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DISCLAIMER

Certain commercial equipment and materials are identified in this report to specify adequately the
technical aspects of the reported results. In no case does such identification imply recommendation
or endorsement by the National Telecommunications and Information Administration, nor does it
imply that the material or equipment identified is the best available for this purpose.
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RELATIONSHIPS BETWEEN GILBERT-ELLIOT BURST ERROR MODEL
PARAMETERS AND ERROR STATISTICS

Jaden Pieper, Stephen Voran1

The Gilbert-Elliot model is a popular and effective tool for modeling bursty (non-
independent) errors in communication links. This memorandum provides linkages
between model parameters and error statistics. The motivation is that these link-
ages can allow users to control models in order to obtain desired error statistics
without any detailed understanding of Markov chains or probability. Features such
as error rate and expected burst length are intuitive and also directly measurable in
an error stream. This makes them natural candidates for controlling models after
they are converted to the necessary model parameters (probabilities). We consider
three different versions of the Gilbert-Elliot model and we present results for each.
We also describe software that can be used to convert between error statistics and
model parameters, to generate error patterns from a variety of variables, and also to
estimate model parameters from an input error stream. This software is available
at https://doi.org/10.5281/zenodo.7438482

Keywords: bit-errors, bursty errors, error statistics, Gilbert-Elliot, Markov chain, packet-loss,
software simulation

1 INTRODUCTION

In practice, most digital communication links are imperfect—bits may be inverted and data pack-
ets may be “lost” or delayed sufficiently that they must be declared to be “lost.” Modeling and
simulating these imperfections or errors are common and important problems. A simple and in-
tuitive approach would be to set an error rate and simulate errors that are independent. In other
words, the probability of seeing an error is completely independent from whether or not an error
just occurred. A reasonable next step is to add a layer of complexity to better mimic reality by
including the concept of burstiness—the physics of many communications links cause errors to
occur in bursts rather than independently. The Gilbert-Elliot model [1] is a Markov chain that pro-
vides a simple way to generate error patterns that can be either bursty or independent. The error
patterns produced by the model can be used to simulate bit errors or packet losses.

This memorandum equips the reader to successfully control three different variations of the Gilbert-
Elliot model to obtain the desired error statistics without relying on an understanding of Markov
chains or probability theory. In particular it allows readers to convert intuitive and meaningful
target error statistics into the probability values (or model controls) the Gilbert-Elliot model needs
in order to generate errors with those desired statistics.

1The authors are with the Institute for Telecommunication Sciences, National Telecommunications and Informa-
tion Administration, U.S. Department of Commerce, Boulder, Colorado 80305.

https://doi.org/10.5281/zenodo.7438482


1.1 The Gilbert-Elliot Model

The Gilbert-Elliot model is a two-state model for describing errors in a digital communication link.
These errors define a relationship between a transmitted binary message and the corresponding re-
ceived binary message. Given a transmitted message of length N, {Mn}N−1

n=0 , the received message
is given by

Rn = Mn +Xn, (1)

where Xn describes the error for the nth element of the received message, Mn, Rn, Xn are either
0 or 1, and the addition is modulo two. If the messages are sequences of bits, we say that the
modulo-two addition does nothing when the error value is zero, but it flips a bit when the error
value is one. Equation (1) can also describe the packet loss process where a one indicates an intact
packet and a zero indicates a lost or corrupted packet. Then if {Mn}N−1

n=0 describes a string of intact
transmitted data packets (Mn = 1 for n= 1,2, . . . ,N−1), the error value zero leaves a packet intact,
but the error value one transforms an intact packet to a lost or corrupted packet.

The Gilbert-Elliot model provides a method for generating the errors, Xn which can represent bit
errors or packet losses. Examples of the bit-error application can be found in [2]–[5] and examples
of the packet-loss application can be found in [6]–[9] . The model can treat bursty errors where
the probability of seeing an error is dependent on whether or not an error just occurred.

G
(1− k)

B
(1−h)

1− p

p

1− r

r

Figure 1: Gilbert-Elliot model.

The model consists of a two-state Markov chain where a state G describes a “good” state and
B describes a “bad” or “burst” state, as seen in Figure 1. There are two transition probabilities,
0 < p < 1 and 0 < r < 1, that describe the probability of transitioning between the states G and B,
where the probability of transitioning from G to B is given by p and the reverse by r. (The cases of
p or r being zero or one are mathematically valid but they do not result in useful stochastic models.
The value zero causes the model to stay in a single state and the value one forces deterministic state
transitions.) Note that the special case p = 1− r gives independent errors—the probability of an
error occurring is completely independent of the state of the Markov chain. It follows that p ̸= 1−r
will give rise to dependent or bursty errors.

There are two additional parameters, 0≤ k ≤ 1 and 0≤ h≤ 1, that describe the probability of no er-
rors occurring in states G and B respectively. The constraint h < k ensures the probability of errors
in state B is greater than in state G, and preserves their respective interpretations. These parame-
ters allow for additional realism and complexity in the model; however, fixing these parameters to
specific values produces simpler but still interesting models.
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In particular, the simplest model consists of just two free parameters (p and r) and occurs when
k = 1 and h = 0. In this case, state G never produces an error and state B always produces errors.
This simple model allows for errors to arrive in bursts and is effective for many situations.

Another variation of interest has three free parameters. Here p, r, and h are free but k = 1. In this
case, state G still cannot produce an error, but the probability of an error occurring when in state
B is now 1− h. This version can describe physical scenarios where the good state is very good
indeed, and the bad state can produce errors but does not always do so.

Finally, when all four parameters are free there is also a probability (1− k) of an error occurring
while in state G. This is the most realistic version of the model, as in any practical communication
link there is always some probability of an error occurring, even under ideal conditions. In other
words, errors can come from two distinct sources with potentially very different error rates. The
parameter k allows for this to be captured.

Whenever one is selecting a model, consideration should be given to the balance between realism
and complexity. For some problems the most realistic model may not be worth the additional
complexities demanded by it. And some datasets of error patterns might not justify modeling with
four, or even three, free parameters. In many instances the two-parameter and three-parameter
Gilbert-Elliot model may be sufficient.

Next we provide mappings between selected relevant error statistics and the model parameters for
the two-parameter, three-parameter, and four-parameter variations of the model. We can think of
these error statistics as “control knobs” or “model controls” that we set so that the model will
produce error patterns with those statistics. But to get this result those model control values must
first be translated to the probabilities p, r, h, and k that the models require in order to operate.

1.2 Error Statistics of Interest

The Markov model parameters are fairly interpretable, but they do rely on a familiarity with condi-
tional probability. In addition, they do not directly describe features of the error sequences emitted
by the model. An engineer interested in using these models to generate realistic error patterns
for a given scenario would likely prefer to control the model using error statistics that are directly
descriptive of the desired output. Here we will focus on error statistics such as the error rate, the
expected length of error bursts, and the proportion of time spent in the bad state, B. We will provide
mappings in both directions between these error statistics and the Gilbert-Elliot model parameters.

Here we will explicitly define these error statistics for the four-parameter model. By setting k = 1
we can address the three-parameter model. Setting k = 1 and h = 0 will give the results for the
two-parameter model.

Let Zn describe the state of the Gilbert-Elliot model at time n, so that Zn = G or Zn = B. Let Xn
describe the error at time n, where Xn = 0 means no error occurred, and Xn = 1 means an error was
applied to the received message. We first define the proportion of time spent in the good and bad
states, πG and πB, which are found by solving for the steady state distribution of the Markov chain
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in Figure 1. At steady state πG = (1− p)πG + r(1−πG) and this yields

πG =
r

p+ r
, πB = 1−πG =

p
p+ r

, 0 < πG,πB,< 1. (2)

The error rate will then be the sum across both states of the probability of an error occurring in a
state times the proportion of time spent in that state, or

x̄ = (1− k)πG +(1−h)πB

=
(1− k)r+(1−h)p

p+ r
, 0 < x̄ < 1.

(3)

An error burst is a sequence where Xn = 1 for one or more consecutive values of n. An error burst
can have length 1, 2, 3, etc. Let L describe the length of an error burst. L is a geometrically dis-
tributed random variable with parameter P(Xn = 0|Xn−1 = 1). The mean value of a geometrically
distributed random variable is the reciprocal of the distribution parameter. So the expected error
burst length, L1, is

L1 =
1

P(Xn = 0|Xn−1 = 1)

=
(1− k)r+(1−h)p

(1− k)r((1− p)k+ ph)+(1−h)p((1− r)h+ rk)
, 1 < L1 < ∞.

(4)

Note that the above allows error bursts with infinite length. This greatly simplifies the value of
L1 and is reasonable in practice as the number of bits or packets considered when testing a com-
munications system is very large. The derivation of (4) along with mathematical justification for
allowing bursts of infinite length is given in Appendix B.

1.3 Example: Bit Errors in Radio Channels

As mentioned above, the model is very useful for describing bit errors or packet losses. Bit errors
in radio channels provide a particularly intuitive example. When the received signal is low enough
relative to noise and interference, bit errors become inevitable. The bit-error rate and the tempo-
ral distribution of these errors will depend on the specifics of the situation and we offer several
examples here.

If the received signal is simply disappearing into the noise floor of a stationary receiver (as it would
at the extreme edge of a coverage area) bit errors may occur independently. This can be modeled
by the two-parameter model (achieved by setting k = 1 so the good state never gives a bit error and
h = 0 so the bad state always gives a bit error) with the transition probability constraint p = 1− r
(probability of entering bad state does not depend on current state). Under these constraints, the
bit error rate is p, so larger values of p will model weaker signals, and smaller values of p will
model stronger signals.

If transmitter or receiver or both are moving, the physical path of the radio channel will be chang-
ing, and the received signal strength, and the strength of multi-path reflections and other interferers
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will also be changing. Now the three- or four-parameter model is needed. For example, the good
state and the associated bit-error rate 1− k can represent the times when the receiver is noise-
limited and the error rate is lower, while the bad state and its bit-error rate 1−h can represent the
times when receiver location causes additional attenuation of the desired signal—perhaps a lower
elevation or behind a building. The transition probabilities p and r can then be set to achieve the
desired residency in each state (πG and πB), or to produce an appropriate average error burst length
L1.

If bursts of bit-errors are due to receiver motion, then faster motion may cause shorter residency
in each state, and this can lead to shorter but more frequent bursts. Thus p and r may be adjusted
to produce values of L1 that match receiver motion. Finally, note that even a stationary transmitter
and receiver may experience bursty bit errors. Interference is rarely uniform over time, and other
moving objects can cause levels of multi-path interference to vary as well. We have provided
examples of just a few of the nearly limitless number of scenarios whereby radio channels produce
bit errors and we suggest that carefully chosen and tuned Gilbert-Elliot models can sufficiently
model a great number of these scenarios.
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2 TWO-PARAMETER MODEL

In the two-parameter model state G never gives an error (because k = 1) and state B always gives
an error (because h = 0). Equation (3) shows that in this case x̄ = πB. That is, the error rate is
also the proportion of time spent in the bad state. The two-parameter model has two degrees of
freedom and is thus fully specified by two values. Table 1 lists four pairs of values that may be
useful and meaningful for controlling the two-parameter model.

Table 1: Sets of model parameters or error statistics for use with the two-parameter model.

Parameters Interpretation Equations that convert to (p, r)
(p, r) Model state transition probabilities —
(x̄, L1) Error rate, expected burst length (7), (8)
(x̄, LR) Error rate, relative expected burst length (14), (13)
(x̄, γ) Error rate, lag-one error correlation (18), (19)

2.1 Error Rate and Expected Burst Length

We will first consider using the error rate, x̄, and the expected burst length, L1, to control the model.
For the two-parameter case we evaluate (3) at k = 1, h = 0 to find

x̄(p,r) =
p

p+ r
. (5)

Similarly, evaluation of (4) gives

L1(p,r) =
1
r
. (6)

It is reasonably easy to invert (5) and (6) to find the model transition probabilities:

p(x̄,L1) =
x̄

L1 · (1− x̄)
(7)

and

r(x̄,L1) =
1
L1

. (8)

As both p and r are probabilities the restrictions of 0 < p,r < 1 must be maintained. Enforcing
these restrictions on (5) and (6) yields:

max
(

1,
x̄

1− x̄

)
< L1 (9)

This can be seen visually in the top plot of Figure 2.
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Figure 2: Valid regions for variable pairs in the two-parameter model. The top figure shows the
valid regions when (x̄,L1) are used to control the model, the middle figure when (x̄,LR) are used,
and the bottom figure when (x̄,γ) are used.
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2.2 Error Rate and Relative Expected Burst Length

Table 1 also introduces the parameter, LR, or relative expected burst length (REBL). REBL values
are expected burst length values normalized by the expected burst length for the independent errors
case, calculated while holding the error rate constant. In particular, given a fixed error rate, x̄, the
independent error model is characterized by p∗ = x̄ and r∗ = 1− p∗. This yields independent errors
because it renders the two states as functionally identical, i.e., P(Xn = 1|Zn = G) = P(Xn = 1|Zn =
B) = p∗ = x̄. The expected burst length in this independent errors case follows from (6):

L∗
1 =

1
r∗

=
1

1− p∗
=

1
1− x̄

. (10)

Then the relative expected burst length LR is defined as

LR =
L1

L∗
1
, (11)

which can also be written as
LR =

1− x̄
r

. (12)

It is then reasonably easy to see that

r(x̄,LR) =
1− x̄
LR

(13)

and

p(x̄,LR) =
x̄

LR
. (14)

In the case of independent errors, p = 1− r and applying this constraint to (13) and (14) yields
LR = 1, as expected. Results (13) and (14) also lead to the the restrictions 0 < LR < ∞ and

max(0,1−LR)< x̄ < min(1,LR). (15)

The justification for constraining LR < ∞ rather than by a finite number follows the same reasoning
as that given in Appendix B.

This restriction on x̄ can be seen in the middle plot in Figure 2. In addition, Figure 3 shows how
L1 and LR values are arranged in the plane that is defined by the transition probabilities p and 1−r.
Compared to the L1 values, the LR values allow for meaningful control of burstiness across a wider
range of error rates.
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Figure 3: Contour plots showing lines of constant x̄ on the p, 1− r plane. The top plot shows
expected burst length (L1) values where possible. Note that (9) shows why no L1 levels are plotted
for x̄ = 0.8,0.9. In those cases, L1 must be greater than 4 and 9 respectively. The bottom plot
shows relative expected burst length (LR) values. For LR, at each given x̄, the expected burst length
is normalized by the expected burst length for the independent errors case (p = 1− r, shown with
black line). 9



2.3 Error Rate and Lag-One Correlation

The lag-one correlation of a random process tells how its value at the current time step is related
to its value at the previous time step. When the covariance is normalized by the variance of the
process, the resulting correlation value ranges from -1 to 1 and forms a convenient measure of
burstiness. The lag-one correlation γ is

γ =
Cov(Xn,Xn−1)

Var(Xn)
=

E(Xn − x̄)(Xn−1 − x̄)
E(Xn − x̄)2 =

E(XnXn−1)− x̄2

E(X2
n )− x̄2

=
(1− r)x̄− x̄2

x̄− x̄2 = (1− r)− p.

(16)

For independent errors, p = 1− r and (16) shows that this gives γ = 0, as expected. Note also that
0 < p,r < 1 forces −1 < γ < 1.

Table 1 includes error rate (x̄) and lag-one correlation (γ) as a useful pair of variables for model
control so we consider this next. For the two-parameter model we have

γ(p,r) = (1− r)− p, (17)

which results in

p(x̄,γ) = x̄ · (1− γ), (18)

and

r(x̄,γ) = 1− γ− x̄ · (1− γ), (19)

with the restriction of

max
(

x̄
x̄−1

,
x̄−1

x̄

)
< γ < 1. (20)

This relationship can be seen in the bottom plot of Figure 2.
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3 THREE-PARAMETER MODEL

In the three-parameter model k remains fixed at k = 1 but 0 < h < 1 is a free parameter. In other
words, there are still no errors in the good state, but now the probability of an error occurring when
in the bad state is 1− h. Table 2 shows some sets of parameters that can be used to control the
model. In particular, the error rate, the expected burst length, and the proportion of time spent in
the bad state are both meaningful and useful for controlling the model. Evaluating (3), (4), and (2)
at k = 1 gives

Table 2: Sets of model parameters or error statistics for use with the three-parameter model.

Parameters Interpretation Equations that convert to (p,r,h).

(p, r, h)
Model state transition probabilities and
probability of no error in the bad state —

(x̄, L1, πB)
Error rate, expected burst length,
proportion of time spent in bad state. (26), (27), (28)

(x̄, L1, h)
Error rate, expected burst length,
probability of no error in the bad state. (33), (34)

x̄(p,r,h) =
(1−h)p

p+ r
, (21)

L1(r,h) =
1

1− (1− r)(1−h)
, (22)

πB(p,r) =
p

p+ r
. (23)

We used the error correlation statistic, γ, with the two-parameter model but we do not promote
its use with the three-parameter model. This statistic is less intuitive than error rate and expected
burst length and is fully defined by those two parameters. In particular

γ(p,r,h) =
r(1−h)(1− p− r)

r+ ph
. (24)

This can be shown to also be

γ(x̄,L1) =
1− 1

L1
− x̄

1− x̄
. (25)

Thus we focus only on the variable sets shown in Table 2.

3.1 Error Rate, Expected Burst Length, and Proportion of Time Spent in the Bad State

We will first consider using the error rate, the expected burst length, and the proportion of time
spent in the bad state as controls for the model. Required model parameters are then given by:

h(x̄,πB) = 1− x̄
πB

, (26)
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r(x̄,L1,πB) =
x̄L1 −πB(L1 −1)

x̄L1
, (27)

and

p(x̄,L1,πB) =
πB

1−πB

(
x̄L1 −πB(L1 −1)

x̄L1

)
. (28)

Further, the restrictions that 0 < h, p < 1 yield the following restrictions on x̄ based on πB and L1:

0 < x̄ < πB, (29)

πB(L1 −1)
L1

< x̄ <
(

L1 −1
L1

)(
π2

B
2πB −1

)
. (30)

Expressed together this means

πB(L1 −1)
L1

< x̄ < min
(

πB,
π2

B(L1 −1)
L1(2πB −1)

)
. (31)

This relationship is shown in the top plot in Figure 4. Note that

πB <
π2

B(L1 −1)
L1(2πB −1)

(32)

occurs when πB < L1
L1+1 .

3.2 Error Rate, Expected Burst Length, Probability of No Error in the Bad State

We now consider using the error rate, the expected burst length, and the probability of no error
occurring when in the bad state (h) as controls for the model. Since we are using h as a control
directly, we will only need two new relationships:

r(L1,h) =
1−L1h

L1(1−h)
, (33)

p(x̄,L1,h) =
x̄(1−L1h)

L1(1−h)(1−h− x̄)
. (34)

By enforcing 0 < p,r < 1 we find

1 < L1 <
1
h
, (35)

x̄ <
L1(1−h)2

1−L1(2h−1)
. (36)

These relationships are shown in the bottom plot in Figure 4.
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Figure 4: Valid regions for variable triples in the three-parameter model. The top plot shows valid
regions when (x̄,L1,πB) are used while the bottom plot shows valid regions for (x̄,L1,h). Note that
only a small selection of valid L1 values are displayed here.
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4 FOUR-PARAMETER MODEL

We now return to the full four-parameter model, where 0 < h < k < 1 so errors can occur in both
the good and bad states. Table 3 shows sets of variables that might be used to control the model. It
is worth noting that the model parameters of h or k appear in each of these sets of variables. Since
1−h and 1−k are conditional error rates they are reasonably interpretable. It is not straightforward
to exclude h and k and still have four reasonably interpretable parameters.

Table 3: Sets of model parameters or error statistics for use with the four-parameter model.

Parameters Interpretation Equations that convert to (p,r,k,h)

(p, r, h, k)
State transition probabilities
and conditional probabilities of error —

(x̄, L1, πB, h)
Error rate, expected burst length,
proportion of time in bad state,
probability of no error in the bad state

(37), (40), (41)

(x̄, L1, πB, k)
Error rate, expected burst length,
proportion of time in bad state,
probability of no error in the good state

(42), (43), (44)

As one might expect, with four degrees of freedom the expressions for model parameters get fairly
complicated. The valid regions for the three-parameter model were already fairly complex. This
is further exhibited in the four-parameter case and as such valid regions are not given nor plotted
as they are very difficult to present and interpret. Instead we suggest using the software referenced
in Section 5 to determine valid ranges for variable values.

4.1 Error Rate, Expected Burst Length, Proportion of Time in Bad State, Probability of
No Error in Bad State

We will first focus on using error rate, expected burst length, the proportion of time in the bad
state, and the probability of no error when in the bad state to control the model. This leads to the
following:

k(x̄,πB,h) =
1− x̄−hπB

1−πB
. (37)

It is worth noting that due to the definition of πB the following is true:

r =
p(1−πB)

πB
. (38)

By rearranging the expression for L1 in (4) one can find that

p =
x̄−L1(h(1−h)πB + k(1− k)(1−πB))

L1(1−πB)(h− k)2 . (39)

14



Substituting (37) into the above results in

p(x̄,L1,πB,h) =
L1 (x̄−πB (1−h))(hπB + x̄−1)+(1−πB)(x̄−L1hπB (1−h))

L1 (h+ x̄−1)2 . (40)

With (38) we get

r(x̄,L1,πB,h) =
L1(1−πB)(x̄−πB (1−h))(hπB + x̄−1)+(1−πB)

2 (x̄−L1hπB (1−h))

L1πB (h+ x̄−1)2 . (41)

4.2 Error Rate, Expected Burst Length, Proportion of Time Spent in Bad State,
Probability of No Error in Good State

Similarly, we now focus on using error rate, expected burst length, the proportion of time in the
bad state, and the probability of no error when in the good state to control the model. First we find

h(x̄,πB,k) =
1− x̄− k(1−πB)

πB
. (42)

Using (39) and (42) we can get

r(x̄,L1,πB,k) = 1+
πB(x̄−L1(k2 + k(2x̄−2)− x̄+1))

L1(1− x̄− k)2 (43)

and then

p(x̄,L1,πB,k) =
(

πB

1−πB

)(
1+

πB(x̄−L1(k2 + k(2x̄−2)− x̄+1))
L1(1− x̄− k)2

)
. (44)

4.3 Replacing the Proportion of Time Spent in the Bad State with the Good State

For either of the above sets of parameters it is trivial to use the proportion of time spent in the
good state rather than the proportion of time spent in the bad state. One needs only to notice that
πB = 1−πG and substitute that into any relevant equations.
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5 SOFTWARE

We have written software to allow for easy use of the Gilbert-Elliot model. The software accepts
sets of target error statistics, checks that they can produce valid model control parameter values
(p,r,k,h), and then creates the corresponding output {Xn}N−1

n=0 for the specified value of N. This
output can then be used to impose bit errors or packet losses as desired.

The software can also accept a measured error pattern {X̃n}N−1
n=0 , select the most appropriate model

(two-,three-, or four-parameters) and then estimate the model parameters. This software can be
found at https://doi.org/10.5281/zenodo.7438482.

As discussed in Section 4, the valid regions for controls in the four-parameter case are difficult to
express and visualize. Even in the three-parameter case, the plots only show a limited selection of
discrete values of L1, and the expressions for the valid regions are not immediately intuitive. The
software provides a tool that allows users to fix a selection of controls and determine a valid region
for one free parameter. Some examples of this are included in Appendix A.

The software is primarily intended to be imported into other projects that involve burst errors.
However we also developed a simple command line interface with a limited set of functionality. It
allows users to determine valid regions for controls, translate model controls into model parame-
ters, and also run simulations to generate error patterns of arbitrary length according to any set of
controls presented in this memorandum. In Appendix A we provide some examples of how to use
the command line interface.
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6 CONCLUSION

We have presented and discussed two-, three-, and four-parameter Gilbert-Elliot models for bursty
errors. We have drawn relationships between the model parameters (which are probabilities) and
various meaningful statistics of the resulting error patterns. These relationships allow one to set
model parameters so that the resulting error pattern has the desired error statistics. We also intro-
duced software with simple tools to use the models in a variety of ways such as estimating model
and parameters of an input error pattern and generating error patterns using any of the controls
discussed in this paper.

17



REFERENCES

[1] E. N. Gilbert, “Capacity of a burst-noise channel,” The Bell System Technical Journal,
vol. 39, no. 5, pp. 1253–1265, 1960. DOI: 10.1002/j.1538-7305.1960.tb03959.x.

[2] C. Hernandez, A. Alesanco, V. Abadia, and J. Garcia, “The Effects of Wireless Channel
Errors on the Quality of Real Time Ultrasound Video Transmission,” in 2006 Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society, 2006,
pp. 6457–6460. DOI: 10.1109/IEMBS.2006.259418.

[3] R. Krishnamurthi and S. Gupta, “Coding methods for portable radios,” in IEEE 39th
Vehicular Technology Conference, 1989, 660–665 vol. 2. DOI: 10.1109/VETEC.1989.
40143.

[4] S. M. Enchakilodil, N. Udar, and R. Viswanathan, “A Simple Algorithm that Adapts
one of Two Packet Sizes in a Wireless ARQ Protocol,” in 2006 40th Annual Conference
on Information Sciences and Systems, 2006, pp. 140–144. DOI: 10.1109/CISS.2006.
286450.

[5] J. J. Lemmon, “Wireless link statistical bit error model,” NTIA, Tech. Rep. TR-02-394,
Jun. 2002, https://its.ntia.gov/publications/2425.aspx.

[6] S. D. Voran and A. A. Catellier, “Intelligibility Robustness of Five Speech Codec Modes
in Frame-Erasure and Background-Noise Environments,” NTIA, Tech. Rep. TR-18-529,
Dec. 2017, https://its.ntia.gov/publications/3190.aspx.

[7] M. M. Nasralla, C. Hewage, and M. G. Martini, “Subjective and objective evaluation
and packet loss modeling for 3D video transmission over LTE networks,” in 2014 Inter-
national Conference on Telecommunications and Multimedia (TEMU), 2014, pp. 254–
259. DOI: 10.1109/TEMU.2014.6917770.

[8] C. A. G. D. Silva and C. M. Pedroso, “MAC-Layer Packet Loss Models for Wi-Fi Net-
works: A Survey,” IEEE Access, vol. 7, pp. 180 512–180 531, 2019. DOI: 10.1109/
ACCESS.2019.2958260.

[9] J. McDougall and S. Miller, “Sensitivity of wireless network simulations to a two-state
Markov model channel approximation,” in GLOBECOM ’03. IEEE Global Telecom-
munications Conference, vol. 2, 2003, pp. 697–701. DOI: 10.1109/GLOCOM.2003.
1258328.

18

https://doi.org/10.1002/j.1538-7305.1960.tb03959.x
https://doi.org/10.1109/IEMBS.2006.259418
https://doi.org/10.1109/VETEC.1989.40143
https://doi.org/10.1109/VETEC.1989.40143
https://doi.org/10.1109/CISS.2006.286450
https://doi.org/10.1109/CISS.2006.286450
https://its.ntia.gov/publications/2425.aspx
https://its.ntia.gov/publications/3190.aspx
https://doi.org/10.1109/TEMU.2014.6917770
https://doi.org/10.1109/ACCESS.2019.2958260
https://doi.org/10.1109/ACCESS.2019.2958260
https://doi.org/10.1109/GLOCOM.2003.1258328
https://doi.org/10.1109/GLOCOM.2003.1258328


Appendix A: Software Examples

The following examples all assume the software has been downloaded from https://doi.org/
10.5281/zenodo.7438482 and installed per the included instructions.

In this example we would like to fix πB and L1 and determine the valid region for a selection of x̄
in the three-parameter model. This is accomplished by running

g i l b e r t − e l l i o t −− p i B 0 . 7 −−L1 3
−− f r e e − p a r a m e t e r xba r

which yields

xba r must be i n :
I n t e r v a l . Lopen (0 .466666666666667 , 0 .700000000000000)

In this example we fix πB, L1, x̄, and look for a valid value for h in the four-parameter model.

g i l b e r t − e l l i o t −− xba r 0 . 6 −− p i B 0 . 7 −−L1 3
−− f r e e − p a r a m e t e r h

This provides

h must be i n :
Union ( I n t e r v a l . Ropen (0 .142857142857143 , 0 .269069265858405) ,
I n t e r v a l . open (0 .530930734141595 , 0 .571428571428572) )

Building on the last example we select a value of h from the valid region above and translate these
model controls into the standard set of model parameters.

g i l b e r t − e l l i o t −− xba r 0 . 6 −− p i B 0 . 7 −−L1 3 −−h 0 . 5 5

This results in

Model P a r a m e t e r s : {
’p ’ : 0 .166666666666667 , ’ r ’ : 0 .0714285714285714 ,
’h ’ : 0 .550000000000000 , ’k ’ : 0 .0500000000000000

}

Finally we use the parameters above to generate a length 10000 error signal and save it to myer-
rors.csv.

g i l b e r t e l l i o t . py −− xba r 0 . 6 −− p i B 0 . 7 −−L1 3 −−h 0 . 5 5
−− s i m u l a t e −− n o b s e r v a t i o n s 10000 −− o u t p u t m y e r r o r s . c sv
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Appendix B: Expected Burst Length Derivations

We define L1 = E[L] where L is a geometric random variable with parameter P(Xn = 0|Xn−1 = 1).
Then

L1 =
1

P(Xn = 0|Xn−1 = 1)
. (45)

So we consider

P(Xn = 0|Xn−1 = 1) =
P(Xn = 0,Xn−1 = 1)

P(Xn−1 = 1)

=
P(Xn = 0,Xn−1 = 1|Zn−1 = G)P(Zn−1 = G)+P(Xn = 0,Xn−1 = 1|Zn−1 = B)P(Zn−1 = B)

P(Xn−1 = 1)

=
P(Xn = 0|Zn−1 = G)P(Xn−1 = 1|Zn−1 = G)πG +P(Xn = 0|Zn−1 = B)P(Xn−1 = 1|Zn−1 = B)πB

x̄

=
((1− p)k+ ph)(1− k)r+((1− r)h+ rk)(1−h)p

p+ r
· p+ r
(1− k)r+(1−h)p

=
((1− p)k+ ph)(1− k)r+((1− r)h+ rk)(1−h)p

(1− k)r+(1−h)p
(46)

So

L1 =
(1− k)r+(1−h)p

(1− k)r((1− p)k+ ph)+(1−h)p((1− r)h+ rk)
(47)

Note that the above assumes that sequence {Xn} is infinite, while in reality all sequences would be
of a finite length. This is done to simplify the logic and is a very reasonable approximation. If we
treated each error burst with a finite maximum length, those maxima would then have to depend
on the location of the burst within the finite-length sequence, which would make characterizing
the expected burst length very challenging. In practice, assuming infinite length will not matter as
the length of sequences of bits and packets is very large, especially when compared to error burst
lengths in any channel that is successfully sending any information.

To make this explicit, consider the following. Let v = P(Xn = 0|Xn−1 = 1) and define L1,m as the
expected value of L in the case where L can be no larger than m (i.e., in terms of a geometric
distribution we stop either after the first success or after m trials). Then

L1,m =
1− (1− v)m

v
(48)

and
L1 =

1
v

(49)

so L1,m is always less than L1. If we fix ε > 0 and consider L1 −L1,m < ε we can find a value of m
that satisfies this relation for any values of ε and v. In other words, if we define some equivalence
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tolerance, ε, and have some probability of exiting an error burst v = P(Xn = 0|Xn−1 = 1), we can
find the value of m for which the finite expected value, L1,m is within ε of the infinite expected
value L1. Setting ε = 1 is reasonable as burst lengths are integers, though in practice a difference
of a single bit or packet in a burst is likely negligible. Then we can see that if

m ≥
⌈

log(εv)
log(1− v)

⌉
(50)

then L1 −L1,m < ε will be true.

It is easy to see that as v approaches 0, the constraint on m becomes larger. This is logical: as it
becomes less likely that an error burst will end naturally, m must become larger so that the burst is
not prematurely ended. In other words, m must become larger so that L1,m will behave similarly
to L1. Again, if error bursts are so long that this limit is hit it is extremely unlikely that anything
would be successfully received through the communication system.

As an example consider the case where v = P(Xn = 0|Xn−1 = 1) = 0.01 and ε = 1. Here L1 = 100.
If m ≥ 459 then L1 −L1,m < 1 will be satisfied. In typical communications systems 1000 bits or
packets is a reasonable bare minimum to consider, so the requirement m ≥ 459 is a non-issue, and
using L1 in place of L1,m is an extremely reasonable approximation.
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