, 
the constraints will be based on physical considerations. In the case of pressure broadening, the 
appropriate object on which to impose constraints is the relaxation matrix. 

3.2. Constraints on MI” 

The first constraint is related to the principle of detailed balance: 

kA; = Ml; exp[(Ei - E,)/kT], (7) 

where Ei is the initial energy level of line i. This constraint has a firm theoretical basis.22 
Next, it well be assumed that the submatrix of Ml” coupling lines within the + branch of the 

spectrum is identical to the submatrix that couples lines within the - branch. This constraint is 
exact in Gordon’s” semi-classical theory of the oxygen band, and is supported to a good 
approximation by the fully quantum-mechanical calculation of Lam.12 Experimental support for 
it can be inferred from the closeness of the widths of lines N+ and N - .ie3 The upper-right, 
off-diagonal triangle of this intra-branch submatrix will be represented by R(N’, N), with N’ < N, 
where N’ and N are the quantum numbers associated with the two lines coupled by an element 
of R. 

Elements of Ml” that couple lines in the + branch to lines in the - branch will be assumed 
to be zero. In Lam’sI calculations, these elements are much smaller than many of the elements 
R(N’, N). This result has been explained by SmithI on the basis of a tendency for the electron 
spin vector to be unchanged by molecular collisions. I 

Equation (3b) expresses the interference parameter for each line as a summation over all other 
line frequencies to which it is coupled. One might think that it would be safe to neglect the terms 
that couple positive vi to negative or zero rj, beause of the large frequency differences in the 
denominator. In i.r. spectra these terms would no doubt be truly negligible, In the oxygen 
microwave band they make only a small contribution to the Ys, but in the same direction for each 
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line, It will be seen below that their cumulative effect is detectable in atmospheric measurements 
made on the far wings of the band. The contribution of these terms is too small to be reliably 
determined from the available dispersion measurements, but it can be estimated from Gordon’s’* 
theory. He pointed out that at large frequency displacements, a band can be replaced by a common 
resonance. For oxygen, f&ll” reduces to a 3 x 3 matrix with diagonal elements equal to yO, the 
nonresonant broadening parameter, and off-diagonal elements equal to -y,,/2. To this approxi- 
mation, the contribution to yi of the terms that couple line i to the zero- and negative-frequency 
transitions is given byl4 

bi = -yO/Pvi - yO/P(vi + 60 GHz). (8) 

Because the nonresonant transitions have an exactly common frequency of zero, collisions 
contribute to y,, only through reorientation of the angular momentum vector; it is therefore smaller 
than the yi. I8 Measurements indicate that a reasonable value for yO/P is 0.48 GHz/bar.14 Thus, 
bi- - 0.012 bar-‘. 

By arranging the elements of r(N’, N) = R(N’, N)/P as a vector r and including b as a bias 
vector, the indicated constraints allow us to substitute for Eq. (3b) the following relation: 

y=Hr+b. 

An element of the matrix 06 in row i and column corresponding to (N’, N) is 

(9) 

K(i, N’, N) = 6(Ni, N) $‘““;,) + d(Ni, N’) 2pN exp(E,. - E,)IkT, (10) 
II ’ PiCvi - vN) 

where Ni is the quantum number associated with line i, p,,, and vN are the dipole element and 
frequency of the line associated with quantum number N and in the same branch as line i, 
and 6(Ni, N) is the Kronecker delta. Because of the restriction N’ < N, Eq. (7) has been used in 
Eqn. (10) to provide the contribution from the opposite half of the relaxation matrix. 

3.3. Solution by the Twomey-Tikhonov method 

Defining g, = ANR - AN:, where AN; is the dispersion computed by setting yi = bi, we combine 
Eqs. (5) and (9) into 

g=Ar+c (11) 

with A = VW Db. The system (11) is still ill-conditioned and also underdetermined, since r contains 
well over a hundred elements. Therefore its solution requires a stabilized inversion method. 

The method devised by Twomey” and Tikhonov24 can be adapted to the present problem. 
Recognizing that any vector r is an acceptable solution if it satisfies (11) with cTe < ne*, where e* 
is the error variance of n measurements, Twomey proposes to select, from the set of acceptable 
vectors, the one that minimizes a cost function q = rTW r, where W is a matrix to be specified. 
Assuming W to be positive definite, the absolute minimum of q is attained with r = 0. If r = 0 is 
not an acceptable solution, then because of the quadratic form of q, its minimum value within the 
set of acceptable rs will be attained on the boundary of that set; i.e., when cTc = ne*. Twomey finds 
the solution as the vector r with respect to which the quadratic expression 

(A r-g)T(Ar-g)+~rTWr 

is stationary, with fi a Lagrange multiplier. The result is*’ 

r = (ATA + j?W)-’ ATg; (12) 

or equivalently, 

r = W-‘AT(A W-‘AT + /3 U)-‘g, (13) 

where II is the identity matrix. The value of /I will be determined to satisfy the error variance. 
The corresponding solution for the interference coefficients is obtained from Eq. (9): 

y=SWT(WSWT++B)-‘g+b, (14) 

in which S = Db lH-’ DdT plays the role of an inverse cost matrix for y. 
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3.4. Cost matrix 

We now consider the question of an appropriate cost function for the relaxation matrix. 
Lam’s’2’13 calculations show that the size of off-diagonal elements is related to the energy difference 
between initial states of the two lines that are coupled by the element. In linear molecules the 
rotational energy levels vary in a regular way with quantum number, with the result that, aside 
from the asymmetry imposed by Eq. (7), intra-branch submatrices have a quasi-Toeplitz form. 
This characteristic suggests that the cost function ought to be small when r(N’, N) has gradual 
variation in the diagonal direction. A function that satisfies this requirement is the sum of squares 
of elements in the first row of r, plus the sum of squares of first differences along diagonals: 

N, -2 N-2 

q = 1 r(1, N)2+ 1 [r(N’+ 2, N + 2) - r(N’, N)12 . 
N=3 N’=l 

(15) 

(Only odd values are permitted for N and N’.) The presence of the first term on the right side of 
Eq. (15) is necessary for W to be invertible. For this definition of q, W is 

H(N”‘, N”; N’, N) = b(N)“, N’)d(N”, N) [2 - 6(N, N,)] 

- 6(N”‘, N’ + 2)6(N”, N + 2) - s(N’, N”’ + 2)6(N, N” + 2), (16) 

where N,,, is the maximum quantum number. This maximum is arbitrary since r(N’, N) has infinite 
dimensions, in principle. In the present computations, N, was 41, in order to avoid a perturbation 
in the last two interference coefficients of interest (33 k) that would be caused by allowing only 
one-sided coupling for those lines. 

If the elements of r(N’, N) are arranged by diagonals in the vector r, then W is block- 
tridiagonal, i.e., 

- 2 -1 
-1 2 . 0 

. . . 

. W= 2-l 
-1 1 0 

0 2 -1 
0 -1 . . 

. . 

(17) 

It can very easily be inverted by Cholesky decomposition: 

w-’ = L [L*, (18) 

where L, = 1 if i 2j and both indices pertain to the same diagonal of r(N’, N); otherwise L, = 0. 
The inverse cost matrix for y is $5 = (IK IL) (K O_)*, where 

N,,-N+I 

(w IL)iN’N = N,z, K(i, N”, N” + N - I), (19) 

with N” summed over odd integers. Since the column index of (W II) is ultimately summed over, 
it is unnecessary to store more of its elements than those corresponding to a diagonal of r(N’, N). 

3.5. Determination of the Lagrange multiplier 

The value of p is to be chosen to yield a realistic error variance. This value can be estimated 
by partitioning the data. Figure 2 plots the r.m.s. residual e, between measurement and dispersion 
calculated with ys from Eq. (14), and B is varied. Considering data at one pressure, e.g. 400 torr, 
one obtains a faster variation of e with /? because the smaller system of equations is under- 
determined. The residual r.m.s. for the entire data set ought to be intermediate between residuals 
computed for subsets; thus /? = 0.16 appears to be reasonable for these measurements (in ppm). 

The r.m.s. error of 20 ppb is about twice the estimated uncertainty of the measured AN. The 
extra error could be contributed by the uncertainty in AN* due to linewidths. This uncertainty is 
difficult to specify precisely because of a tendency for cancellation of correlated errors in widths 
of adjacent lines. 
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Fig. 2. R.m.s. residuals e, as a function of the Lagrange multiplier /l, for the entire set of measurements 
in Table 1 and for two subsets (1 ppm = W6). 

3.6. Results and comparison with other work 

Application of Eq. (14) with B = 0.16 to all of the measurements in Table 1 yields the ys listed 
in Table 2. Computed values of dispersion are given in Table 1 next to the measured values. Figure 
3 plots dispersion and absorption across the oxygen band at 800 mbar, illustrating the size of the 
interference effect. 

Figure 4 compares the interference coefficients with two other sets. Liebe’s were obtained using 
the model of Ref. 14, which relates the off-diagonal elements of Ml” to the diagonal elements, and 
in which Liebe treated y,, as a free parameter, adjusting it to fit his measurements. Smith” derived 
interference coefficients from a relaxation matrix that was computed by Lam” theoretically. 

Table 2. Line-broadening coefficients and derived interference coefficients in air at 
300K. Linewidths are from Ref. 3, except that l- is from Ref. 25 and the 

nonresonant coefficient is from Ref. 14. 

N alf-width (GHz/bar) Interference (l/bar) 

1 

3 

5 

7 

9 

11 

13 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

ionresonant 

1.63 

1.468 

1.382 

1.319 

1.266 

1.221 

1.181 

1.144 

1.110 

1.079 

1.05 

1.02 

1.00 

0.97 

0.94 

0.92 

0.89 

+ 

1.646 

1.449 

1.360 

1.297 

1.248 

1.207 

1.171 

1.139 

1.108 

1.078 

1.05 

1.02 

1.00 

0.97 

0.94 

0.92 

0.89 

-0.0244 

-0.4068 

-0.6183 

-0.4119 

0.0317 

0.1145 

0.3398 

0.3922 

0.4011 

0.4339 

0.4783 

0.5157 

0.5400 

0.5719 

0.6046 

0.6347 

0.6627 

0.48 

+ 

0.2772 

0.6270 

0.6766 

0.3290 

-0.1591 

-0.2068 

-0.4158 

-0.4482 

-0.4442 

-0.4687 

-0.5074 

-0.5403 

-0.5610 

-0.5896 

-0.6194 

-0.6468 

-0.6718 

0 

Q.S.R.T. 39,4--r 
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Fig. 3. Dispersion and absorption in dry air at 800 mbar (600 torr) pressure. -, Computed with 
interference coefficients from Table 2; ---, no interference. Measurements are from Ref. I. 

The interference coefficients are given to four decimal places in Table 2, only because precision 
will be lost when terms of opposite sign are summed. Errors in these values are correlated because 
of the linear transformation used to derive them from the measurements. The sensitivity of the 
spectrum to the interference coefficients can be judged by comparison with the other two sets of 
coefficients in Fig. 4. The coefficients from Table 2 fit the measurement in Table 1 slightly better 
(with 20 ppb r.m.s. residuals) than the coefficients of Liebe, which yield 28 ppb r.m.s. residuals. If 

0 l SMITH (1981) 

Fig. 4. Interference coefficients for lines in the oxygen microwave band. 



Interference coefficients for overlapping oxygen lines in air 295 

one uses Smith’s interference coefficients with Liebe’s linewidths for air (perhaps not a proper thing 
to do), residuals of 56 ppb r.m.s. are obtained. However, Smith’s interference coefficients may not 
be directly comparable with the other two sets, since Smith’s are for pure oxygen, whereas Liebe’s 
and those in Table 2 apply to oxygen lines broadened by dry air. The linewidths produced by air 
differ from those in oxygen at equal pressure by as much as 10% (at high values of N)’ and it 
is conceivable that the off-diagonal elements of Ml” differ by larger factors. Smith’s paper shows 
a good fit of his calculations to measurements made by Liebe on pure oxygen, so it appears that 
the differences between the coefficients derived for air and Smith’s coefficients are largely due to 
the different intermolecular potential for 0*-N, collisions vs 0,-O, collisions. 

Some typical characteristics of the interference coefficients are illustrated by Fig. 4. The 
approximate antisymmetry of yN+ and y,_ is due to similarity of intra-branch submatrices in Ml”, 
combined with the nearly even spacing of the line frequencies within each branch. The exception 
to this rule is the 1 - line, whose resonant frequency is 118.75 GHz and which consequently has 
an interference parameter much smaller in magnitude than the 1 + line. The interference 
parameters change sign near N = 9, which is the most populated level. This behavior seems to be 
related to the asymmetry in the relaxation matrix expressed by Eq. (7). Because interference 
parameters on the low side of the band are positive while those on the high side are negative, the 
interference effect lowers absorption on both sides and raises it in the middle. The effect is 
proportionally greatest on the far wings of the band, which are of interest for microwave trans- 
mission through the atmosphere; hence the importance of accurate values for these parameters. 

4. ATMOSPHERIC TRANSMITTANCE 

The inversion procedure described in the last section yields interference coefficients that fit the 
measurements from which they were derived. Logically, the next step should be to test these 
coefficients with other measurements. Of special interest are the band wings, which are difficult to 
measure in the laboratory but are important in transmission of millimeter waves between space 
and earth. In computing atmospheric absorption, however, it is necessary to consider the 
temperature dependence of the line parameters. 

Most experimental treatments of line widths fit their pressure-temperature variation to a 
function P/T”. Liebe uses x = 0.8. Although this treatment may be adequate for the linewidths, 
Eq. (7) implies that off-diagonal elements of the relaxation matrix cannot all have the same 
temperature dependence. Liebe’s measurements of overlapped lines were done only at 300 K, but 
from the model relaxation matrix, he deduced a temperature dependence of the power-law form, 
with a different exponent for each of his interference coefficients. (Read et a13’ found that this model 
reproduced the variation of absorption from 262 to 295 K.) The largest of Liebe’s exponents’ apply 
to lines with N w 9. This result is connected with the smallness of the 9f interference coefficients 
at 300 K, and with the variation with temperature of the value of N at which the sign change of 
the ys occurs. Aside from these idiosyncratic values, the exponents fall roughly into two groups: 
those at low N, which are approximately the same as the linewidth exponent, 0.8; and those at high 
N, which are higher by approximately unity. 

Most of the atmospheric opacity on the oxygen band wings is contributed within a few kilometers 
of the surface. This circumstance should make it permissible to use a rough approximation to the 
variation of interference coefficients with temperature near 300 K. Accordingly, the following 
calculations assumed 

YNk G’-) N 

T-0.8, for N < 9; 

T-‘.8, for N 2 9. 
(20) 

Plotted in Fig. 5 is zenith attenuation for the U.S. Standard Atmosphere, computed with 
coefficient from Table 2. Other parameters necessary to the computation are given in Ref. 3. The 
measurements are corrected for attenuation due to water vapor.? Attenuation at the two frequencies 
of 5 1.75 and 68.14 GHz provides an interesting test of the band shape, because the measured values 

tTypically, this correction is done by measuring attenuation with the sun as a source, for many different values of 
precipitable water vapor. Attenuation is then extrapolated to zero precipitable water vapor by a regression line. 
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Fig. 5. Zenith attenuation due to oxygen in the 1962 U.S. Standard Atmosphere. Solid line uses inter- 
ference coefficients from Table 2; dashed line uses interference coefficients computed without a bias term. 

Measurements are from Refs. 2630. 

are nearly equal: 2.43 k 0.06 dB and 2.60 f 0.05 dB, respectively. 26 The calculated values are 2.61 
and 2.74 dB. The excess attenuation of ~0.2 dB at both frequencies can be attributed to the very 
approximate temperature dependence assumed for the interference coefficients, and to the 
possibility that the temperature profile of the atmosphere in which the measurements were made 
was different from the U.S. Standard Atmosphere. However, if the interference coefficients are 
recalculated without the bias term given by Eq. (8), one obtains 2.32 and 3.19 dB respectively, an 
asymmetry in clear disagreement with the measurements. In general, the calculation including the 
bias in Fig. 5 conforms well to measurements out to the very far wings of the band. This result 
supports Gordon’s’* theory for the band shape outside of the resonant region. 

5. CONCLUSIONS AND RECOMMENDATIONS 

The available dispersion measurements are of sufficient accuracy to derive useable interference 
coefficients for dry air at 300 K. One could also use absorption measurements if they were of 
comparable accuracy. However, the interference effect in absorption is strongest between line 
centers, so the absorption counterpart of Eq. (5) is somewhat more ill-conditioned. 

Additional measurements to determine the variation with temperature of the interference 
coefficients would be desirable for the purpose of calculating radiative transfer in the atmosphere. 
It would also be of interest to investigate the influence of different perturber species. 
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