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DISCLAIMER 

Certain commercial equipment and materials are identified in this report to specify adequately 
the technical aspects of the reported results. In no case does such identification imply 
recommendation or endorsement by the National Telecommunications and Information 
Administration, nor does it imply that the material or equipment identified is the best available 
for this purpose. 
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PREFACE 

The National Telecommunications and Information Administration (NTIA) Institute for 
Telecommunication Sciences (ITS) and Office of Spectrum Management (OSM) have performed 
a case study that describes the development of 5 GHz Dynamic Frequency Selection (DFS) from 
multiple perspectives. One perspective is a historically linear, timeline-based description of the 
technology’s development and deployment. A second perspective is provided as a timeline 
description that focuses on the technical issues and hurdles that were encountered and solved in 
the course of development and deployment. Subsequent report sections describe the technology 
as it was finally developed. Issues, problems, and challenges that were encountered after 
commercial deployment began are described in succeeding sections. 

This report offers a perspective of the experiences associated with the development and 
deployment of 5 GHz DFS unlicensed national information infrastructure (U-NII) devices. In 
particular, it puts focus on harmful interference interactions with respect to Terminal Doppler 
Weather Radars (TDWRs) that have been attributed to some DFS-enabled 5 GHz U-NII devices, 
some of which were determined to have been non-compliant with the applicable FCC 
regulations. It also describes unexpected harmful interference that has been experienced on an 
ongoing basis to tracking radars used at U.S. government rocket test and space launch ranges on 
the east and west coasts. 

The report summarizes the most likely explanations for these interference incidents, along with 
actions already implemented in an attempt to mitigate both the existing and future interference 
potential, based upon the technical information derived from investigations into the underlying 
causes of these interference interactions. Lessons Learned are introduced as this report’s 
narrative progresses. Ultimately, eleven such Lessons Learned are presented. This narrative, with 
the associated Lessons Learned, provides guidance that may be applied to, and perhaps may be 
used to modify, similar spectrum-sharing approaches in other spectrum bands, with other radio 
systems, in the future. 
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NOTE ON REFERENCES 

In this report, references for major documents and reports (e.g., the Manual of Regulations and 
Procedures for Federal Radio Frequency Management) are provided as bracketed links 
(e.g., [1]) in the main text. Because of the sheer number of total references, and because the bulk 
of those references are minor documents, references to minor documents are placed as footnotes 
on report pages. 

This report contains numerous references to sections of Title 47 of the Code of Federal 
Regulations. As of the date of publication, all 47 CFR sections are available on-line at 
https://www.fcc.gov/wireless/bureau-divisions/technologies-systems-and-innovation-
division/rules-regulations-title-47. 

There are also numerous references to Federal Communication Commission Dockets, including 
those that pertain to Notices of Proposed Rulemaking and Report and Orders. These are available 
via a search function at https://www.fcc.gov/edocs. 

https://www.fcc.gov/wireless/bureau-divisions/technologies-systems-and-innovation-division/rules-regulations-title-47
https://www.fcc.gov/wireless/bureau-divisions/technologies-systems-and-innovation-division/rules-regulations-title-47
https://www.fcc.gov/edocs
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EXECUTIVE SUMMARY 

Part 15 of Federal Communications Commission (FCC, the Commission) rules permits the 
operation of radio frequency (RF) devices without issuance of individual licenses to device 
operators. The Commission’s Part 15 rules are designed to prevent harmful interference to 
assignments and licensees. Typically, unlicensed devices operate at low power over relatively 
short distances. They sometimes use techniques such as dynamic spectrum access or listen-
before-talk protocols to reduce interference risk to other Part 15 operators as well as themselves. 
However, the primary operating condition for unlicensed devices is that their operators must 
accept any received interference and must immediately correct any harmful interference caused 
by their devices or else cease operation.1 

In 1997, the Commission made available 300 megahertz of spectrum at 5.15-5.25 GHz, 
5.25-5.35 GHz, and 5.725-5.825 GHz for use by a new category of unlicensed equipment 
regulated under Part 15, Subpart E of the Commission’s rules, called unlicensed national 
information infrastructure (U-NII) devices. In 2003, the Commission made an additional 255 
megahertz of spectrum available across 5.47–5.725 GHz.2 These actions aligned the frequency 
bands used by U-NII devices in the United States with the frequency bands used by U-NII 
devices in other parts of the world, thus decreasing development and manufacturing costs by 
allowing the same products to be used in most parts of the globe. 

Within the 5.47–5.725 GHz U-NII band, incumbent radio systems that would need to share 
spectrum with the new U-NII devices included Federal Aviation Administration (FAA) Terminal 
Doppler Weather Radars (TDWRs) that provide detection and alerts for wind shears at airports 
within the 5.60–5.65 GHz band. Additional types of federal radars also operated as incumbents 
in that spectrum. To facilitate spectrum sharing between U-NIIs and radars including TDWRs, a 
new detect-and-avoid technology called dynamic frequency selection (DFS) was jointly 
developed between government and industry. As a pre-condition of operation in the U.S. U-NII 
systems implemented DFS, causing U-NIIs in selected 5 GHz spectrum bands to detect the 
presence of radar signals and then avoid those radar frequencies. 

In early 2009, after commercial deployment of DFS-equipped U-NIIs had begun in the U.S. and 
Possessions (US&P), the FAA reported interference to TDWRs at multiple locations in US&P. 
Early field studies performed by the National Telecommunications and Information 
Administration’s (NTIA’s) Institute for Telecommunications Sciences (ITS) and FAA 
engineering staff, with FCC support, indicated the interference sources were U-NII devices that 
incorporated DFS. The U-NII devices all operated in the same frequency band as the TDWRs 
and were from more than one manufacturer. Subsequent interference cases occurred involving 
radars at U.S. rocket test and launch ranges on the west and east coasts. 

It was determined that most of these interference interactions resulted from either of two 
problems. One cause was unauthorized modification of certified U-NII devices (e.g., incorrect 
country code selection and/or usage of non-certified transmit antennae) by U-NII operators, 
resulting in U-NII non-response to radar signals. The other problem was U-NII non-detection of 
                                                
1 See 47 Code of Federal Regulations 15.5(b). 
2 The final (current) set of U-NII bands eventually became: 5.15–5.25 GHz (U-NII-1); 5.25–5.35 GHz (U-NII-2A); 
5.470–5.725 GHz (U-NII-2C); 5.725–5.850  GHz (U-NII-3); and 5.850–5.925 GHz (provisionally U-NII-4). 
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radars because of insufficient data on radar characteristics such as pulse repetition frequency 
(PRF) that had been used to originally develop DFS. 

This report documents the approach that was used to develop and deploy DFS enabled U-NII 
devices, the radar interference cases that followed, and the reasons that the interference occurred. 
It identifies the following Lessons Learned and corollaries that can be applied to future 
implementation dynamic spectrum sharing technologies in other frequency bands: 

Lesson 1: The development time for dynamic spectrum technologies, even when government 
and industry work closely and cooperatively together on the necessary technical and regulatory 
framework, can be something on the order of a decade. This is because innovation requires 
considerable advance work in the absence of existing implementations. The more innovative and 
technically challenging the new sharing scheme, the longer the advance-work timeline can be 
expected to be. 

Lesson 2: The use of dynamically based spectrum sharing technologies requires permanent, 
ongoing government expenditures for testing facilities and maintenance of trained, competent 
engineering staff for permanent ongoing surveillance of such devices. This state must continue 
for as long as any given class of dynamic spectrum-sharing devices continues to be sold and used 
in markets. Dynamic spectrum sharing is associated with ongoing post-certification compliance 
auditing3 costs. This is not to say that the expenditures are not worth the advantages that society 
gains from more and better spectrum sharing; it is to say that such sharing has recurring 
technology-opportunity costs. The need for adequate ongoing technical auditing resources needs 
to be recognized. 

Corollary to Lesson 2: Technical analysis and measurements will have to be performed to 
assess the impact of changing U-NII device technology on incumbent federal radar systems. 

Lesson 3: Any non-trivial, innovative, dynamic spectrum sharing technology introduction, no 
matter how carefully it is initially devised, may result in some elevated interference potential 
when it is initially deployed. The more complicated or innovative the technology, the more likely 
it is that some unanticipated field-deployment situation may result in an increase in the potential 
for interference. 

Corollary to Lesson 3: When new, innovative dynamic spectrum sharing technologies are 
introduced, resources should be set aside in advance to accommodate and resolve the inevitable 
initial harmful interference cases that may be expected to occur. 

Lesson 4: Post-certification compliance auditing may be necessary to identify spectrum sharing 
devices that have been illegally sold without proper regulatory certification. 

Lesson 5: If installers and operators are physically able to illegally modify spectrum sharing 
devices to disable spectrum-sharing features, some will do so even knowing that they will be 
fined by regulators when they are eventually caught. 

                                                
3 Such auditing, when done by NTIA, is done on DFS-equipped U-NII devices that NTIA purchases off-the-shelf 
from commercial vendors. 
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Corollary 1 to Lesson 5: Manufacturers need to restrict the ability to disable or modify their 
devices’ spectrum sharing functionality as much as is physically possible. Regulatory entities 
need to thoroughly examine all of a spectrum-sharing device’s set-up and control sub-menus. 

Corollary 2 to Lesson 5: Introducing legitimate, legal spectrum sharing devices to a band can 
have the unintended consequence of encouraging the proliferation of illegal devices in the same 
band. This is especially true if the band is used worldwide for such functions, but does not have 
the same spectrum sharing rules internationally as the U.S. has domestically.4 

Lesson 6: There is no substitute for person-to-person interchanges of critically important design 
information about technical requirements and needs for spectrum sharing systems. These human 
interchanges (as opposed to non-human interactions such as database sharing) must be between 
and among multiple government agencies (including regulatory agencies and agencies operating 
incumbent radio systems), industry that is developing new devices, and private sector companies 
that will eventually buy and operate the devices. 

Lesson 7: Development and implementation of a dedicated operational testbed might be well-
advised, prior to widespread introduction of a new spectrum sharing technology. But testbeds 
consume time and resources to build and operate. They tend to run counter to the desire to 
develop and deploy new technologies as quickly and inexpensively as possible 

Lesson 8: Some technical spectrum sharing parameters cannot be known until after spectrum-
sharing devices have been built and possibly deployed. This lack of knowledge can result in 
flaws in spectrum sharing device certification testing.  

Lesson 9: Shortcomings in certification testing (such as initially inadequate radar waveform 
characterization for DFS) may only be discovered after a variety of devices (multiple models 
marketed by numerous manufacturers) have already been tested, certified, and deployed. 

Corollary to Lesson 9: In hindsight, it would have been well advised for commercially 
produced 5 GHz DFS-equipped U-NII devices to have been initially introduced at a limited 
number of pre-identified field sites in close proximity to TDWRs (and other 5 GHz radars). Their 
operations at those sites could have been evaluated, with corrections to certification testing, prior 
to full-scale certification and deployment of such devices in open markets. 

Lesson 10: Certification testing requirements for spectrum sharing devices need to be as 
technically robust as possible. Manufacturers may have concerns that some certification testing 
might be difficult to pass. But experience has shown that if devices are allowed to pass testing 
with less-than-robust protocols, their developers tend to build devices that only meet the reduced 
requirements. Such devices may then tend, disproportionately, to cause harmful interference to 
incumbent systems when they are deployed at field locations. 

                                                
4 Another possible explanation for this phenomenon is the fact that software defined radio (SDR) technology, which 
introduced the ability to tailor devices to applicable requirements in any country of anticipated operation, was 
developing coincident with DFS. As such, instances where the wrong country code was selected may have occurred 
even in the absence of the DFS arrangement. 
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Lesson 11: Some technical modifications or additions may need to be made to develop new or 
improved spectrum sharing technology subsequent to initial market introduction. 

It should be noted that as a result of lessons learned from the limited interference incidents 
described in this report, the FCC has already implemented changes and modifications to 
technical requirements that are applicable to DFS-equipped U-NII devices applying for FCC 
certification. These changes include: 1) a new requirement to lock down the country code setting 
to preclude manipulation by third party installers and/or users; 2) an increase in the required DFS 
detection bandwidth; and 3) an effective reduction in the unwanted emissions limit through a 
change in measurement procedure. 

It should also be noted that as a result of lessons learned by the DFS industry, improved self-
policing has also been introduced, in large part to avoid a repeat of having DFS certification 
suspended as it was for nearly three years while these incidents were under investigation. 



LESSONS LEARNED FROM THE DEVELOPMENT AND DEPLOYMENT OF 5 GHZ 
UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII) DYNAMIC 

FREQUENCY SELECTION (DFS) DEVICES 

Frank H. Sanders,5 Edward F. Drocella,6 Robert L. Sole,6 John E. Carroll5

This report is a case-history of the development, deployment, and operational 
experiences associated with 5 GHz unlicensed national information infrastructure 
(U-NII) devices that incorporate a detect-and-avoid approach to spectrum sharing. 
Such dynamic frequency selection (DFS) technology was authorized by the 
Federal Communications Commission (FCC) to accommodate co-band operation 
of U-NII transmitters among other incumbent radio systems, specifically radars. 
DFS-equipped U-NII systems are designed to detect frequencies occupied by 
radar transmissions and then command their own transmitters to avoid operation 
on those occupied frequencies. Examining the historical and technical aspects of 
the development and deployment of 5 GHz DFS-equipped U-NIIs, this report 
focuses on issues encountered with the deployment of this nascent DFS 
technology, particularly with respect to two government radar systems that have 
experienced harmful interference: Terminal Doppler Weather Radars (TDWRs) 
and Range Instrumentation Radars (RIRs). These interference interactions and the 
likely underlying causes are described, along with steps that have already been 
taken in an effort to mitigate existing and potential future interference 
interactions. This report’s narrative summarizes the DFS experience and shares 
the Lessons Learned from these experiences that may be applied to future similar 
spectrum-sharing approaches. 

Keywords:  5 GHz band; access point (AP); band sharing; detect and avoid; Dynamic 
Frequency Selection (DFS); electromagnetic compatibility (EMC); emission limits; 
out-of-band (OOB) emissions; radar; radio interference; Range Instrumentation 
Radar (RIR); Terminal Doppler Weather Radar (TDWR); spectrum measurement; 
spectrum sharing; spurious emissions; unlicensed national information 
infrastructure (U-NII) 

1. INTRODUCTION

Dynamic frequency selection (DFS) is a technique for sharing spectrum at 5 GHz between 
incumbent radars (which are primarily federal government systems) and a subset of wireless 
access systems (WASs) called unlicensed national information infrastructure (U-NII). As of the 
date of this report, DFS-equipped systems are routinely used at locations across the United 

5 The author is with the Institute for Telecommunication Sciences, National Telecommunications and Information 
Administration, U.S. Department of Commerce, Boulder, CO 80305. 
6 The author is with the Office of Spectrum Management, National Telecommunications and Information 
Administration, U.S. Department of Commerce, Washington DC 20230. 
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States. DFS can now be considered to be a mature technology. But based on ongoing experience 
with the technology as deployed, some incremental improvements can still be made, such as 
changes to the radar waveforms that are used for certification testing of new DFS-equipped 
systems. 

Many 5 GHz radars are legacy systems, but DFS is designed to accommodate new, future radar 
systems as well. The parameter space (pulse widths, pulse repetition rates, and chirp 
characteristics) of radar waveforms used for DFS certification testing is supposed to be large 
enough to accommodate future radar systems that may eventually be introduced at 5 GHz. 

DFS-equipped U-NII data communication systems are typically operated by private sector 
operators for last-mile radio connectivity between wireless Internet service providers (WISPs) 
and their customers. DFS is a detect-and-avoid spectrum sharing technology that is implemented 
entirely in the U-NII systems; radars sharing the same spectrum are not re-engineered or 
otherwise modified under the DFS scheme. 

The FCC does not specify a technology for the U-NII bands. Commonly used technologies in 
DFS-equipped systems are based on Institute for Electrical and Electronic Engineers (IEEE) 
802.11 standards.7 DFS-enabled non-802.11 technologies include WiMAX communication links, 
video surveillance data links, low data rate inventory control devices, and wireless speakers.8 For 
all DFS-equipped systems, U-NIIs monitor their own operational frequencies for radar signals 
within time slots that are themselves placed in between system data-packet exchanges. When a 
radar signal is detected by a U-NII receiver above a defined power threshold,9 the U-NII system 
coordinates a new frequency among its individual nodes (transmitters and receivers called access 
points (APs) and clients). An AP and its clients then simultaneously switch their operations to 
the new, non-conflicting frequency. (If an AP tries to use a new frequency in a DFS mandated 
U-NII band, the AP must check the new channel for radar activity for one minute before 
transmitting.) All of this occurs within a defined time interval. No attempt is made to re-use the 
first frequency for 30 minutes.10 

This report provides an overview and summary of experience that government and industry have 
gained in the course of 5 GHz DFS development, deployment, and operations. The sum total of 
the experience gained is encapsulated in eleven Lessons Learned that can be applied to the 
development and introduction of other spectrum sharing schemes in other bands and with other 
systems in the future. 

                                                
7 802.11h is the IEEE standard that incorporated DFS support into the 802.11 series to expand the available channels 
for 802.11a from 12 to 23 non-overlapping channels in the 5 GHz band. 802.11b is a legacy 2.4 GHz exclusive 
standard. It has been replaced, for the most part, by 802.11g in the 2.4 GHz band. 802.11n adds multiple input, 
multiple output (MIMO) support and combines 802.11a and 802.11g to provide dual 2.4 GHz and 5 GHz support. 
802.11a/c is an expansion of 802.11a/n in the 5 GHz band to support increased data rates via enhanced MIMO, 
wider bandwidths, and higher density modulation. 
8 NTIA has worked with the FCC to apply specialized DFS performance testing procedures for non-802.11 devices. 
9 The threshold is defined in terms of spectral power density, a certain amount of power per unit bandwidth. This 
is -62 dBm/MHz or -64 dBm/MHz, depending on DFS system characteristics. 
10 When (or if) use of the original frequency is re-attempted, that frequency is first re-monitored for any radar signal 
presence. 
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The authors were involved, along with many other people in multiple agencies and industry (see 
Acknowledgements) in all phases of DFS development, deployment, and post-deployment. They 
have worked for years on interference analysis and mitigation, dating from the 1990s to ongoing 
present work. While dozens of documents are referenced in this report, the authors’ own, direct 
experience with DFS, especially testing DFS devices and troubleshooting interference problems, 
is provided without referenceable documentation (where only personal notes and recollections 
exist) so that their experience can be added to the formal record. 

1.1 Report Organization 

The remainder of this report is structured as follows. Section 2 describes the historical timeline 
of the development of DFS, mentioning DFS technical details only in passing. The decade-long 
effort that it recounts demonstrates the extensive work that had to be accomplished among 
multiple international and domestic standards bodies and regulators, both industry and 
government, to make DFS a reality. This section shows that spectrum sharing schemes inherently 
involve many complexly interlocking organizations (on the people side) and multiple radio 
systems (on the hardware side). 

Section 3 looks again at DFS historical development, but focuses on the technical minutiae. The 
bifurcation of Sections 2 and 3 is required by the need to describe both forks of DFS 
development (i.e., the human narrative versus the technical narrative). 

Section 4 describes DFS technical principles and implementation as finally agreed and defined 
between government and industry. It includes rules and requirements for DFS. 

Section 5 describes challenges that DFS has posed for U-NII manufacturers and vendors. It lists 
enforcement actions that have been taken by the government against some U-NII operators for 
violations of DFS regulations. 

Section 6 describes the challenges that DFS has posed for the government in its development and 
testing. These include the difficulty of needing to define rules and requirements for these radio 
systems before they were designed or built. 

Section 7 recounts the successes and failures that occurred when DFS was first deployed in 
commercially available packages. This narrative leverages earlier NTIA reports to describe 
interference that occurred after initial commercial deployment in the New York City and San 
Juan, Puerto Rico, areas. 

Section 8 describes interference that has occurred to radars at rocket test and launch ranges on 
the U.S. east and west coasts. It reinforces the Lessons Learned from the Terminal Doppler 
Weather Radar (TDWR) experience. 

Section 9 describes the ongoing support that has been required of the government in the decade 
and a half that has elapsed since DFS was originally commercially deployed. 

Section 10 summarizes the Lessons Learned from the entire DFS experience. 
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1.2 Gradual Introduction of Lessons Learned as the Report Progresses 

The eleven Lessons Learned and corollaries from the DFS experience are introduced sequentially 
as the report progresses. Each Lesson Learned is stated at the conclusion of the part of the report 
that led to it. Thus the reader learns, from reading the text preceding each Lesson Learned, how 
each one originated. 
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2. NARRATIVE REVIEW OF DFS SPECTRUM SHARING TECHNOLOGY 
DEVELOPMENT 

This section describes the historical timeline for the development of DFS at 5 GHz. It does not 
focus on DFS technical details. Section 3 looks again at DFS historical development, but with 
focus on the technical minutiae of DFS. This bifurcation is required by the need to describe both 
forks of DFS development, and by the great complexity of both of those forks. A take-away 
lesson from reading these two sections should be that development and implementation of DFS 
was immensely complex, both administratively and technically. 

2.1 Historical Development of Spectrum Sharing Arrangements and Management 
Approaches 

Conventional spectrum management practices developed largely because of interference 
problems resulting from uncoordinated broadcasting and long-distance (so-called high 
frequency, below about 30 MHz) transmissions that were common during the first two decades 
of the 20th century. As radio spectrum became more crowded, spectrum managers controlled 
interference among the growing volume of users by delineating radiofrequency spectrum bands. 
Users were grouped by radio services (e.g., fixed, mobile, and broadcasting) and authorized to 
operate on specific frequencies in bands related to those services. Specific technical rules set 
parameters such as maximum operating power, maximum antenna gain, overall maximum power 
output, and sometimes even specific modulation and bandwidth requirements.11 

As demand for radio spectrum continued to grow, spectrum authorities began to allow static 
sharing arrangements between different radio services. In such cases, users from different radio 
services were required to meet strict technical requirements limiting operating power, unwanted 
emissions, antenna gain, etc., and, in some instances, operational restrictions (e.g., antenna 
directionality and time of day). In many cases, “shared” bands have been sub-divided in terms of 
distinctive but compatible service use. Incumbents have been given “priority rights” to a band 
where sharing users are restricted by operational rules developed to protect the incumbent users. 
This type of sharing, with designations for primary and secondary users and services in the U.S. 
and international tables of spectrum allocations [1], has provided some opportunity to 
accommodate additional users in shared bands, while also limiting potential harmful interference 
between the incumbents’ and sharing users’ operations.12 

Market pressures to accommodate more radio spectrum users and the recognized need to 
increase efficient use of spectrum led industry to develop two types of opportunistic sharing 
arrangements referred to as “underlay” and “overlay.” The “underlay” concept refers to cases 
where transmitters operate basically beneath the noise floor of other services. There may be 
some increase in the overall noise floor for a primary service, but technical and operational limits 
are established for the opportunistic service to ensure that harmful interference is not received by 
the incumbent. Unlicensed devices employing this kind of sharing are still subject to the 
requirements that they should not cause harmful interference and can claim no protection from 
harmful interference, as specified in §15.5 of the FCC rules. This type of arrangement limits the 
                                                
11 FCC Radio Broadcast Services, 47 CFR § 73. 
12 FCC Frequency Allocations and Radio Treaty Matters; General Rules and Regulations, 47 CFR § 2.100-8. 
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type of sharing operation because the technical and operational limits are based on allowing 
simultaneous transmissions by incumbent systems and the opportunistic systems. The FCC 
General Part 15 rules are based on this concept and require that opportunistic systems meet 
specific testing requirements in order to operate with existing incumbent systems.13 Such sharing 
arrangements provide no operational assurance for underlay systems. As such, they are rarely 
used for critical communication applications, but instead are primarily used for very short range 
consumer devices, such as garage door openers, car access remote controls, etc. 

The “overlay” concept, embodied in a variety of WASs, allows new users to transmit during 
quiet periods when incumbent users are not transmitting on their assigned bands.14 This type of 
arrangement recognizes that spectrum must be available for incumbent services as needed, but 
allows the new, innovative systems to utilize spectrum resources in periods, however brief, when 
the assigned frequencies are not being used by incumbents.15 By using detection and avoidance 
techniques the WAS devices can access spectrum, at any particular point in time and for a given 
location, when the spectrum is not being used by incumbent users.16 One WAS scheme, which is 
the focus of this report and operates in the 5 GHz part of the spectrum, is DFS. 

As a greater number of services utilize opportunistic sharing techniques that use adaptive, 
cognitive or software defined radio (SDR)17 techniques, it would be short-sighted to conduct 
interference analysis and planning based solely on conventional spectrum management 
techniques that rely purely on limiting the technical parameters of transmitters and receivers. For 
systems using opportunistic capabilities, like DFS capability at 5 GHz, sharing partners and 
spectrum managers need to develop minimum operational requirements that define a system’s 
ability to detect and avoid incumbent systems that have spectrum “rights” to a particular 
frequency band.18 This spectrum management approach can give industry a degree of flexibility 
not found in prior sharing arrangements and will allow opportunistic sharing opportunities to 
develop and grow in the future. 

2.2 Historical U.S. Radar Band Usage and a New Idea for Overlay Sharing 

Although many radio spectrum bands have historically been shared between distinct services, the 
radiolocation service (called “radar” in this report) has for the most part not shared its bands with 
other services. That is, radar bands have tended to be exclusive to that service. U.S.-allocated 
radar bands are relatively wide. From ultra-high frequency (UHF) to 18 GHz, they are 
420-450 MHz, 1215-1390 MHz, 2700-3650 MHz, 5250-5925 MHz, 8.5-10.5 GHz, and 

                                                
13 FCC Radio Frequency Devices, 47 CFR § 15. 
14 FCC Radio Frequency Devices, 47 CFR § 15. 
15 The Defense Advanced Research Projects Agency (DARPA) XG program has experimented with similar detect-
and-avoid operational ideas. Also, in FCC ET Docket No. 04-186, the FCC considers the operation of non-television 
radio devices in “TV white spaces,” where locally unassigned television broadcast channels may be used for low-
power non-television systems. This proceeding also involves a test program to examine the ability of prototype 
devices to detect and avoid occupied broadcast television channels (somewhat like DFS), and study the interference 
potential of such devices.  
16 FCC Radio Frequency Devices, 47 CFR § 15. 
17 SDRs use software, rather than hardware, to control a radio’s operational characteristics, allowing dynamic 
changes to a radio’s operating characteristics.  
18 FCC Radio Frequency Devices, 47 CFR § 15. 
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15.7-17.7 GHz.19 These bands’ widths are respectively 7%, 13%, 31%, 11%, 22% and 12% of 
the band center frequencies, the average being about 13%. Thus these radar bands represent 
significant portions of the spectrum between UHF and 18 GHz. 

By the 1990s, as described below, demands for more spectrum for new systems led to 
interest in increased sharing between radars and other systems. The interest was not 
confined to spectrum use in the United States; several Administrations in the 
International Telecommunication Union Radiocommunication Sector (ITU-R) expressed 
interest in sharing between radars and other services. 

By the late 1990s, industry groups in the U.S. and abroad began to circulate a new WAS 
concept for sharing between radars and other systems. Called unlicensed national 
information infrastructure (U-NII), this WAS idea was inspired by the perception that 
some spectrum being used by incumbent radar systems might be relatively underutilized 
in time and space (based on the relatively low operational duty cycles of radar waveforms 
and the relative sparsity of radars in space) and could be used by new, unlicensed radio 
systems without adversely impacting the operations of the radar incumbents. Incumbent 
systems that were identified as being possibly able to share with new systems were using 
spectrum between 5 to 6 GHz. In the U.S., the spectrum that became a candidate for this 
sharing was a segment inside the 5250-5925 MHz band. 

The idea of 5 GHz spectrum-sharing U-NII development eventually gained support in the 
ITU-R. No other administration, however, has the amount of radar infrastructure that the 
U.S. administration has, both military and civilian. Other administrations therefore 
arguably had less at risk in the development of radar spectrum sharing with WAS than 
did the U.S. 

2.3 Historical Narrative of WAS at 5 GHz: A Decade of Development 

In 1995, telecommunications firms began to crystallize plans to develop the 5 GHz band for 
WAS. WAS designs were aimed primarily for wireless networking, requiring broad bandwidths 
to meet data transfer requirements, in contrast to advanced cellular systems that were providing 
traditional voice and narrow bandwidth data communications. Initial plans called for these 
devices to operate principally indoors and at fairly low power levels.20 

2.3.1 Initial FCC Rulemaking Efforts 

Early industry efforts in Europe led to an initial designation of two bands at 5 GHz 
(5150-5350 MHz and 5470-5725 MHz) for providing wireless networking, based on the high 
performance radio local area network (HIPERLAN) standard. With a clear interest in developing 
a more global market, the industry petitioned the FCC to create rules for a domestic WAS.21 
                                                
19 There are amateur secondary allocations in 420-450 MHz; 1240-1300 MHz; 3300-3500 MHz; and 
5650-5925 MHz. 
20 FCC ET Docket 96-102. 
 21 These efforts did not provide complete harmonization with European efforts, since the FCC selected the 
5.15-5.35 GHz and 5.725-5.825 GHz bands initially for service development. 
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Apple Computer, Inc. became the early U.S. industry leader by petitioning the FCC for a 
rulemaking to designate an unlicensed national information infrastructure (U-NII) band for what 
later would develop into a WAS.22 This petition, together with an earlier petition by an industry 
consortium, the Wireless Innovation Forum (WInnForum), proposed to harmonize U.S. and 
European spectrum planning efforts at 5 GHz.23 

These petitions raised important initial questions, including the manner in which U-NII devices 
could share the proposed frequency bands with incumbent radar systems, if at all. In response to 
these petitions, on January 9, 1997, the FCC adopted an underlay scheme for sharing three bands 
of 100 MHz each at 5.15-5.25 GHz, 5.25-5.35 GHz and 5.725-5.825 GHz.24 The FCC’s decision 
required specific power limits, emission limits, and other technical rules appropriate for 
unlicensed Part 15 operations, based on sharing conditions for each of the three designated 
5 GHz bands. Consistent with Part 15 operating rules, these devices were required to protect 
incumbent federal systems and operate at low power levels.25 The FCC also believed that 
authorization under Part 15 rules would be sufficient to address interference concerns since 
unlicensed devices are required to cease operation when they cause interference and must accept 
interference from authorized systems.26 

Throughout the eighteen months that preceded the FCC’s January 1997 decision, and until June 
1998 when the FCC adopted an Order addressing reconsideration petitions,27 the interested 
parties were handicapped by incomplete technical information, skepticism about the viability of 
sharing in this band, and worries about technical and operational constraints applied to the 
potential sharing partners. Initial industry proposals lacked specific technical and operational 

                                                
22 Apple petitioned the FCC on May 24, 1995 for a rulemaking for “the creation of a new band of frequencies for 
high capacity, unlicensed wireless data – the NII Band.” Apple wanted to promote technology development and 
harmonize frequencies between Europe and the United States by promoting common 5.15-5.35 GHz and 
5.725-5.850 GHz bands. Apple also asked the FCC to establish new Part 16 rules to give these devices some 
operating protection from other unlicensed devices. See Apple Petition for Rulemaking, supra note 20 at pages 5-6. 
23 In a May 15, 1995 petition to the FCC, the WInnForum advanced the idea that “the high speed SUPERNet is the 
next generation of wireless information transmission systems.” WInnForum sought allocation of the 5.10-5.35 GHz 
band, chosen because it would maintain compatibility with the European HIPERLAN developments. This petition 
provided information that complemented the Apple petition. See WInnForum Petition for Rulemaking, supra note 
20 at 21. 
24 U-NII Report and Order in ET Docket No. 96-102 Amendment of the Commission's Rules to Provide for 
Operation of Unlicensed NII Devices in the 5 GHz Frequency Range, (January 9, 1997), 
https://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/1997/fcc97005.pdf. 
25 U-NII Memorandum Opinion and Order in ET Docket No. 96-102 Amendment of the Commission's Rules to 
Provide for Operation of Unlicensed NII Devices in the 5 GHz Frequency Range, (June 17, 1998), 
https://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/1998/fcc98121.txt 
26 CFR 47 Part 15.407. 
27 Petition for Reconsideration in ET Docket No. 96-102, Amendment of the Commission’s Rules to Provide for 
Operation of Unlicensed NII Devices in the 5 GHz Frequency Range, (March 3, 1997); Petition for Reconsideration 
in ET Docket No. 96-102, Amendment of the Commission’s Rules to Provide for Operation of Unlicensed NII 
Devices in the 5 GHz Frequency Range, (March 3, 1997); Wireless Information Networks Forum Petition for 
Reconsideration in ET Docket No. 96-102, Amendment of the Commission’s Rules to Provide for Operation of 
Unlicensed NII Devices in the 5 GHz Frequency Range, (March 3, 1997). 

https://transition.fcc.gov/Bureaus/Engineering_Technology/Orders/1997/fcc97005.pdf
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details needed for a comprehensive electromagnetic compatibility (EMC) analysis to ensure that 
U-NII devices would be compatible with existing federal systems.28 

Using the available technical and operational data for U-NII devices and information regarding 
the technical characteristics of incumbent federal systems and how they were deployed, NTIA 
performed an analysis that the FCC used to establish the technical parameters for U-NII 
devices.29 Based on the information available at the time, the analysis assumed that U-NII 
devices would be used primarily indoors. Incumbent military radar systems were typically used 
only on military facilities located beyond heavily populated areas where U-NII device 
deployment was expected to be extensive. The assumptions underlying NTIA’s analysis were 
coordinated with the federal agency representatives on the Interdepartment Radio Advisory 
Committee (IRAC). NTIA recognized that if the assumptions regarding deployment of the U-NII 
devices and incumbent radar systems changed, there could be potential problems. NTIA 
recommended that channel monitoring protocols be used in conjunction with dynamic channel 
selection to protect federal users.30 The FCC did not adopt NTIA’s proposal to require channel 
monitoring and dynamic channel selection. 

The FCC’s January 1997 Order brought reconsideration petitions from industry.31 WInnForum, 
Apple, and the Hewlett Packard Company asked for higher power operations and higher gain 
antenna allowances in all three designated bands.32 Concerned about the additional interference 
potential suggested by the petitions, NTIA opposed the proposed Part 15 modifications and 
urged the FCC to limit the use of both mobile and fixed devices near military bases and test 
ranges because of likely interference to such devices from high-power federal radar systems.33  

On June 17, 1998, the FCC amended its rules to permit higher power fixed, outdoor point-to-
point U-NII devices in the 5.725-5.825 GHz band. It denied industry requests for higher power 
and increased antenna gain in the 5.15-5.25 GHz and 5.25-5.35 GHz bands.34 In this decision, 
the FCC attempted to balance industry’s desire for more flexible operational characteristics with 
protection of federal systems. 

Between 1998 and 2000 several key factors changed the electromagnetic compatibility picture 
between the U-NII devices and federal radar systems. In its original analysis, NTIA initially 
characterized U-NII devices as operating primarily indoors. However, new applications 
subsequently included the use of the technology to support Internet backhaul communications. 

                                                
28 Report of the First Meeting, Radiocommunication Study Groups of International Telecommunication Union, Joint 
Rapporteur Group 8A-9B, Doc. 8A-9B/27-E at 94 (October 19, 2000); Report of Second Meeting, 
Radiocommunication Study Groups of International Telecommunication Union, Joint Rapporteur Group 8A-9B, 
Doc. 8A-9B/55-E at 144 (March 27, 2001). 
29 Reply Comments of the National Telecommunications and Information Administration in ET Doc. No. 96-102, 
Amendment of the Commission’s Rules to Provide for Unlicensed NII/SUPERNet Operations in the 5 GHz 
Frequency Range, (August 16, 1996).  
30 Id. at page 11. 
31 See U-NII Petitions for Reconsideration, supra note 27 at page 11. 
32 Id. at page 6. 
33 Letter to Mr. Richard Smith, Chief, Office of Engineering and Technology, Federal Communications 
Commission, from Dr. Richard D. Parlow, Associate Administrator, Office of Spectrum Management, National 
Telecommunications and Information Administration, in ET Docket No. 96-102 (April 18, 1997).  
34 See June 1998 U-NII Device Order, supra note 25. 
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This condition can cause U-NII signal interaction with federal radars over unobstructed signal 
propagation paths, effectively increasing the interference potential. 

Other than some weather radars, many radars at 5 GHz were initially assumed by the U.S. 
government and private industry to be limited to operating on or near military installations for 
testing and training. However, this usage pattern was based on practices prior to the terrorist 
attacks of September 11, 2001. One area of concern in assessing interference to military radars 
from U-NII systems involved wider possible future radar deployments and an expanded domestic 
role for military radars in support of homeland defense. Changing usage requirements could 
result in a need to deploy military radars in and near cities and close to highways where U-NII 
devices would be expected to have their highest usage. Such changes in usage patterns needed to 
be considered in the development of 5 GHz U-NII service rules that would be effective in 
protecting federal radar systems. 

2.3.2 International Developments and FCC Rulemakings Between 2000 and 2003 

Substantial development occurred between 2000 and 2003.35 By 2000, manufacturers began to 
push for world-wide allocations for WAS. The idea was to take advantage of massive potential 
economies of scale in being able to sell the same devices in many countries with few or no 
variations from one country to the next. Based on U.S. and European proposals to the 
2000 World Radiocommunication Conference (WRC-2000), three separate spectrum bands were 
delineated for consideration within an agenda item for WRC-03.36 These were 5.15-5.25 GHz, 
5.25-5.35 GHz, and 5.47-5.725 GHz. The last band was based solely on European input and 
provided an additional 255 MHz of spectrum not previously considered for WAS operations 
within the United States.37 

Following up on its initial skepticism about the viability of sharing with existing radar operations 
in the 5 GHz band, NTIA had suggested, as early as 1996, that channel monitoring protocols, 
used in conjunction with dynamic channel selection capabilities, could be effective in 
                                                
35 The international proceedings for development of treaty text were considered in the International 
Telecommunication Union (ITU), Radiocommunication Sector (ITU-R), Study Groups (SG). More information on 
the ITU and its structure can be found at www.itu.int. Various Working Parties (WP) of individual SGs were 
involved in development of the technical and regulatory work associated with the ultimate treaty text that was 
completed related to WASs, including RLANs at 5 GHz. This work was liaised between the contributing WPs, and 
for purposes of this case study the summary discussions found in the Chairman’s Reports for the Joint Rapporteurs 
Group 8A-9B (JRG 8A-9B) (a combined effort between WP’s 8A and 9B under the respective SG 8 and SG 9 
responsibilities) which was developed specifically to address WASs is used for cites to the international work. The 
Chairman’s Reports of JRG 8A-9B provide an overall summary of the discussions related to many input 
contributions to each meeting and summarize the appropriate output documents that were developed in support of 
the World Radiocommunication Conference (WRC) held in 2003 (WRC-03) where treaty text was developed for the 
5 GHz WASs, including RLANs. This includes liaison activity from other contributing groups within the ITU-R SG 
structure. This treaty text is related to the U.S. 5 GHz UNII CFR 47, Part 15 rules that were developed and also 
referenced in this case study. Access to the documents developed in the ITU-R SG structure is limited to individuals 
with access to the ITU-R document center (TIES Account). All documents from the ITU referenced in this case 
study are available from the author. 
36 Resolution 800, Agenda for the 2003 World Radiocommunication Conference, World Radiocommunication 
Conference, International Radiocommunication Union (March 25, 2000) [hereinafter Agenda for 2003 WRC). 
37 European Common Proposals for the Work of the Conference, World Radiocommunication Conference, 
International Telecommunication Union. Addendum 8 to Doc. 13-E at 6 (March 25, 2000). 

http://www.itu.int/
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minimizing interference. NTIA recommended that the FCC mandate receiver standards and that 
industry incorporate adaptive capabilities in the new 5 GHz devices.38 These recommendations 
were not adopted by the FCC in its 1997 and 1998 Orders,39 the preference being to allow such 
receiver standards to be developed within industry-participation standards groups such as the 
IEEE 802.11 Wi-Fi® standards body. 

This innovative approach gained no traction domestically as the international and U.S. industry 
shifted their focus to 5 GHz proposals in European venues. But by 2000, driven by strong 
interest shown by European regulators in adaptive radio system capabilities, the industry began 
working to define DFS spectrum etiquette protocol that would require 5 GHz devices to 
dynamically reassign channels based on detection and avoidance of incumbent signals.40 

Meanwhile, efforts to find an initial U.S. consensus position on developing a world-wide 
allocation for WAS were slowed by several factors, including sparse participation in U.S. 
preparatory processes for WRC-03, inadequate technical information and changing technical 
criteria. U.S. government representatives remained pessimistic about the feasibility of sharing 
with a wide variety of radar systems operating in the 5 GHz band (particularly in the specific 
bands 5250-5350 MHz and 5470-5725 MHz). U.S. delegates to meetings of the International 
Telecommunication Union Radiocommunication Sector (ITU-R) preparing technical material for 
WRC-03 lacked adequate information from which to develop detailed, workable sharing 
arrangements that sufficiently addressed their interference concerns. Lacking detailed 
information on WAS device design and operational characteristics of incumbent military 
systems, U.S. representatives to these meetings used a “best guess” approach to develop 
proposed alternative technical rules for WAS devices.41 Industry representatives strongly 
objected to the resulting proposed rules as unworkable, asserting that such constraints would not 
lead to marketable products.42 This led to a virtual stalemate between industry and government 
interests working on the 5 GHz issue. 

Another factor related to the technical work involved a shift from the HIPERLAN standard, 
developed earlier by the European standards body, to more recent IEEE standards work related 
to its Wi-Fi and 802.11 development activities.43 While this shift complicated efforts to define a 
reasonable sharing situation, caused some delay, and invalidated some earlier technical work, the 
IEEE work was eventually widely accepted and adopted as the technical basis for all subsequent 
work globally.44 

                                                
38 See NTIA Reply Comments Aug. 16, 1996, supra note 29 at pages 3-4. 
39 See January 1997 U-NII Device Order, supra note 24; June 1998 U-NII Device Order, supra note 25. 
40 Report of the Third Meeting, Radiocommunication Study Groups of International Telecommunication Union, 
Joint Rapporteur Group 8A-9B, Doc. 8A-9B/98-E at 144 (December 6, 2001). 
41 Id. at 101., See ITU-R Report of First Meeting, supra note 28 at 94; ITU-R Report of Second Meeting, supra note 
28 at 144. 
42 Report of the Fourth Meeting, Radiocommunication Study Groups of International Telecommunication Union, 
Joint Rapporteur Group 8A-9B, Doc. 8A-9B/132-E at 6 (May 8, 2002). 
43 Id.  
44 Report of Sixth Meeting, Radiocommunication Study Group of International Telecommunications Union, Joint 
Rapporteur Group 8A-9B, at 2.1 (February 4, 2003); Changes to Agenda Item, Radiocommunication Sector of 
International Telecommunication Union, Conference Preparatory Meeting for WRC-03, United States, Doc. 
CPM02-2/141-E (November 11, 2002). 
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Internationally, the U.S. delegations to ITU-R meetings continued to press for several conditions 
to address ongoing concerns about the potential for interference to radar receivers. First, since 
earlier analyses indicated that conventional spectrum management practices, such as power 
limits, would not alone be sufficient to provide the required protection, the United States 
advanced a proposal within the ITU-R to mandate operational requirements instead of more 
conventional power and antenna gain limitations.45 Second, the U.S. Department of Defense 
(DoD) was asked by NTIA and the FCC to supply details regarding its radar operations in order 
to develop more realistic sharing analyses.46 The United States also sought inclusion of detect-
and-avoid measures in international agreements related to operational requirements.47 

By October 2001, international agreement was reached to define operational requirements as a 
regulatory mechanism.48 International agreements also called for definition of the minimum 
detect-and-avoid requirements in terms of: 1) a power detection threshold built into WAS to 
trigger WAS channel moves away from frequencies occupied locally by radars; 2) a time limit to 
be allowed for these channel moves; and 3) in-service WAS spectrum monitoring for radar 
signals, expressed as a defined listening period to be repeated continually at set intervals of 
time.49 

While progress was being made in defining rudimentary DFS parameters, the emerging U.S. 
position in preparation for WRC-03 called for “no change” in existing allocations at 5 GHz, due 
in part to sparse industry participation in U.S. preparatory processes and continuing potential 
interference concerns in the 5.25-5.35 GHz band.50 Faced with the prospect of no allocation for 
WAS at 5 GHz, a major shift in industry participation occurred in 2002. At this point, industry 
representatives offered to work actively on U.S. preparations to WRC-03 and lobbied NTIA and 
DoD for a change in the U.S. position.51 In response to this high level of industry interest in 
developing WAS at 5 GHz, the State Department’s International Technical Advisory Committee 
for Radiocommunications (ITAC-R) created a specific project team to collaborate in developing 
an accurate picture of likely sharing conditions and to exchange key information about WAS 
device global market requirements and technical and operational specifications.52 

Participants also learned more about incumbent system operational details. Based on this 
information, NTIA, FCC, and DoD worked with industry to develop computer models and 
detailed sharing scenarios that would be the basis for more realistic EMC analyses.53 This 
specialized ITAC-R project team played a key role in creating an information flow and a 

                                                
45 Report of the Fifth Meeting, Radiocommunication Study Groups of International Telecommunication Union, Joint 
Rapporteur Group 8A-9B, Doc. 8A-9B/161-E at 6 (October 23, 2004). 
46 Chairman’s Report Of Sharing Analysis, International Telecommunications Advisory Committee for 
Radiocommunications, 5 GHz DFS Project Team, at page 4, (November 5, 2002). 
47 See ITU-R Report of Fifth Meeting supra, note 45 at 7. 
48 Id. at 109. 
49 Id. at 114. 
50 Final list of participants, Radiocommunication Study Group of International Telecommunications Union, Joint 
Rapporteur Group 8A-9B, at page 3 (January 23, 2003). 
51 See CPM Changes to Agenda Item supra, note 44. 
52 ITAC-R 5 GHz Project Team Chairman’s Report, International Telecommunications Advisory Committee for 
Radiocommunications, 5 GHz DFS Project Team, at page 1, (February 2, 2006). 
53 Supra note at pages 1-4. 
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collaborative process to reach a productive result that allowed the United States to eventually 
support a WAS allocation at 5 GHz. 

The ITAC-R Project Team completed a large volume of work in less than six months. This 
consensus work had wide support from manufacturers; the group’s work products were 
introduced and used at subsequent international meetings.54 The U.S. position began to gain 
traction internationally, as more manufacturers shifted their focus from European venues to the 
U.S. domestic process. This collaboration quickly became the defining work for subsequent 
international studies. With the needs of both government and industry met, work progressed 
rapidly in the ITAC-R toward a shared goal of endorsing a WAS allocation at 5 GHz at 
WRC-03. 

ITAC-R participants reached two important conclusions. First, traditional spectrum management 
planning practices would not be sufficient to address innovative radio systems that used adaptive 
functions based on SDR technology. Second, a detailed conformance test procedure and 
methodology would need to be developed to support spectrum management efforts. Rather than 
using the conventional spectrum management approach of setting static technical parameters 
such as power and antenna gain limits, the group agreed to specify a set of minimum operational 
requirements to ensure that radio systems employing adaptive functions could share spectrum 
with incumbent users. This approach would demand rigorous conformance test procedures while 
alleviating the need to review software changes which could occur frequently in a product 
lifecycle. This approach also simplified spectrum management requirements for multiple 
regulatory authorities. Devices operating under specific domestic rules could be approved based 
on conformance testing, without requiring reviews of literally millions of lines of programming 
code.55 

The collaborative work also showed that sharing possibilities depended on adequate planning for 
likely aggregate interference to military radar systems. As a result, subsequent work focused on 
deployment scenarios involving urban, suburban, and rural population densities. This work 
showed that previous assumptions of what would constitute a worst-case scenario were not 
appropriate. Through the work of the ITAC-R project team, government and industry 
representatives created realistic deployment scenarios for the radar systems and developed 
estimates of WAS devices based on representative population density levels found in local 
markets. The ITAC-R had once again provided a venue for detailed technical discussions, 
exchange of information, and compromises that resulted in common agreement concerning an 
appropriate EMC analysis by all parties. 

Consistent with this spirit of cooperation, DoD performed a detailed review of its operational 
requirements, revisiting the possibility of new sharing arrangements at 5 GHz. Based on this 
review, DoD subsequently suggested that airborne radars were not relevant to ongoing sharing 

                                                
54 See ITU-R Report of Sixth Meeting supra, note 44. 
55 Report and Order in ET Docket No. 03-287, 18 FCC Rcd 24484 (32), Revision of Parts 2 and 15 of the 
Commission's Rules to Permit Unlicensed National Information Infrastructure (U-NII) devices in the 5 GHz band 
(November 18, 2003), https://www.fcc.gov/document/revision-parts-2-and-15-commissions-rules-permit-
unlicensed-2; and Memorandum Opinion and Order in ET Docket No. 03-122 Revision of Parts 2 and 15 of the 
Commission's Rules to Permit Unlicensed National Information Infrastructure (U-NII) devices in the 5 GHz band, 
(June 30, 2006), https://www.fcc.gov/document/revision-parts-2-and-15-commissions-rules-permit-unlicensed. 

https://www.fcc.gov/document/revision-parts-2-and-15-commissions-rules-permit-unlicensed-2
https://www.fcc.gov/document/revision-parts-2-and-15-commissions-rules-permit-unlicensed-2
https://www.fcc.gov/document/revision-parts-2-and-15-commissions-rules-permit-unlicensed
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discussions because these systems did not operate where WAS devices would likely operate in 
large numbers.56 This important concession allowed the group to move forward with viable 
sharing rules for the 5.25-5.35 GHz band. 

Buoyed by the progress made domestically and as the international preparatory work wrapped up 
in anticipation of WRC-03, the FCC began a new rulemaking on May 15, 2003 to address all 
aspects of the international work developed up to this point.57 This review of existing U.S. rules 
and consideration of new rules for the 5 GHz band was necessary to incorporate agreements and 
compromises reached both domestically and internationally to establish global rules. 

WRC-2003 established a mobile allocation for WAS in the 5.15-5.25 GHz, 5.25-5.35 GHz, and 
5.47-5.725 GHz bands and set detect-and-avoid DFS as a requirement for the 5.25-5.35 GHz and 
5.47-5.725 GHz bands. WRC-2003 also established power limits and technical requirements for 
DFS, based on U.S. contributions proposing limits for detection threshold, channel move time, 
and in-service monitoring. Some disagreement internationally on further operational limits for 
the 5.25-5.35 GHz band led to the specification of “options” for WAS operation in this band.58 

On November 18, 2003, the FCC adopted a Report and Order (R&O) that added 255 MHz of 
spectrum from the 5.47-5.725 GHz band to the Part 15 rules and established rules consistent with 
the agreements reached domestically between the regulators, industry, and federal agencies.59 
The FCC required the use of DFS and transmitter power control in the 5.25-5.35 GHz and 
5.47-5.725 GHz bands, established interim procedures for conformance testing, and gave its 
Office of Engineering and Technology the authority to develop final conformance test 
procedures, based on continuing work by the ITAC-R Project Team. These FCC actions were 
largely consistent with international agreements reached at WRC-03. 

2.3.3 Development of Adequate Testing Procedures and FCC Decisions Between 2003 and 
2006 

Much had been accomplished by the ITAC-R in the preceding period. Through timely exchange 
of information and active collaboration, the group found consensus on sharing scenarios based 
on realistic assumptions, and agreement concerning the technical analysis methodology to be 
employed. The group also completed a rigorous modeling activity, involving the construction 
and execution of multiple models to validate and verify the accuracy of technical assumptions.  

The group next needed to reach agreement about final compliance measurement procedures. 
These test measurement procedures were vital to ensure that equipment produced would in fact 
“overlay” existing systems in such a way as to not cause harmful interference. To ensure this 
result, NTIA performed tests using prototype devices to validate the test procedures under 
development. This was accomplished in two phases: bench testing against simulated radar 
signals and field testing against real radar systems, including against military radars at a 
                                                
56 See ITAC-R Report of Sharing Analysis supra note 46 at page 3. 
57 Revision of Parts 2 and 15 of the Commission’s Rules to Permit Unlicensed National Infrastructure (U-NII) 
Devices in the 5 GHz Band, ET Docket 03-122, Notice of Proposed Rulemaking, 18 FCC Rcd. 11,581 (May 15, 
2003). 
58 International Telecommunications Union, Radio Regulations, Frequency Allocations, § 5.441, RR5-83 (2004). 
59 See footnote 55.  
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southwestern desert test range. These activities allowed the regulators to determine the specific 
test procedures required to ensure that any device authorized under the test procedures would in 
fact detect and avoid real radar systems. 

Two rounds of bench testing in the spring of 2004 led to the discovery that the WAS devices 
could not employ power threshold detection as the sole means of triggering a channel move.60 
The first bench test was performed on three manufacturers’ devices and noted their inability to 
detect the test radar signals. Federal government representatives concluded that most of the 
algorithms under development detected only specific, individual radar signals identified in the 
draft conformance test procedures. Federal government representatives also noted that the WAS 
devices appeared to employ a radar detection algorithm instead of a power detection mechanism 
to initiate channel moves for their devices. In a series of meetings held between April and May 
2004, parties agreed that a second round of bench testing should be performed to alleviate federal 
government concerns and to allow industry to use the lessons learned from the first test to change 
their equipment configurations to more reliably detect test signals. Based on federal government 
requirements, the second test included randomized test signals that simulated a wide range of 
radars operated in the 5 GHz bands and required a complete overhaul of the compliance test 
procedures and development of pass/fail criteria. While industry opposed the randomization 
requirement, federal officials developed an initial set of randomized test signals. 

After an additional round of bench testing conducted between May and June of 2004 confirmed 
that threshold detection alone could not be used to trigger a channel move, the group 
collaborated closely to find a solution to this problem. Eventually, a compromise was reached in 
the ITAC-R process, leading parties to agree that industry could employ algorithms that used 
features of the radar signals to ensure protection of the federal systems. This agreement led to the 
development of pass/fail criteria in the compliance measurement procedures for each operational 
requirement and also led to the use of test signals that randomized key radar signal parameters. 
WAS devices could detect a very wide range of radar systems (current and potential future 
systems) in sufficient time to minimize harmful interference. From this important ITAC-R work, 
final operational values for the applicable radar test signals and pass/fail criteria were developed 
by the 5 GHz Project Team and ultimately accepted by the FCC.61 

The ITAC-R Project Team pressed on with its work, generating the required substantial 
modification of compliance test procedures and development of new pass/fail criteria. These 
very specialized DFS compliance test procedures extended well beyond the typical procedures 
required to demonstrate compliance with respect to other existing FCC Part 15 rules. Since the 
radar signal parameters were randomized, pass/fail criteria were needed to account for the 
statistical nature of radar signal detection. The ITAC-R Project Team also developed a new set of 

                                                
60 Up to this point, power threshold detection was intended to trigger a channel move by a WAS device. Two 
separate procedures were defined. A start-up radar detection procedure was initiated when a WAS device initially 
powered up. A subsequent in-service radar detection procedure occurred after the initial start-up. Both procedures 
required a move time, defined as the amount of time acceptable for clearing operations on a particular channel once 
the radar pulse detection threshold was exceeded, as well as a non-occupancy period to ensure that WAS devices did 
not prematurely return to channels occupied by radar systems. With this specification, ITAC-R work focused on 
determining the operational values formally identified as Detection Threshold, Channel Availability Check, Channel 
Closing Transmission Time, Channel Move Time, and a subsequent minimum Channel Non-Occupancy Period. 
61 See footnote 55. 
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test signals representing a wide range of radar functions to ensure that DFS detection algorithms 
and the associated compliance test procedures would protect existing as well as future federal 
radar users operating in the 5 GHz band. 

The ITAC-R worked rapidly between May and June of 2004 to produce a revised compliance 
test procedure and test plan. Technical representatives from NTIA and DoD developed new test 
procedures designed to increase their confidence that the WAS devices could avoid interfering 
with incumbent radar systems. These procedures included pass/fail requirements based on 
percentages of successful detections. The ITAC-R Project Team meanwhile reached agreement 
on a new test plan and additional radar test signals with long pulse widths. As a proof of concept, 
the project team agreed to use these compliance test procedures for baseline bench testing, to be 
followed by field testing using actual radar signals. In response to industry attempts to remove 
the long-pulse signal detection requirement, federal officials compromised by delaying final 
agreement on compliance procedures until both bench and field testing were completed. 

In September 2005, NTIA released the baseline bench test report to provide specific test data 
useful for further ITAC-R discussions.62 To alleviate continuing industry concerns over the long-
pulse width radar signals, DoD agreed to allow industry personnel with the appropriate security 
clearances to receive a classified briefing on the radar operations to verify federal government 
requirements. This action by DoD removed a very significant roadblock during this phase of 
testing. Based on a new understanding of federal government testing requirements, industry 
agreed to comply with pass/fail criteria for all required signals, including those tests involving 
long-pulse radar signals. 

Despite more than two years of effort by the ITAC-R to support development of WAS service 
rules for both international and domestic markets, the FCC realized that WAS rules could not be 
completed as planned by January 2005. On February 23, 2005, the FCC extended the transition 
period for the 5.25-5.35 GHz band by one year.63 Without consensus on final conformance test 
procedures, no devices could be certified under the new rules. The extension period was required 
to allow devices to continue to be made and sold under the previous rules for the 5.25-5.35 GHz 
band. 

Based on the work performed within the ITAC-R, in December 2005, NTIA completed the field 
testing that validated the new test procedures. Based on field tests of DoD radar systems, final 
adjustments were made to the pass/fail criteria. The baseline bench testing and field testing gave 
federal agencies a higher degree of confidence that incumbent radar systems could be protected. 
NTIA’s field testing demonstrated that the conformance test procedures were valid and capable 
of producing WAS devices that would protect incumbent radar systems.64 

                                                
62 ITAC-R DFS Project Team Test Report for 5 GHz U-NII Devices Equipped with Dynamic Frequency Selection 
With Radar Waveforms, International Telecommunications Advisory Committee for Radiocommunications, 5 GHz 
DFS Project Team, Performed by NTIA at the Institute of Telecommunication Sciences Boulder, Colorado in 
September 2005 (available from the authors). 
63 Revision of Parts 2 and 15 of the Commission’s Rules to Permit Unlicensed National Infrastructure (U-NII) 
devices in the 5 GHz band, ET Docket 03-122, Order, 20 FCC Rcd. 4883 (February 23, 2005). 
64 Radar/U-NII Device DFS Field Test Results, International Telecommunications Advisory Committee for 
Radiocommunications, 5 GHz DFS Project Team, Performed by NTIA at the U.S. Army McGregor Range, Ft. Bliss, 
Texas from November 28 to December 9, 2005, (December 21, 2005) (available from the authors). 
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With this common understanding of final compliance measurement procedures, the ITAC-R 
began work on detailed procedures that would be required by FCC-certified compliance testing 
facilities. By May 2006, all parties agreed that any industry requests for device certification 
would contain laboratory results documenting their device’s ability to pass compliance 
measurement requirements established by FCC. 

All that remained was for the FCC to finalize its 5 GHz DFS rules and to address petitions for 
reconsideration raised since its November 2003 decision. In June 2006, the FCC finalized its 
5 GHz DFS rules by adopting an Order, dismissing previous petitions, and establishing final 
compliance measurement procedures in full accordance with the agreements reached by the 
ITAC-R Project Team.65 

As is customary with new compliance measurement procedures, FCC gathers the measurements 
necessary to certify WAS devices. Once the FCC has confidence that the compliance 
measurement procedures are well understood, they permit Telecommunication Certification 
Bodies to certify DFS equipped devices. As part of their equipment certification process, the 
FCC can obtain off-the-shelf samples of the commercially available systems to verify their 
operational compliance with the rules. 

The complex nature of the compliance measurement procedure for DFS equipped devices also 
led NTIA to establish a program to measure off-the-shelf devices to verify that they comply with 
the FCC rules. Early tests of several DFS equipped devices revealed minor problems of 
noncompliance with the FCC rules. NTIA has worked with the FCC and equipment 
manufacturers to resolve these problems before the devices have been widely deployed. Given 
the importance of DFS functionality in protecting the military and civilian radar systems, 
verifying compliance with the FCC rules is a critical factor for successful deployment of 5 GHz 
U-NII devices. 

                                                
65 See June 2006 U-NII Device Order, supra note 61. 
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3. TECHNICAL REVIEW OF DFS SPECTRUM SHARING TECHNOLOGY 
DEVELOPMENT 

This looks again at DFS historical development, but with a focus on the technical minutiae of 
DFS development. The bifurcation between this section and the preceding section is required by 
the need to describe both forks of DFS development (i.e., the human narrative versus the 
technical narrative), and by the length and complexity of both of those forks. 

3.1 DFS: Highlights of a Novel Spectrum Sharing Concept 

The original technical ideas behind 5 GHz spectrum-sharing U-NII devices were (and still are): 

• The basic sharing concept was that U-NII receivers (associated with U-NII transmitters but 
not necessarily co-located) would detect local, incumbent radar signals and not operate on 
those locally used radar frequencies. The amount of off-tuning required to protect radar 
receivers from interference would need to be determined. 

• The radar signal power detection threshold would be adjusted so that radar receivers would 
not see U-NII signal power above a pre-identified, critical interference, I, to noise, N, level of 
I/N = -6 dB in those receivers when the U-NII monitoring circuitry was triggered. This 
concept of triggering the receiver side of a potentially interfering transmitter to activate 
frequency avoidance when it sees a critical transmitted power level from a victim system 
with a susceptible receiver is a clever part of the DFS scheme.66 A full explanation of how 
and why it works requires a lengthy technical discussion that is presented in Appendix A of 
this report. 

• Radars, as pre-existing incumbents in the bands, would have primary allocation status over 
the new spectrum-sharing systems. The new U-NII devices would operate on the same non-
interference basis as defined in FCC CFR 47 §15.5 for all Part 15 applications. The U-NII 
systems would be operated on a not-to-interfere basis with radar systems at 5 GHz, even if 
existing radars were eventually modified or if entirely new radar systems were developed 
after the U-NII spectrum-sharing systems were already deployed. 

• Radar receivers’ noise-limited performance (as described further below) would become the 
technical limiting factor for the new spectrum sharing. 

• Prior to commencing operation at any location, a U-NII system would verify that no radar 
signals were present on a candidate U-NII frequency. Subsequently, if a U-NII system using 
a frequency in the 5 GHz band detected a co-channel local radar signal, all associated U-NII 
transmitter(s) would be commanded to vacate the local radar frequency; the associated 

                                                
66 Doing all sensing and triggering with the interfering system inverts what would otherwise be a more 
straightforward relationship of having a victim receiver sense, and then trigger the response of, the interfering 
transmitter. This inverted arrangement results from the DFS requirement that incumbent radar systems with victim 
receivers are not to be modified and that all detection and responses must therefore be generated by the potentially 
interfering U-NII systems themselves. 
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receiver(s) would re-tune accordingly. All of these sensing, detection and avoidance 
operations were to occur in timeframes that would eventually be specified. 

In detecting and avoiding the frequencies used locally by radars, the 5 GHz U-NII systems would 
need to have available, and make use of, alternative frequencies on an ad hoc basis. Thus this 
dynamic approach to detection and interference mitigation by switching to a new frequency 
when a protected system was sensed would become the newly developed technology of DFS. 

3.2 Uniqueness of the DFS Concept in Real-World Spectrum Sharing 

The idea of identifying frequencies used locally by one system and then making use of other, 
unused frequencies in a band (or even in an entirely different band) was not entirely new. SDR 
system designers had been working with that concept for some years. SDR development work 
had typically assumed that a single type of service (frequency-channelized communications) 
would share a band with the same type of service. Within that service, there would be two types 
of radios: conventional sets that were fixed-tuned by human operators based on pre-existing band 
assignments67 and newer SDRs that would find unused interstices in the local frequency 
assignments and opportunistically make use of those slots. The basic technical problem for an 
SDR that was trying to enter a band would be to identify and occupy locally unused channels 
without causing interference to pre-existing radios. 

But the idea of developing a fully automated detect-and-avoid functionality for sharing spectrum 
between communication systems and radars was entirely new. For the first time, automated 
sharing was being proposed for two different services in a single band. Moreover, one of those 
services (radar) would continue to function with no change in its operations (no modifications to 
the radar hardware or software) while the new service would literally work its way into the radar 
band without producing any harmful interference to the radar receivers. 

3.3 Technical DFS Developments Starting in 1996 

Development of DFS was an inherently international undertaking. Administrations that had 
particular interest in the concept and that actively participated in the idea’s development included 
the U.S., the United Kingdom (UK), France and Germany. This was likely due to these 
administrations having significant pre-existing radar assets to protect in the 5 GHz band that had 
been proposed for DFS. 

                                                
67 A note on terminology: Allocations specify the types of systems or services that are allowed to operate in radio 
bands. Assignments are permissions for individual radios to use particular frequencies within designated bands at 
designated locations. Thus a band allocation may be 162–174 MHz for the land mobile radio (LMR) service, while 
an LMR band assignment is for a particular radio transmitter (e.g., for an individual NOAA Weather Radio 
broadcast station to specifically operate on 162.55 MHz at a designated latitude and longitude within New York 
City). 
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3.3.1 DFS Introductory Efforts, 1996 

The 5 GHz DFS U-NII development began in the late 1990s with industry proposals to the FCC 
for authorization of new types of radio devices that would be used for unlicensed wireless data 
networks, as already described above. The FCC began a rulemaking process that led to the DFS-
technology requirement for detection and avoidance of incumbent radar signals by unlicensed 
wireless devices in designated U-NII bands. (In the ITU-R, WRC-03 would eventually enable a 
corresponding allocation on a worldwide basis.) 

The May 6, 1996 FCC Notice of Proposed Rulemaking (NPRM) for U-NII devices proposed to 
make available spectrum at 5.15-5.25 GHz and 5.725-5.875 GHz for use by unlicensed NII 
shared unlicensed personal radio network (SUPERNet) devices for the purpose of short range 
wireless local area networks (WLANs). Among the proposed rules were: 

1) a modification to Part 15 of the FCC rules to allow for U-NII device operations in the 
identified frequency bands; 

2) a minimum set of technical standards to allow technical flexibility in designs; 

3) a minimum attenuation of 50 dB by the unlicensed devices for all emissions outside the 
identified frequency bands or in accordance with 47 CFR 15.209 (whichever is lower); 

4) no channeling plan, opting instead to allow the industry standards bodies to develop that; 

5) a “listen before talk” spectrum sharing etiquette; and 

6) spectrum sharing criteria for incumbent and proposed 5 GHz systems to prevent interference.  

The last clause directly related to the later requirement and implementation of DFS. 

3.3.2 Technical Parameters in the Initial FCC R&O and MO&O, 1997–1998 

The January 9, 1997, FCC R&O on U-NII devices set the allowable band to include 
5.15-5.35 GHz and 5.725-5.825 GHz. This document stated some potential conflicts with mobile 
satellite service (MSS) devices and addressed public concerns from amateur radio and other 
vendors and agencies that had plans for use of the spectrum allocated for U-NII. There was no 
mention in this R&O of potential conflicts with radar systems or of a need for DFS. 

The June 17, 1998, FCC Memorandum Opinion and Order (MO&O) limited U-NII devices to a 
peak power of one watt and directional antennas of up to 23 dBi gain. Furthermore, it addressed 
the original industry petition, accepting some recommendations and rejecting others. Most 
notably, this MO&O addressed for the first time the potential susceptibility of U-NII devices to 
high power government radar systems. But it did not address the possibility of interference to 
radar receivers from U-NII devices. There was still no mention of DFS technology. 
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3.3.3 Technical Parameters from WRC-03 and Recommendation M.1652 

At WRC-03 the U.S. administration actively promoted the allocation proposal for the bands 
5250-5350 and 5475-5725 MHz for a new mobile unlicensed service under the condition that the 
new service had to use a DFS approach to protect radar operations. NTIA, along with the U.S. 
DoD and industry, developed computer models used in inputs to the Joint Rapporteur Group 
(JRG) 7-8-9 in Working Party 8B (WP-8B) prior to the WRC, demonstrating that radar 
operations would be protected under very specific guidelines. 

NTIA’s Office of Spectrum Management (OSM) and Institute for Telecommunication Sciences 
(ITS) modeled various types of radar systems, including ground and ship based navigation, and 
weather and military tactical, to determine the limits on U-NII device emissions that would 
protect radars. Airborne radar systems were not considered. The model results generally agreed 
with each other on the U-NII detection thresholds that would protect radar operations. The 
models considered radars with scanning and rotating antennas. A summary of these studies was 
included in the Conference Preparatory Meeting (CPM) report. 

The United States was successful in obtaining the new allocation under the DFS provision at the 
conclusion of WRC-03. A new ITU-R Recommendation was also developed that roughly 
outlined the guidelines, limits, and operating procedures for the U-NII devices. This was ITU-R 
Recommendation M.1652, “Dynamic frequency selection in wireless access systems including 
radio local area networks for the purpose of protecting the radiodetermination service in the 
5 GHz band” [2]. 

ITU-R M.1652 provided: 

• Representative 5 GHz radar system characteristics derived from OSM-ITS radar data sets. 

• Detection thresholds for radar signals based on OSM-ITS data. 

• Requirements for determining channel availability prior to data transmissions based on 
OSM-ITS data and studies. 

• Speed requirements for vacating DFS channels when radar signals are detected. 

At this point, no prototype U-NII devices had been tested nor had the DFS approach been proven 
in any laboratory to reliably detect radar signals and vacate channels. 

3.3.4 Determination of Technical Protection Criteria, Late 1990s through Mid-2000s 

DFS rules were based on a multi-year fundamental research program by ITS and OSM engineers 
into the levels at which interference causes radars to lose targets. That NTIA engineering work 
began in the late 1990s when the DFS concept was first floated, and continued into the mid-
2000s. The results of the work were published in a comprehensive technical summary [3]. 
Significant results included: 
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• Radar receivers begin to lose desired targets (experience harmful interference) when 
interference levels are 6 dB below the radar’s own receiver noise. 

• Substantial loss of radar performance (harmful interference) occurs when an interference 
level is equal to the radar receiver noise level. 

• Performance degradation (harmful interference) occurs in both radar antenna main-beam and 
sidelobe coupling; it depends only on coupled interference power, not on direction from the 
radar antenna (Appendix A).  

3.4 First Technical Implementation Steps in the U.S., 2003–2004 

With the frequency allocation in place and the domestic rulemaking process started, the domestic 
rules and procedures for permitting these devices to operate under the CFR were begun. The 
FCC initiated a rulemaking in 2003 under Docket 03-122 for gathering information on using the 
bands 5250-5350 and 5475-5725 MHz for U-NII devices. 

This process was quite involved and included representatives from NTIA, FCC, DoD and 
industry having many meetings to review presentations, documents, and filings. Industry was 
represented by various Fortune 500 companies, but during negotiations acted as one entity. 

By the spring of 2004 three companies (Cisco, Motorola, and Atheros) had developed prototype 
U-NII devices that they submitted to the ITS laboratory in Boulder, Colorado, for initial tests to 
determine if the devices could detect radar signals and perform the required actions to change 
their operating frequencies. 

The initial set of tests was based on a limited number of radar testing waveforms. ITS engineers 
spent considerable time and effort to develop the first system that would generate radar signals 
while also monitoring the U-NII responses to see if they detected the radar signals and vacated 
the operating channel within the required time intervals. Other test certification laboratories were 
also involved in the process and offered their comments and guidance on how to develop a DFS-
capable U-NII test system. 

3.5 Certification Testbed Technical Development, 2005–2006 

In 2005–06 bench tests with prototype DFS devices from multiple manufacturers took place at 
the ITS Laboratories in Boulder, Colorado, followed by field tests against some actual radars at 
the U.S. Army’s McGregor Test Range in New Mexico. These tests included a fully operational 
air defense radar that tracked commercial air traffic at short and long ranges while interference 
was injected into its receiver, and further tests in which DFS systems were used to try to detect 
the presence of this defense radar while it was operating normally. Thus testing began nine years 
after the initial FCC NPRM for U-NII at 5 GHz, and two years after Recommendation M.1652 
[2] described DFS. 

The bench tests utilized a laboratory radar transmitter, specially built by ITS engineers, that 
replicated radar waveforms defined in Recommendation M.1652. Some difficulties with DFS 
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detection of radar waveforms were encountered in these initial rounds of testing. DFS device 
performance was better during a second round of testing. The FCC and the U.S. Army 
participated in both rounds of testing. 

ITS engineers also designed and built a system to monitor and record U-NII device responses to 
the radar pulses. There were at that time no commercial off-the-shelf systems that could perform 
that function to the degree required by the ITU-R Recommendation and FCC rules. 

These initial tests accomplished two goals: they showed that DFS devices could actually detect 
representative radar waveforms, and they validated a test-and-measurement setup that could be 
used by the FCC and independent certification labs for certification of DFS devices.68 

NTIA passed on the DFS certification hardware design and its associated custom-written test-
and-measurement software needed for certification testing to the FCC’s Columbia, Maryland, 
laboratory in 2005-06. The FCC then began to actually test and certify the U-NII devices. ITS 
did not perform that function, but it did buy some devices off-the-shelf and tested them 
independently. ITS test results were presented to federal agencies and the FCC.69 

3.6 Technical Certification Requirements Development, 2005–2006 

DFS rules for the U.S. were codified in CFR 47, Part 15.407.70 These included: 

• Power-on Test: Verify that the device monitors the initial channel for one minute after it 
completes the power-on cycle and that it does not transmit during that time. 

• Initial Detection Tests: The device must detect a radar signal within the first six seconds and 
last six seconds of the initial channel check and not transmit. 

• In-Service Monitoring Test: This is the most comprehensive test, in which DFS U-NII 
devices must detect six different waveform categories representative of six types of radars 
operating in 5 GHz bands. Operational radar waveforms are not exactly replicated. 
Hundreds of radar-detection trials are run for the certification of each device. 

• 30 Minute Non-Occupancy Test: When a previously used DFS channel has been occupied by 
a radar signal, the U-NII device must be verified as not attempting to use it again for at least 
the next 30 minutes. 

Table 1 summarizes the DFS technical protocols as finally implemented. 

                                                
68 As a federal research and development laboratory, ITS does not perform routine certification testing. Instead, it 
develops certification testing approaches and systems and then transfers them to other agencies and to industry. 
69 The FCC has a similar process, but does not buy devices off-the-shelf. Instead, it requests that manufacturers 
provide devices for testing. ITS’s process ensures that devices being tested are the same as devices being bought by 
consumers. 
70 https://www.gpo.gov/fdsys/pkg/CFR-2004-title47-vol1/pdf/CFR-2004-title47-vol1-sec15-407.pdf. 

https://www.gpo.gov/fdsys/pkg/CFR-2004-title47-vol1/pdf/CFR-2004-title47-vol1-sec15-407.pdf
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Table 1. DFS Technical Protocol Summary 

DFS Technical Parameter DFS Requirement 
Radar Signal Detection Threshold in DFS receivers -62 or -64 dBm in 1 MHz bandwidth71 

Channel availability-check interval before any channel 
can be used 60 seconds 

Channel non-occupancy period after radar detection 30 minutes 
Maximum interval allowed for channel move after radar 

detection 10 seconds 

Maximum intervals allowed for housekeeping 
transmissions during a channel move 

200 milliseconds plus approximately 60 milliseconds 
over the remaining 10 second period 

 

3.7 DFS Compliance Testbed Constructed at ITS, 2005–2006 

The DFS compliance testbed that ITS and OSM engineers developed and built at the ITS 
Boulder laboratory between 2005 and 2006 included these features: 

• A radar signal generator (itself a complicated undertaking) and RF signal synthesizer. 

• Capability to produce bursts of un-modulated, frequency modulated (“chirped”), and 
frequency-hopping pulses in all 5 GHz DFS bands. 

• Variable and user selectable capability for RF frequencies, number of pulses per test-burst, 
pulse width, pulse repetition interval (pri) and chirp bandwidth. 

• Power control of RF radar pulses.  

• Use of a programmable vector signal generator (VSG) for pulse production. 

• A radar pulse timing measurement system. 

• Monitoring capability for RF activity on U-NII channels. 

• Use of a vector signal analyzer (VSA) and spectrum analyzer for fine and coarse 
measurement of the RF emissions of U-NII AP and client transmissions over 12 seconds. 

• Development of a customized MATLAB® routine for analysis of all collected data. 

• Implementation of two systems that are synchronized so that a press of a button starts an in-
service test and collects data for 12 or 24 seconds. 

• For in-service tests, a Moving Picture Experts Group (MPEG) formatted file was streamed 
from one computer to another using a DFS AP and client to load the RF channel. Then and 

                                                
71 Depending on whether the U-NII transmitter power exceeds 200 milliwatts. See Appendix A. 
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now, APs in the U.S. must have DFS functions built-in, with radar detection capabilities 
being optional for clients. European rules are different.72 

The performance testing system that was developed by NTIA is shown in Figure 1. 

Figure 
1 

Figure 1. DFS performance-testing system developed by NTIA and transferred to FCC. 

The certification hardware and software were transferred from NTIA to the FCC by 2006. 
Overall this development effort required several engineer-years of effort; the timeline for the 
effort was over a year. 

3.8 Early DFS Testing at the ITS Boulder Laboratory and Testing Transition to the FCC, 
2005–2006 

Starting in August 2005 NTIA engineers began testing prototype DFS devices that were 
provided by industry. These tests used an early version of the DFS testbed and test methods 
developed by ITS. The tests helped NTIA to better develop the testbed and helped industry by 
providing feed-back on how well the early DFS devices functioned against simulated radar 
pulses. An example of an early DFS test output is shown in Figure 2. 

In this figure, measured received power in the testbed is shown as a function of elapsed time. At 
0.75 seconds (elapsed time from an arbitrary starting point), a wireless AP transmits a data burst. 
At 0.83 seconds the AP transmits a second data burst. At a randomized time of 0.82 seconds 
elapsed, at the end of the second AP data burst, the testbed fired a burst of radar pulses. The 
pulses partially overlapped the very end of the second AP data burst. Subsequent to the radar 
pulse burst, the AP halted its ordinary data bursts. Instead, it transitioned to sending a set of four 
beacon packets. The packets alerted the AP’s clients that they would have to stop operating on 

                                                
72 MPEG files have now been replaced by a channel loader/emulator in the testing process. This allows precise 
control of how much data is sent over a link during testing. In 2003 such devices were costly. The FCC wanted to 
keep costs lower and not require testing companies to unnecessarily procure costly equipment. Using MPEG files to 
load each communication system’s RF channel during streaming from an AP to a client was a compromise. 
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the current frequency and transition to a different frequency. At 1.25 seconds the last of the 
beacon transmissions occurred. 

The AP then went silent on the previously used frequency. After the radar burst concluded, the 
MATLAB® program would then read the total “on” time of the RF pulses as the VSA digitized 
and stored the RF activity on the channel over the 12 seconds. That total on-time was then 
compared to the standard. This kind of test verified that subject U-NII systems were correctly 
implementing DFS detect-and-avoid technology, vacating the channel with the time allotted and 
not exceeding the allowed “on” time within that time period. These types of tests and 
measurements had never previously been done by any test house or company. 

In the 2005-06 period, NTIA transferred its knowledge of DFS certification testing techniques to 
the FCC. NTIA and the FCC worked jointly to establish a DFS certification testbed at the FCC’s 
laboratory at Columbia, Maryland. The transfer involved acquisition by the FCC of dedicated 
testing equipment, including a VSA and a VSG (see Figure 1), and transfer from NTIA to FCC 
of custom-written testing software. 

Figure 2. Early DFS radar-pulse detection result with a prototype DFS U-NII provided by 
industry, circa 2005. Time is in seconds. 
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3.9 Initial DFS Deployment Experience and TDWR Interference, 2006–2009 

DFS-enabled U-NII devices were available to consumers by July 2006, three years after 
WRC-03 and 10 years after initial FCC R&O for U-NII. A wide variety of DFS-enabled 5 GHz 
U-NII devices were soon certified by the FCC and were sold by several manufacturers. Both 
frame-based and 802.11 devices were marketed; other types were certified including low data-
rate and hand-held devices. The devices were primarily marketed to WISPs for use as radio 
backhaul links between remote locations and central stations with wireline connections to the 
Internet. 

NTIA later undertook random off-the-shelf spot-checks of commercially available products to 
verify their DFS performance. In 2008, a certified product was found by NTIA and FCC to not 
be detecting radar signals; post-certification changes to the device’s firmware were the cause. 
The changes were not supposed to disable DFS, but did. Ongoing NTIA and FCC spot-checks 
identified additional issues with some FCC certified devices. 

In early 2009 the FAA reported interference to its 5 GHz microburst-warning TDWRs. The 
interference was found to be caused by DFS-capable 5 GHz U-NII transmitters, as described at 
length in Section 7. Major interference areas included the San Juan area in Puerto Rico and the 
area around New York City. 

Subsequent studies conducted by NTIA, FAA, and FCC, with assistance and cooperation from 
industry, identified cases in which some devices did not adequately detect TDWR radar signals 
in the field, even though they had passed DFS type-certification tests. One cause was U-NII DFS 
software that allowed operators to change their units’ software-assigned country code from USA 
to other administrations (e.g., Brazil). Operators who did this disabled DFS functionality, as most 
countries did not have DFS rules. The devices, unhindered by DFS software operation, would 
then operate across local radar frequencies and cause interference to local radars. These included 
the safety-of-life-mission TDWR.73 Additional factors also played a role, including radar testing 
waveforms that were not sufficiently robust to ensure detection of radar signals at field locations 
by devices that had nevertheless performed adequately in lab testing. These factors are discussed 
in greater detail in Section 7. 

3.10 Brief Summary of Ongoing DFS Deployment, 2010 to 2015 

Government and industry worked together to improve certification-testing parameters to resolve 
these problems. Notable results included development and implementation of more robust DFS 
testing protocols and elimination of the user-accessible country code option in DFS software. On 
July 27, 2010, the FCC issued a Memorandum, “Elimination of Interference to Terminal Doppler 
Weather Radar (TDWR)” from the FCC Office of Engineering Technology (OET) and the 
Enforcement Division. The memorandum summarized information about 5 GHz U-NII 
interference to TDWR receivers. Its contents were based on multi-agency inputs including 
previous OSM-ITS troubleshooting results with these systems. The memo encouraged WISPs to 

                                                
73 TDWRs are one of a number of tools that detect potentially deadly microbursts at airports and route air traffic 
around them. A major original impetus for microburst-warning technology development was the August 1985 crash, 
with 137 fatalities, of Delta Flight 191 while attempting to land through a microburst at the Dallas Ft. Worth airport. 
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use good practices in the deployment and use of DFS-enabled U-NII systems, including an on-
line database developed by government and industry to better coordinate the use of DFS-capable 
U-NIIs in areas near TDWR installations. 

However, an ongoing problem with DFS U-NIIs is that some authorized74 firmware updates have 
caused unintentional failures in DFS functionality. Since DFS U-NIIs do not undergo re-testing 
after initial FCC certification, it is possible for firmware updates that are sent to FCC-certificated 
devices to accidentally (that is, unintentionally) disable those devices’ DFS operations. Devices 
that receive such updates may begin to cause interference to TDWR receivers even though they 
have had a long previous track record of interference-free operation. What to do about this 
problem remains an open question. 

In 2013, the Commission issued the Notice of Proposed Rule Making with the goal of supporting 
the growing needs of businesses and consumers for fixed and mobile broadband communications 
using U-NII devices in the 5.15-5.35 GHz and 5.47-5.850 GHz bands.75 At the same time, it 
recognized the need to modify its rules to better ensure that these devices do not cause harmful 
interference to authorized federal and non-federal users in these bands.76 

As a result of the 2013 NPRM, the FCC issued a Report and Order77 that increased the utility of 
the 5 GHz band where U-NII devices are currently permitted to operate, and modified certain 
U-NII rules and testing procedures to ensure that U-NII devices do not cause harmful 
interference to authorized users of these bands. Specifically: 

• The FCC removed the indoor-only restriction for U-NII devices in the 5.15-5.25 GHz band 
and increased the permitted power, thus increasing the utility of spectrum and 
accommodating the next generation of Wi-Fi technology. 

• The FCC extended the upper edge of the 5.725-5.825 GHz band to 5.85 GHz and 
consolidated the Part 15 rules applicable to all digitally modulated devices operating across 
this 125 megahertz of spectrum to ensure that all such devices comply with U-NII 
requirements intended to protect authorized users from harmful interference. 

                                                
74 Some unauthorized firmware files have been provided by third parties to intentionally make devices that are FCC 
compliant operate in an unauthorized manner. 
75 See, Revision of Part 15 of the Commission’s Rules to Permit Unlicensed National Information Infrastructure 
(U-NII) Devices in the 5 GHz Band, Notice of Proposed Rule Making, ET Docket No. 13-49, 28 FCC Rcd. 1749, 
(2013) (NPRM); 47 CFR Part 15 Subpart E—Unlicensed National Information Infrastructure Devices. This First 
Report & Order does not address the use of U-NII devices into the 5.35-5.47 GHz and 5.85-5.925 GHz bands, 
pending additional technical analyses of those bands. See NPRM at paras. 75-112. These bands are the subject of 
further study and will be addressed in a separate future order. See also Department of Commerce, “Evaluation of the 
5350-5470 MHz and 5850-5925 MHz Bands Pursuant to Section 6406(b) of the Middle Class Tax Relief and Job 
Creation Act of 2012,” available at http://www.ntia.doc.gov/files/ntia/publications/ntia_5_ghz_report_01-25-
2013.pdf. A copy of this report has been placed in the Docket of this proceeding.  
76 See 47 CFR § 15.403(s). 
77 Report and Order in ET Docket 13-49, 29 FCC Rcd 4127 (5), Revision of Part 15 of the Commission’s Rules to 
Permit Unlicensed National Information Infrastructure (U-NII) Devices in the 5 GHz Band (April 1, 2014), 
https://www.fcc.gov/document/5-ghz-u-nii-ro. 

http://www.ntia.doc.gov/files/ntia/publications/ntia_5_ghz_report_01-25-2013.pdf
http://www.ntia.doc.gov/files/ntia/publications/ntia_5_ghz_report_01-25-2013.pdf
https://gcc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.fcc.gov%2Fdocument%2F5-ghz-u-nii-ro&data=02%7C01%7CLSegre%40ntia.gov%7Cc9f718ab1f414c4f598f08d7790742a0%7Cd6cff1bd67dd4ce8945dd07dc775672f%7C0%7C0%7C637110944395466524&sdata=TfCjN70iWLVoR1Z7RHxx4ZufL4V5HGHGVLXAQF9cIsI%3D&reserved=0


 

29 

• The FCC required that all U-NII device software be secured to prevent its modification to 
ensure that the devices will operate as authorized by the Commission, thus reducing the 
potential for harmful interference to authorized users. 

• The FCC further protected TDWR systems and other radar systems operating in the 
5.250-5.350 GHz and 5.470-5.725 GHz bands from harmful interference by modifying 
certain technical rules and compliance measurement procedures for U-NII devices operating 
in these bands. For example, the measurement procedure to demonstrate compliance to the 
applicable out-of-band and spurious emissions limits was modified to require the use of a 
positive peak detector with maximum hold instead of an RMS power averaging detector with 
trace averaging, effectively making the limit approximately 10 dB more conservative. 

3.11 CSMAC Impetus for this Report, 2015 

In 2015 the Commerce Spectrum Management Advisory Committee (CSMAC) recommended 
that NTIA consider a study of potential mechanisms that could lead to the more effective 
policing of the radio spectrum. In response to the CSMAC recommendation NTIA’s OSM has 
performed this case study on harmful interference to TDWR caused by DFS-enabled 5 GHz 
U-NIIs. Examining the historical and technical aspects of the development and deployment of 
5 GHz DFS, this study describes the strengths and weaknesses of DFS related to the major 
government systems, TDWR, which share the spectrum with DFS-enabled U-NII devices in the 
5 GHz part of the spectrum. This narrative summarizes the DFS experience and shares lessons 
learned that may be applied to, and perhaps may be used to modify, similar spectrum-sharing 
approaches in other spectrum bands, with other radio systems, in the future. 

Looking back on the history of DFS design, development, and deployment (Section 2 and this 
section) brings us to the first Lesson Learned from the DFS experience: 

Lesson 1: The development time for dynamic spectrum sharing technologies, even when 
government and industry work closely and cooperatively together on the necessary technical and 
regulatory framework, can be something on the order of a decade. This is because innovation 
requires considerable advance work in the absence of existing implementations. The more 
innovative and technically challenging the new sharing scheme, the longer the advance-work 
timeline can be expected to be. 
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4. DFS PRINCIPLES AND IMPLEMENTATION 

4.1 The Basic DFS Concept 

This section describes the technical details of DFS. DFS is an integrated, on-board detect-and-
avoid system for protection of radar receivers from harmful interference from 5 GHz U-NII 
transmitters that would otherwise operate on those radars’ frequencies.78 DFS is meant to run 
completely autonomously, having no interactions with nor inputs from human operators. When 
DFS functions properly, it should be nearly invisible to operators; radars do not receive harmful 
interference and U-NII devices use non-conflicting frequencies that have been self-selected by 
the U-NII DFS control system to avoid the radar frequencies. U-NII operators may, however, 
notice a halt in data flow if their system attempts to change channels to a new one that still must 
use DFS, as the one-minute non-transmit initial channel check is mandatory. If the new channel 
is in a non-DFS band, they should not see such an interruption. DFS equipped U-NII devices 
may also “look ahead” while they are operating on their current channel and be prepared to 
switch to a new channel, as long as that channel has already been checked for radar activity. 

4.1.1 DFS Architecture Within U-NII Systems 

U-NII devices at 5 GHz are primarily used by WISPs to route backhaul traffic from remote 
locations to central stations that have wireline Internet connections. As such, a typical U-NII 
network consists of a single controller station, called an AP, which communicates with one or 
more remote-location stations called clients. The network topology is a star configuration with 
the AP at the center of the network, as shown in Figure 3. 

 

Figure 3. Typical 5 GHz DFS-equipped U-NII network as usually deployed by WISPs. 

                                                
78 More broadly, DFS types of approaches can be used to protect other receiver systems in other bands from other 
transmitters. 



 

31 

Early in DFS development it became apparent that practical and affordable U-NII networks 
could not be expected to incorporate radar-sensing technology in their nominally low-cost client 
units. The alternative, which has been implemented in every system of which the authors are 
aware, is to implement radar-sensing technology only in the AP units. Since the AP units 
perform all command and control functions for clients, the implementation of radar-sensing 
capabilities in these units alone also makes sense from a network-operations standpoint. Figure 4 
flowcharts the DFS algorithm. In some non-U.S. administrations, clients must also have DFS 
functionality. 

 

Figure 4. DFS algorithm flowchart. 

The algorithm begins when the U-NII network is activated. The first network device that 
activates is the AP. Clients are to remain silent while the AP, before commencing any radio 
transmission, operates a completely radio-quiet initial channel check in which it monitors for any 
local radar signals. Radar signal detection is specified to occur at or above a pre-set threshold 
of -62 or -64 dBm per megahertz79 in an AP receiver circuit via an isotropic AP antenna gain, as 
defined in the Commission’s rules. This monitoring is performed on whatever band channel the 
AP is about to try to use between itself and its clients. The initial channel check runs for a fixed-
length monitoring period (the initial channel-check interval) which is defined in the FCC rules to 
be not less than 60 seconds. 

                                                
79 Depending on U-NII transmitter power. See Appendix A. 
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If the initial channel check is negative for detectable radar activity after 60 seconds, the AP 
commences communications with its clients and the network goes into normal backhaul 
operation. If the initial channel check reveals a detectable radar signal, then another channel is 
selected as a candidate for operations and the initial channel check monitoring begins anew on 
that channel. This cycle continues until a usable channel (one not occupied by a radar) is found. 

Once regular U-NII network operations have begun, the AP must continue to monitor for new 
radar signals that may appear. This in-service monitoring is effectively continuous, although in 
reality monitoring can only be performed during numerous time slices between other network 
data packet operations. (A key part of U-NII device testing is verification that AP monitoring is 
effective even when reasonably heavy data rates are being sustained by the network.) 

During in-service monitoring the AP uses manufacturer-developed algorithms to search for radar 
signals at the detection threshold. If a radar signal is detected during in-service monitoring, then 
the AP immediately commences communications with its clients in preparation for a 
simultaneous channel-change by the entire network. All such communications must be 
accomplished within a 10 second channel change interval, the channel change itself occurring by 
the end of that interval. Moreover, during the 10 second interval the total amount of time that the 
system spends in sending data is not to initially exceed 200 milliseconds, with an additional 
60 milliseconds allowed over the remainder of the 10 second period. 

After a channel has been vacated due to radar signal detection, the AP is not to attempt to re-use 
the channel for a specified interval. This non-occupancy interval following radar detection and 
channel evacuation is specified as 30 minutes. The AP must still do a one minute channel check 
after the 30 minutes have elapsed before attempting to re-use the same DFS-band channel. 

Ultimately, many DFS-enabled 5 GHz U-NII devices have been successfully designed, 
developed, tested, sold, and operated in the U.S. While the principles are straightforward, actual 
design and implementation of operational DFS capabilities are complex and have been fraught 
with a number of technical difficulties. Difficulties begin with some inherent problems in the 
basic concepts behind DFS. These are described below. 

4.1.2 DFS Parameter Space: Note on Frequency-Shift (Channel-Move) Protocols 

At the beginning of the DFS design and development cycle, one aspect of the new technology 
was especially difficult to address because DFS devices would not be built until protocols and 
requirements had been developed, but some protocols and requirements could not be adequately 
designed unless working DFS devices were available. Chief among these was the problem of 
how much frequency separation would be required of a DFS device when it detected a radar. 
That is, when a channel hop was to be performed, how large did the frequency change need to 
be? That question was not ultimately addressed until DFS devices had been deployed and had 
been operating for a number of years [4]. 

4.2 Theoretical Difficulties with DFS 

DFS is based on several technical assumptions. These are: 



 

33 

• Radar signals can be detected at given thresholds in the presence of background U-NII 
traffic. 

• Detection of radar signals by a single AP in a U-NII network can provide adequate protection 
of radars from the transmissions of the entire network, including the transmissions from the 
AP’s remotely located client units. 

• An AP can use a radar-detection threshold that is sensitive enough to ensure that radar 
receivers will be protected when their associated radar transmitter emissions are detected by 
the APs at those thresholds. 

• A sufficiently large and robust set of radar testing waveforms (called bins) can be devised to 
ensure that if a U-NII system passes DFS testing with those radar bins in a laboratory, then 
the system detection of radar waveforms in the field will be robust enough to adequately 
protect radar receivers from harmful interference. 

• Firmware updates sent to DFS-equipped U-NIIs after the U-NIIs have undergone initial FCC 
DFS-certification testing will not accidentally corrupt or deactivate those systems’ DFS 
functionality. This is despite the fact that DFS systems do not need to be re-certified after 
such firmware updates have been developed and distributed to WISP customers.80 

• DFS-equipped U-NIIs will always be properly installed and operated by operators. 

One last assumption is so subtle that the originators of the DFS concept never recognized it as 
such when DFS was proposed: 

• Introduction of DFS technology into a band that had previously been allocated for radar-
exclusive use will not encourage the illegal introduction of non-DFS equipped devices into 
that same band. 

As with any system based on assumptions, there are limits to the conditions under which these 
assumptions hold true. The assumptions and their limits are examined here. 

4.2.1 Assumption: Radars Can Be Detected While U-NII Message Traffic is Running 

Monitoring for radar signals by a U-NII AP only during selected time intervals between regular 
message packets reduces the total probability per unit time that a radar signal will be detected, as 
compared to uninterrupted monitoring. If the probability of detection per unit time is greater than 
zero, however, then any radar signal will eventually be detected. The question becomes how long 
that detection interval is likely to be. This problem is addressed for 5 GHz U-NIIs by testing each 
new model hundreds of times for each certification radar bin while message traffic is running. 
The U-NIIs must pass each test with certain scores for individual radar bins and another score for 
composite detection performance across all radar bins. Those test results provide some 

                                                
80 The FCC does not track software updates of DFS-certified devices. It can be difficult to compare existing, current 
software in DFS-equipped devices with the software versions that were implemented in the AP articles that 
originally received DFS certification. 
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confidence that field-deployed DFS unit s will eventually, and adequately, detect ambient radar 
signals. 

4.2.2 Assumption: Detection of Radar Signals by APs Protects Radars from All Network 
Transmissions 

This assumption is only true to the extent that clients and APs have equally good, or at least 
nearly comparable, signal propagation paths to local radars. For airborne radars this assumption 
is probably quite good. For terrestrial radars such as TDWR, this assumption will not necessarily 
always be true. The assumption would fail in situations where propagation between a TDWR and 
an AP would be so poor that the radar signal did not exceed the AP’s detection threshold, but one 
of the AP’s client units conversely had propagation to the radar sufficient to cause interference to 
the radar. While the authors are not aware that this sort of situation has actually occurred, it 
remains an open possibility that results from the compromise DFS solution of only putting 
monitoring functions into AP units. 

4.2.3 Assumption: Radar-Detection Thresholds are Adequate to Protect Radars from 
Harmful Interference 

The problem of determining adequate radar detection thresholds to ensure protection of radar 
receivers from U-NII transmissions is central to the entire DFS concept. The heart of the 
assumption is this: A particular received power level from a radar transmitter at a DFS AP 
monitoring location can be equated to a known (accurately predictable) power level in the 
radar’s receiver circuitry. To arrive at this detection threshold, the following calculation must be 
performed: First determine the power level in the radar receiver where the radar target-detection 
probability begins to degrade from a nominal baseline condition. For radars that ITS and OSM 
engineers at NTIA examined [3], this power level turned out to consistently be 6 dB lower than 
the radar receiver internal thermal noise levels; in other words, an interference-to-noise level, 
I/N, of -6 dB in the radar receivers. 

The next step was subtle: Working under the assumption that signals propagate equally well in 
both directions between the radar and the U-NII (that is, that the radar transmitter power going 
outbound toward the U-NII AP monitor propagates equally well to the power coming inbound 
from the U-NII transmitters to the radar receiver), calculate the power level arriving from the 
radar at the AP monitor that equates to the condition that the U-NII signals are arriving at the 
I/N = -6 dB power level in the radar receiver. For 5 GHz radars with characteristics of those 
published in ITU-R Recommendation M.1652, this power level was determined to be -64 dBm 
as received with an isotropic-gain AP antenna.81 

Obviously the adequacy of the detection-threshold condition is based on a number of individual 
assumptions. None of those assumptions is necessarily always true at all times and places, but all 
of them are probably true most of the time under most conditions. In other words, this condition 

81 It has been agreed that clients will do no monitoring. The entire scheme depends on detection by the APs. 
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is supposed to good enough to provide adequate but admittedly less-than-perfect protection of 
radar receivers from harmful interference. 

4.2.4 Assumption: Radar Waveform Testing is Sufficiently Robust 

It might be thought that the key to adequately robust radar waveform testing of DFS systems 
would be to exactly replicate the radar signals that currently occur in the shared spectrum band, 
and to test against those. This is not an especially good test. There are a number of reasons for 
this. First, DFS is supposed to be a general spectrum sharing solution that will work with any 
radar signals that might occur in the band, both those from known radars at present and those that 
may occur in the future or that may occur from radars that were not thought to be in the band at 
the time of testing. 

Second, due to national security classification issues, there are radar signals in the 5 GHz band 
for which the government will not share exact emission parameters. With these factors in mind, 
radar test-bin waveforms must not exactly replicate any one type of 5 GHz radar. Rather, the five 
bins that have been developed are intended to have parameters of pulse width and repetition rate 
that span the pulse-parameter range of existing and expected future radars in the band. This 
approach ensures that DFS design engineers do not hard-code single radar pulse types into their 
detection algorithms, and thus that they keep their DFS algorithms generally applicable to any 
radar signals that might occur in the band. At the same time, the confidentiality of the 
government radars’ pulse parameters is preserved. 

However, this is not to say that NTIA and FCC would not modify the test waveform rules if they 
deemed it was required to protect new radar systems. The U-NII industry would be notified in 
advance if such changes were required. Industry would not be blindly given a new waveform to 
detect without some initial time period to modify their detection algorithms to accommodate 
such a waveform. 

Time delays would be expected for new waveform introductions, associated with manufacturers 
needing to prepare and test new firmware. All users would need to be prompted to implement the 
new firmware when made available. Consequently there could be long periods where 
interference might continue while new firmware was being prepared. 

It was discovered after initial DFS-equipped 5 GHz U-NIIs were deployed that some U-NIIs 
were not detecting all radar signals in the shared 5 GHz band. Part of the reason turned out to be 
insufficiently designed radar test-bin waveforms. Those waveforms were eventually expanded to 
make them robust enough to ensure that tests conducted with them would ensure adequate DFS 
field performance. 

This experience with radar test-bin waveforms raises an important point: Any non-trivial 
spectrum sharing scheme can be expected to be imperfect. Imperfections will especially tend to 
cause interference when the initial sharing units are field-deployed. Thus spectrum managers 
and engineers should plan in advance of field deployments to expend time and budgets on 
sorting out and resolving interference problems that are likely to occur with initial deployments. 
The causes of the failures will not be known in advance (or else they would otherwise be fixed in 
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advance), but the fact that failures are likely to occur due to unanticipated problems with the 
sharing technology can be expected to be highly likely. 

4.2.5 Assumption: Firmware Updates Installed in DFS Units After Initial Certification Will 
Not Cause DFS to be Impaired or Disabled 

As noted above, DFS-equipped 5 GHz U-NIIs are not re-certified after a given model has passed 
its DFS testing and has received an FCC approval for operation unless major changes are made 
to its design, such as changing an amplifier or antenna. (An FCC sticker is placed on each 
production unit and is visible to purchasers; the stickers are visible proof of certification.)  

Firmware changes generally do not require re-certification tests, so it is quite possible for 
consumers to procure devices with firmware updates that have not been re-tested for DFS 
certification. Subsequent to certification and approval of their units for sale, U-NII manufacturers 
tend to provide frequent firmware upgrades for their units. These upgrades are developed by the 
manufacturer’s design engineers and are then downloaded to units that have already been 
purchased and deployed at field locations. It has been deemed to be neither practical nor 
necessary to re-certify every U-NII model for DFS performance after each new firmware 
upgrade throughout the subsequent operational history of the units. (It has been estimated 
informally by manufacturers that their DFS-equipped U-NIIs have about a 10-year half-life after 
they are purchased. The more expensive the units, the longer their deployment lifetimes can be 
expected to be.) 

FCC lab tests do not generally enter lower sub-menu operations of devices where commands 
such as “turn DFS off” are possibly available. Nor would the FCC set a device to a non-U.S. 
country code that might disable DFS. ITS engineers, with direction from OSM, dug deeper into 
AP control menus to investigate such possibilities with devices that were bought off-the-shelf. 
When such problems have been found they have been reported to the FCC, and the FCC has 
contacted the manufacturers. ITS has neither time nor funding to perform more than a handful of 
such tests per year.82 

This approach makes good sense from the standpoints of cost and practicality, as DFS 
performance testing is costly and time-consuming. But a problem with this approach is that it is 
possible for the DFS performance of certified U-NII models to be accidentally impaired or 
disabled by firmware engineers when they modify the firmware. Since those engineers do not 
normally have access to DFS testbeds of their own (such testbeds being costly and complicated, 
as described above), they have no way to ensure that any of their code changes have definitely 
not accidentally impaired or disabled DFS functionality. 

NTIA and the FCC discovered and documented some cases where unintentional impairment has 
in fact happened due to firmware changes. No ante rem solution currently exists for this 
problem. The only way to be certain that a code change has not corrupted DFS functionality 

                                                
82 The authors have personally seen social media message boards informing users of ways to “stop DFS;” various 
websites and message boards have at times had discussions about DFS and how to disable or deactivate it. 
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seems to be to deploy the new firmware and then wait to see whether its introduction results in 
interference to radar receivers. 

4.2.6 Assumption: DFS-Equipped U-NIIs will be Properly Installed and Operated 

We have found this assumption to be imperfect. The FCC specifies that 5 GHz DFS-equipped 
U-NIIs are supposed to be installed by persons who are “professional.” Those installers are 
supposed to understand what DFS is, and that impairment or disablement of DFS functionality 
can imperil safety-of-life radar operations. They are supposed to follow FCC rules and 
regulations. The FCC does not however actually “license” U-NII installers. Things that installers 
are not supposed to do include intentional disablement or circumvention of DFS functionality 
and use of any antennas for the U-NIIs other than the ones provided by the manufacturers, with 
which the devices were originally tested and certified. In reality there have been numerous cases 
in which DFS protocols have been violated by U-NII installers or operators. This was especially 
true during the earliest period of initial deployment, but still happens occasionally to this day. 

One feature that installers and operators violated with some regularity early-on was the 
prohibition against disabling the DFS software and firmware functionality of their units. In the 
early days of deployment, manufacturers sold their units with software that included user-
selectable “country codes.” The operators were supposed to truthfully select the U-NII’s country 
of operation from a drop-down menu. These individual country codes allowed manufacturers to 
tailor their software and firmware operations to whatever country a U-NII was operating in, 
without needing to sell different versions of their devices on a country-by-country basis. For the 
U.S., this of course meant that DFS functionality would be activated when “USA” was selected 
from the installation menu. 

Word quickly spread among operators who were using 5 GHz DFS-equipped U-NIIs that they 
could “improve” the performance of their devices by not selecting “USA” as the country code 
and selecting another country such as “Brazil” instead. With DFS thereby disabled, the 60-
second initial channel-check disappeared. Additionally, the units would never try to switch from 
one channel to another during their in-service phase since they would of course never detect any 
radars. When this became common knowledge, the FCC notified U-NII manufactures that for 
devices sold in the U.S., the country code must be fixed to USA; AP control menus were to lock 
out this option in the U.S. 

Another temptation that proved too much for some network and WISP operators was to 
substitute their own antennas (typically high-gain parabolic dishes) for the lower-gain patch-style 
antennas that were supplied with the units by the manufacturers and which met the legal not-to-
exceed-23-dBi-gain requirement. Using higher gain but narrower beam-width antennas allowed 
them to reach customers at greater distances in places such as canyons and mountaintops, but 
FCC rules prohibit the use of antennas other than those used when devices are DFS-certified. 

We note that the issues associated with less-than-professional installation practices mostly 
occurred early in the DFS roll-out. Once the interference problems emerged, the DFS industry 
became much more familiar with the issues and expectations associated with opportunistic 
spectrum access. As a result, the FCC suspended new certifications over nearly a three-year 
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period as the issues contributing to interference were being investigated, and the industry began 
self-policing their own installation practices. 

4.2.7 Assumption: Introduction of DFS to a Previously Unshared Band Will Not Encourage 
Illegal Introduction of Non-DFS-Equipped Devices Into the Band 

As noted above, the idea that introducing a band-sharing technology into a band that had 
previously had no sharing might encourage the introduction of new, wholly illegal devices into 
the same band was simply not anticipated by the creators of the DFS concept. But this may be 
what have happened. 

Reviewing briefly, the band 5250–5925 MHz is allocated in the U.S. administration for various 
radar operations. As authorized by the U.S. administration following the adoption of ITU-R 
Recommendation M.1652 [2] at WRC-03, only two sub-bands within that range are authorized 
by the FCC for spectrum sharing between U-NIIs and radars, and strictly on the condition that 
those U-NIIs are DFS-equipped: 5250–5350 MHz and 5470–5725 MHz. Outside these two DFS-
required sub-bands, intentional radiators are allowed to operate under those regulations specified 
in Subpart E of the Part 15 rules that do not require DFS capability. 

In practice, however, some operators of 5 GHz Part 15 devices have illegally tuned their 
transmitters out of their allowed 5 GHz Part 15 bands and into the 5 GHz DFS-required U-NII 
bands. Having no DFS functionality, these illegally re-tuned Part 15 devices have caused 
interference to safety-of-life TDWR receivers. 

A related problem has been that some people have imported illegal 5 GHz transmitters from 
abroad (primarily from Europe and China) and have operated them in 5 GHz DFS bands in the 
U.S., causing interference to TDWR receivers. These illegal transmitters have lacked any 
spectrum authorization for legal use in the U.S. That is, they are intentional radio radiators that 
lack any FCC authorization. As discussed in Appendix A of this report, even very low-powered 
devices transmitting just a few milliwatts of effective isotropic radiated power can cause harmful 
interference to radar receivers at distances of tens of kilometers. 

It is difficult to know the extent to which illegally re-tuned Part 15 transmitters and outright, 
wholly illegal transmitters have been introduced into the 5 GHz DFS-only shared bands as a 
result of having opened those bands to DFS in the first place. This situation may be a classic 
example where correlation does not necessarily equate to causation. Introduction of illegal 
devices into DFS bands might have come about from the coincidental emergence of SDR, 
irrespective of DFS. But illegal tuning of legal devices and operation of wholly illegal 
transmitters seems to have occurred to a lesser extent or perhaps not at all in the 5 GHz DFS 
bands prior to the development and introduction of DFS-equipped U-NIIs. In any event, the 
advent of these phenomena in the DFS bands has prompted types of enforcement actions that 
were previously either rare or non-existent in those bands. 

This particular issue is one that is associated with all SDR technologies; it is not necessarily 
limited to DFS. Many radio manufacturers now build a single device with capabilities tailored 
for the intended marketplace (e.g., USA, Europe, Asia) that can be activated or deactivated 
within the device’s software. The issues associated with a user being able to defeat an intended 
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capability (such as DFS) by manipulating a user-accessible setting (such as the device’s country 
code) were unanticipated. Such issues can be addressed by regulators. For example, the FCC has 
adopted a directive to lock the country code of DFS devices as a certification requirement. 

4.3 Ongoing Need for Enforcement Actions in DFS Bands 

It is not clear how often the operators of illegal, or at least illegally modified, DFS-band 5 GHz 
transmitters have understood that they are causing harmful interference and potentially 
endangering safety-of-life TDWR operations. A few operators who have been caught and fined 
by the FCC have subsequently continued to commit violations after they must have understood 
that what they had done was illegal, and that their actions were impairing TDWR operations. 

In other words, it has turned out to be too much to expect that all operators of radio systems at 
5 GHz, including supposedly professional DFS U-NII installers and operators, would always be 
good spectrum actors. The solutions for combatting bad actors have been multi-fold. First, the 
selectable country-code option has been eliminated; all units sold in the U.S. now have DFS 
functionality hard-coded into their firmware. Second, specialized RF antenna connectors are now 
provided with DFS units, making it more difficult (but not impossible) for installers and 
operators to substitute their own antennas for the proper antennas that come with the units.83 In 
summary, multiple steps have been taken by U-NII manufacturers to make it much more difficult 
for bad actors to violate DFS rules by illegally modifying their devices. 

As for illegal re-tuning of otherwise legal transmitters and illegal operation of wholly illegal 
transmitters, one solution may be stepped-up surveillance and enforcement activities by the 
government when such transmitters cause interference to 5 GHz radar receivers.84 Another 
potential solution may be to impress upon industry the importance of self-regulation in this 
regard so as to avoid costly operational shutdowns and suspensions of new certifications. 

Ultimately, enforcement actions by the FCC have turned out to be an important component of 
DFS implementation. The need for this robust enforcement activity was not anticipated by the 
developers of the DFS concept. Table 2 contains a summary list of these actions from 2007 to 
September 2019, with hyperlinks to detailed FCC information on each action.85 A total of 53 
actions are listed for those dozen years. Varying monetary fines have been levied by the FCC for 
some DFS rules violations. Virtually all FCC actions have been connected to interference to 
safety-of-life TDWRs. There has been an ongoing need for enforcement to make DFS function 
without causing harmful interference. 

It appears that the need for an ongoing enforcement component of DFS will probably be a 
permanent feature of this spectrum-sharing technology. This continuing enforcement need 

                                                
83 Reverse polarity connectors are commercially available and may be procured by consumers. 
84 A court order signed by a Federal Judge is required for the seizure of illegal equipment by Federal authorities. The 
FCC typically works with a U.S. Attorney to provide an affidavit as to the violation. Typically it is executed by U.S. 
Marshals with FCC field agents as advisors. 
85 The FCC only publishes data on investigations after they have been completed and if some resulting public action 
has been taken. 
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apparently represents an unavoidable, ongoing opportunity cost for this version of spectrum 
sharing technology. 

Table 2. Summary of FCC DFS-Related Enforcement Actions from 2007 to 201986 

Date Company Affected by FCC Enforcement Action FCC Enforcement Action 
08-22-2019 WinPR, Inc., San Juan, Puerto Rico Notice of Apparent Liability 
08-22-2019 CA Solutions, Inc., Boom Net, LLC, Caguas, Puerto Rico Notice of Apparent Liability 

08-22-2019 Broadband Telecommunications Network, Corp., San 
Juan, Puerto Rico Notice of Apparent Liability 

05-20-2019 Caribbean Network Solutions, Inc., Bayamon, Puerto Rico Notice of Apparent Liability 
11-14-2017 RADWIN Ltd., RADWIN, Inc. ORDER & CONSENT DECREE 
09-16-2016 Airosurf Communications, Inc.,Edmond, Oklahoma Notice of Unauthorized Operation 
07-29-2016 Towerstream Corporation, Middletown, Rhode Island ORDER & CONSENT DECREE 
07-13-2016 Wide Cloud Communications, Hialeah, Florida Notice of Unauthorized Operation 
06-13-2016 Aptech Networks Corp., Doral, Florida Notice of Unauthorized Operation 
05-31-2016 Sooner Wireless, LLC, Norman, Oklahoma Notice of Unauthorized Operation 

05-31-2016 Del Nero Communications Management, LLC, Norman, 
Oklahoma Notice of Unauthorized Operation 

04-28-2016 Fastlane Internet, Francesville, Indiana Notice of Unauthorized Operation 
03-11-2016 Satell SJNet, Corp., San Juan, PR Notice of Unauthorized Operation 
03-13-2015 Directlink, LLC, Parker, Colorado Petition for Reconsideration Order 

03-10-2015 
5 GHz Devices Causing Interference to Essential Safety 
Systems Must Cease Operations - Letter Issued by FCC 
Enforcement Bureau Tampa, Florida Office 

LETTER 

10-01-2014 CMARR, Inc., San Juan, PR FORFEITURE ORDER 
06-24-2014 CMARR, Inc., San Juan, PR Notice of Apparent Liability 
02-21-2014 Directlink, LLC, Parker, Colorado FORFEITURE ORDER 
02-07-2014 Skybeam Acquisition Corporation, Englewood, Colorado FORFEITURE ORDER 
02-07-2014 Rapidwave, LLC Saratoga Springs, Utah FORFEITURE ORDER 
11-21-2013 VPNet, Inc., San Juan, PR ORDER & CONSENT DECREE 
11-18-2013 Ayustar Corporation, San Juan, PR ORDER & CONSENT DECREE 
08-06-2013 Towerstream Corporation, Middletown, Rhode Island Notice of Apparent Liability 
02-12-2013 Argos Net, Inc., Caguas, PR FORFEITURE ORDER 
01-16-2013 American Wireless Broadband, Chicago, Illinois Notice of Unauthorized Operation 
01-04-2013 Directlink, LLC, Parker, Colorado Notice of Apparent Liability 
12-13-2012 HiPoint Technology Services Inc., Chicago, Illinois Notice of Unauthorized Operation 
09-27-2012 Skybeam Acquisition Corporation, Englewood, Colorado Notice of Apparent Liability 
09-27-2012 AT&T, Inc., San Juan, PR FORFEITURE ORDER 
03-23-2012 VPNet, Inc., San Juan, PR Notice of Apparent Liability 
03-23-2012 Argos Net, Inc., Caguas, PR Notice of Apparent Liability 

                                                
86 “U-NII and TDWR Interference Enforcement,” FCC, Washington, DC. Last visited on September 27, 2019. 
https://www.fcc.gov/general/U-NII-and-tdwr-interference-enforcement 

https://transition.fcc.gov/eb/Orders/2019/DA-19-803A1.html
https://transition.fcc.gov/eb/Orders/2019/DA-19-801A1.html
https://transition.fcc.gov/eb/Orders/2019/DA-19-802A1.html
https://transition.fcc.gov/eb/Orders/2019/DA-19-802A1.html
https://transition.fcc.gov/eb/Orders/2019/DA-19-433A1.html
https://transition.fcc.gov/eb/Orders/2017/DA-17-970A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-341481A1.html
https://transition.fcc.gov/eb/Orders/2016/DA-16-653A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-340354A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-339965A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-339689A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-339690A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-339690A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-339140A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-338616A1.html
https://transition.fcc.gov/eb/Orders/2015/DA-15-317A1.html
https://transition.fcc.gov/eb/rfo/uniiltr.pdf
https://transition.fcc.gov/eb/rfo/uniiltr.pdf
https://transition.fcc.gov/eb/rfo/uniiltr.pdf
https://transition.fcc.gov/eb/Orders/2014/DA-14-1417A1.html
https://transition.fcc.gov/eb/Orders/2014/DA-14-863A1.html
https://transition.fcc.gov/eb/Orders/2014/DA-14-224A1.html
https://transition.fcc.gov/eb/Orders/2014/DA-14-161A1.html
https://transition.fcc.gov/eb/Orders/2014/DA-14-139A1.html
https://transition.fcc.gov/eb/Orders/2013/DA-13-2099A1.html
https://transition.fcc.gov/eb/Orders/2013/DA-13-2080A1.html
https://transition.fcc.gov/eb/Orders/2013/FCC-13-109A1.html
https://transition.fcc.gov/eb/Orders/2013/DA-13-186A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-318604A1.html
https://transition.fcc.gov/eb/Orders/2013/DA-13-8A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-317964A1.html
https://transition.fcc.gov/eb/Orders/2012/DA-12-1549A1.html
https://transition.fcc.gov/eb/Orders/2012/DA-12-1142A1.html
https://transition.fcc.gov/eb/Orders/2012/DA-12-450A1.html
https://transition.fcc.gov/eb/Orders/2012/DA-12-279A1.html
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Date Company Affected by FCC Enforcement Action FCC Enforcement Action 

03-23-2012 Insight Consulting Group of Kansas City, LLC, Kansas 
City, MO FORFEITURE ORDER 

03-13-2012 The WIFI Store, Toa Baja, PR Notice of Unauthorized Operation 
03-13-2012 David Robles dba dmwireless, Manati, PR Notice of Unauthorized Operation 
12-20-2011 ExtraSpace Storage, Henderson, NV Notice of Unauthorized Operation 
09-19-2011 Sling Broadband, LLC FORFEITURE ORDER 
07-29-2011 Sling Broadband, LLC, Hollywood, FL Notice of Apparent Liability 

07-29-2011 Insight Consulting Group of Kansas City, LLC, Kansas 
City, MO Notice of Apparent Liability 

07-29-2011 Ayustar Corporation, San Juan, PR Notice of Apparent Liability 
07-28-2011 Rapidwave, LLC, Saratoga Springs, Utah Notice of Apparent Liability 
06-02-2011 Crucito Marrero dba CMARR, San Juan, PR Notice of Unauthorized Operation 
02-17-2011 AT&T, Inc., San Juan, PR Notice of Apparent Liability 

02-11-2011 Utah Broadband, Sandy, Utah Notice of Apparent Liability and 
ORDER 

11-24-2010 Ayustar Corporation Petition for Reconsideration Order 
08-13-2010 Wireless Metro LLC, Houston, Texas Notice of Unauthorized Operation 
08-13-2010 NSN Wireless LP, Houston, Texas Notice of Unauthorized Operation 
07-20-2010 Sling Broadband, LLC, Miami, Florida Notice of Unauthorized Operation 
04-26-2010 Axxcelera Broadband Wireless, Inc. ORDER & CONSENT DECREE 
04-15-2010 Airspan Networks (Israel), Ltd. ORDER & CONSENT DECREE 
04-14-2010 Motorola, Inc. ORDER and CONSENT DECREE 
01-28-2010 Ayustar Corporation, San Juan, PR FORFEITURE ORDER 
04-20-2009 Aeronet Wireless Broadband, San Juan, PR Notice of Unauthorized Operation 
01-23-2007 Neptuno Networks, Inc., San Juan, PR Notice of Apparent Liability 

 

4.4 Lessons Learned from DFS Principles and Implementation 

All spectrum sharing technologies will have limits on what they can and cannot do. In the case of 
DFS, the effectiveness of the technology to prevent harmful interference depends on: 

• The quality of the radar-detection algorithms 

• The rate at which the APs monitor for radar pulses in the midst of regular message traffic 

• The robustness of the DFS test regimes 

• The extent to which DFS devices are installed and operated in accordance with 
manufacturer’s included hardware, firmware, software and operating instructions 

• The extent to which ongoing firmware upgrades do not unintentionally impair or disable DFS 
functionality 

https://transition.fcc.gov/eb/Orders/2012/DA-12-282A1.html
https://transition.fcc.gov/eb/Orders/2012/DA-12-282A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-313074A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-313075A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-311718A1.html
https://transition.fcc.gov/eb/Orders/2011/DA-11-1572A1.html
https://transition.fcc.gov/eb/Orders/2011/DA-11-1312A1.html
https://transition.fcc.gov/eb/Orders/2011/DA-11-1314A1.html
https://transition.fcc.gov/eb/Orders/2011/DA-11-1314A1.html
https://transition.fcc.gov/eb/Orders/2011/DA-11-1313A1.html
https://transition.fcc.gov/eb/Orders/2011/DA-11-1311A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-307314A1.html
https://transition.fcc.gov/eb/Orders/2011/DA-11-306A1.html
https://transition.fcc.gov/eb/Orders/2011/DA-11-273A1.html
https://transition.fcc.gov/eb/Orders/2010/DA-10-2235A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-301061A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-300927A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-300297A1.html
https://transition.fcc.gov/eb/Orders/2010/DA-10-689A1.html
https://transition.fcc.gov/eb/Orders/2010/DA-10-618A1.html
https://transition.fcc.gov/eb/Orders/2010/DA-10-616A1.html
https://transition.fcc.gov/eb/Orders/2010/DA-10-138A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-290776A1.html
https://transition.fcc.gov/eb/FieldNotices/2003/DOC-269874A1.html
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DFS technology can prevent most harmful interference at most times and places. It cannot and 
does not guarantee that absolutely no harmful interference will ever occur anywhere, in so much 
as such a guarantee could ever exist, even absent the introduction of spectrum sharing 
technologies. This less-than-perfect situation is, in effect, the price that is paid for implementing 
spectrum sharing and making use of the 5 GHz DFS band for more than just radar systems. 

Summarizing the additional Lessons Learned from DFS principles and implementation: 

Lesson 2: The use of dynamically based spectrum sharing technologies requires permanent, 
ongoing government expenditures for testing facilities and maintenance of trained, competent 
engineering staff for permanent ongoing surveillance of such devices. This state must continue 
for as long as any given class of dynamic spectrum-sharing devices continues to be sold and used 
in markets. Dynamic spectrum sharing is associated with ongoing post-certification compliance 
auditing87 costs. This is not to say that the expenditures are not worth the advantages that society 
gains from more and better spectrum sharing; it is to say that such sharing has recurring 
technology-opportunity costs. The need for adequate ongoing technical auditing resources needs 
to be recognized. 

Corollary to Lesson 2: Technical analysis and measurements will have to be performed to 
assess the impact of changing U-NII device technology on incumbent federal radar systems. 

Lesson 3: Any non-trivial, innovative, dynamic spectrum sharing technology introduction, no 
matter how carefully it is initially devised, may result in some elevated interference potential 
when it is initially deployed. The more complicated or innovative the technology, the more likely 
it is that some unanticipated field-deployment situation may result in an increase in the potential 
for interference. 

Corollary to Lesson 3: When new, innovative dynamic spectrum sharing technologies are 
introduced to a band, resources should be set aside in advance to accommodate the initial 
harmful interference cases that may be expected to occur. 

Lesson 4: Post-certification compliance auditing may be necessary to identify spectrum sharing 
devices that have been illegally sold without proper regulatory certification. 

Lesson 5: If installers and operators are able to illegally modify spectrum sharing devices to 
disable spectrum-sharing features, some will do so even knowing that they will be fined by 
regulators when they are eventually caught. 

Corollary 1 to Lesson 5: Manufacturers need to restrict the ability to disable or modify their 
devices’ spectrum sharing functionality as much as is physically possible. Regulatory entities 
need to do thoroughly examine all of a spectrum-sharing device’s set-up and control sub-menus. 

Corollary 2 to Lesson 5: Introducing legitimate, legal spectrum sharing devices to a band can 
have the unintended consequence of encouraging the proliferation of illegal devices in the same 

                                                
87 Such auditing, when done by NTIA, is done on DFS-equipped U-NII devices that NTIA purchases off-the-shelf 
from commercial vendors. 
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band. This is especially true if the band is used worldwide for such functions, but does not have 
the same spectrum sharing rules internationally as the U.S. has domestically. 
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5. DFS CHALLENGES FOR MANUFACTURERS AND VENDORS 

The development and introduction of DFS technology into what was essentially a radar-only 
band required a very close collaboration among industry, which designs and builds DFS-enabled 
U-NII devices, and government spectrum regulators and government agencies that use multiple 
types of 5 GHz radars to accomplish their missions. This section focuses on some of the 
challenges that manufacturers faced in designing and developing DFS-enabled radio systems at 
5 GHz. 

5.1 Challenges to U-NII Device Manufacturers Understanding of Radar Systems 

There is a deep technical divide between the radar and U-NII engineering communities. U-NII 
device design and development is part of a vast world-wide telecommunications industry that 
makes use of widely known and shared principles and approaches for research and development, 
prototype engineering,7 and manufacturing engineering. Telecommunication industries sustain 
enormous markets that significantly contribute to entire national economies. 

Radar systems, in contrast, are designed and developed by a relatively small engineering 
community. Radars are very expensive (a single radar station can cost hundreds of millions of 
dollars) and are sold in niche customer markets that are often, in essence, national governments. 
Radar design principles and requirements are typically not widely understood in 
telecommunications engineering communities. Generally, only a small cadre of technical 
specialists has a thorough understanding of radar systems. All of which means that technical 
characteristics and requirements of radar systems may not be understood by the design and 
development industry for systems like U-NIIs. 

Lack of understanding by the U-NII device manufacturers of radar technology is exacerbated by: 

• Reluctance of the radar industry, and of governments that are the radar industry’s chief 
customers, to divulge technical details of their radar systems 

• Reluctance and lack of motivation to discuss or explain much in general about how radars are 
designed and built 

• Lack of public availability of many radars’ technical operating characteristics 

• Lack of motivation to describe why radars tend to have particular characteristics for pulse 
parameters, radiated power and antenna gain (e.g., the physical reasons why many radars 
have roughly one microsecond pulse widths and one millisecond pulse repetition intervals, 
about one megawatt of peak transmitted power, and about 30 dBi of antenna gain) 

• Reluctance to reveal specific information about radars’ susceptibility and vulnerability to 
interference that might be expected to be due to U-NII like signals, which has implications 
for radars’ susceptibility to electronic warfare (EW) 

• Reluctance or refusal in some cases to publicly disclose exactly which radar systems are 
deployed in any given spectrum band 
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There can be some justifications for aspects of non-transparency or even secrecy. Not least 
among these are security concerns for government and corporate trade advantages for industry. 
One of the most significant aspects of ITU-R Recommendation M.1652-1 [2] was that it 
represented an attempt by a number of administrations, not least the United States, to shed more 
light on a number of these points for 5 GHz radars where possible. Regarding the exact technical 
characteristics of individual types of radars, it has been the authors’ experience that spectrum 
sharing development does not require that exact radar characteristics be disclosed in order for 
sharing to occur. In fact, it is arguably better for spectrum sharing to not be based on any one set 
of exact radar characteristics, as discussed in Section 4.2.4. 

Even with that ITU-R Recommendation in hand, industry was faced with the need to begin to 
design radar-detection algorithms for U-NII devices while not necessarily having much 
knowledge about the radar signals that they were going to be expected to detect. Virtually their 
only official source for this information ITU-R Recommendation M.1652-1, and even it only 
described in fairly general terms the characteristics of the types of radar signals that AP receivers 
would have to detect. 

Designing radar-detection algorithms (which must function in the midst of U-NII data traffic) 
was not a small or simple undertaking. Electronic intelligence (EI) gathering and monitoring 
systems that search for radar signals are typically sold to national governments at multi-million 
dollar prices. While the DFS goal of yes-no threshold detection of radar signals was not as 
complex as the full range of problems faced by EI designers, it was nevertheless technically 
challenging and furthermore had never before been implemented in commercially sold devices 
intended for use by consumers.88 

Thus it was that industry U-NII manufacturers worked closely with U.S. government agencies at 
the engineering level for several years from the late 1990s to the early 2000s to devise working 
prototypes of DFS receivers that would effectively monitor for radar signals. Much of this 
collaborative effort occurred during industry visits to the ITS laboratory in Boulder, Colorado. 
During these visits the government provided helpful information and feedback to industry for 
DFS development, as described further below. 

5.2 Difficulty of Detecting General, As Opposed to Specific, Radar Waveforms 

There was a persistent disconnect between industry and government during DFS development 
concerning the extent to which DFS monitors would or would not search for a specific set of 
radar signals. Government insisted that radar-model-specific algorithms should not be used for 
DFS. Industry sometimes seemed to not fully appreciate this goal. This communication 
disconnect was exacerbated by the fact that DFS rules and protocols were developed by people 
who were not themselves the design engineers who would be responsible for actually writing and 
coding the DFS detection algorithms. 

After the rules had been agreed and the responsibility for actually making DFS systems fell to 
manufacturer’s engineers, those engineers sometimes ended up with misunderstandings about 
                                                
88 A government requirement for 5 GHz DFS U-NIIs in the U.S. is that the devices are prohibited from collecting or 
retaining in memory the characteristics of the radar pulses that they receive during their operations. 



46 

exactly what they were supposed to be looking for in-between their U-NII transmission data 
packets. Chief among these misunderstandings was the idea there was “a” radar model in the 
5 GHz band, and that it alone needed to be detected. Thus there was a presupposition by some 
design engineers who presumed that they only a needed an algorithm to find this one radar’s 
unique waveform, as opposed to having an algorithm that would detect radar pulses in general, 
across a wide range of waveform values for pulse width, pulse repetition rate, and number of 
pulses. 

5.3 Lack of Industry Testbeds for DFS 

A further challenge was that industry did not have any testbeds of its own for testing DFS radar 
monitors. This lack was entirely reasonable on both technical and financial grounds. First of all, 
the knowledge of how to even begin to design a testbed such as the one shown in Figure 1 was 
unavailable among U-NII manufacturers. Such testbeds are typically only built by a niche group 
companies that specialize in EI and EW systems. 

A second challenge was financial. Even if a system such as shown in Figure 1 had been 
completely sketched by the government for industry, the cost to build it might have been 
prohibitive considering the relative smallness of the U-NII market that it would serve. It also 
would seem wasteful for several U-NII manufacturers to each build their own DFS testbed when 
a single such testbed at a single location such as Boulder would suffice to meet everyone’s needs 
and could be used on a shared basis (albeit only by one manufacturer at a time) instead. 

5.4 Development of the NTIA DFS Testbed and Its Use by Industry and FCC 

The development of the DFS testbed (Figure 1) by ITS and OSM engineers at the ITS lab in 
Boulder represented a significant investment by the government to move 5 GHz spectrum 
sharing forward. In its totality the development of this testbed absorbed about two engineering 
years (roughly $650 thousand in today’s dollars) of government resources. This included 
procurement and programming of specialized test-and-measurement equipment and of 
specialized software for controlling the measurements and recording and analyzing the resulting 
data sets. A DFS test-set was not available off-the-shelf. Starting around 2010, various test 
device manufactures were able to develop and sell their own equivalents of the ITS design. The 
FCC and NTIA only approved those test devices when they proved their equivalence. 

In 2005 the U-NII manufacturing industry was invited by NTIA to make use of this testbed on a 
no-cost basis. Any U-NII manufacturer could send its prototype device or devices to the lab, as 
long as the devices were accompanied by knowledgeable DFS design engineers who could work 
the systems’ software on an as-needed basis during testing. A large number of companies took 
advantage of this offer and tested their devices at ITS. 

Routine certification testing of radio systems is not part of the NTIA-ITS mission. ITS does not 
have authority to grant certifications for consumer or commercial devices; such certifications 
must come from the FCC. After the initial testbed was built and used to verify the performance 
of both early DFS monitors and of the testbed itself, NTIA transferred the testbed technology to 
the FCC and eventually to industry test houses. It would be the FCC and industry test houses that 
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would, in the long run, use the NTIA testbed design to perform routine ongoing testing and 
certification of DFS U-NII systems. The ITS-built testbed was however retained at ITS and is 
used to this day to perform some one-off spot-checks of off-the-shelf DFS U-NIIs and to 
troubleshoot individual types of DFS U-NIIs that have been flagged by the FCC or other 
government agencies as having potential problems with effective detection of radar signals. (This 
has come up mainly with examining firmware upgrade effects on DFS devices.) 

5.5 Laboratory and Field Tests of DFS with Industry Participation 

Starting in 2005, three U-NII manufacturers with DFS-capable prototypes accepted the NTIA 
offer to use the new testbed at ITS in Boulder. Each of these companies was scheduled to have 
up to two weeks of time at the lab to test their devices, although none actually ended up needing 
more than a week. Each manufacturer worked at the lab alone, with only ITS and OSM engineers 
to assist. There was no overlap between manufacturers with the testbed; ITS engineers did not 
share or discuss data among the manufacturers. 

The fundamental information disconnect (described above) about specific versus generalized 
radar waveform detection was only finally resolved when the three manufacturers sent DFS 
design staff to perform early testing on prototype DFS monitoring devices. It was only at that 
point, when the government system of Figure 1 was used to fire radar pulses at the DFS 
receivers, that some of the industry engineers finally got to see at first-hand exactly what it was 
that their systems were supposed to detect. 

To the manufacturers’ great credit, when they finally got to see what the 5 GHz radar pulses (at 
least, the test pulses) looked like, they were all able to get their prototype DFS monitors running 
reasonably well in fairly short order. None of these companies had prior experience in generating 
or detecting radar-like pulses. 

It is difficult to over-state the need for eventual face-to-face technical exchanges between 
spectrum engineers on the government and industry sides when nuts-and-bolts engineering of 
spectrum sharing systems needs to be accomplished. Design goals and specifications for sharing 
systems are necessary, but there is no substitute for human interchanges such as occurred when 
the government and industry people began to work together on testing at the ITS Boulder 
laboratory. The exchanges do not need to be long or complicated. But without them, huge 
misunderstandings can develop about what systems are supposed to do and how they are 
supposed to work. 

Lesson 6: There is no substitute for person-to-person interchanges of critically important design 
information about technical requirements and needs for spectrum sharing systems. These human 
interchanges (as opposed to non-human interactions such as database sharing) must be between 
and among multiple government agencies (including regulatory agencies and agencies operating 
incumbent radio systems), the industry that is developing new devices, and private sector 
companies that will eventually buy and operate the devices. 

Lesson 7: Development and implementation of a dedicated operational testbed might be well-
advised, prior to widespread introduction of a new spectrum sharing technology. But testbeds 
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consume time and resources to build and operate. They tend to run counter to the desire to 
develop and deploy new technologies as quickly and inexpensively as possible. 
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6. CHALLENGES FOR GOVERNMENT DEVELOPMENT OF DFS TESTING AND 
CERTIFICATION PROTOCOLS 

When spectrum sharing protocols are being developed, it is the responsibility of government to 
inform industry of exactly what those protocols and technical requirements are going to be. This 
section examines the challenges to government agencies of developing such requirement when 
no such sharing approach has been implemented before. 

6.1 The Difficulty of Designing DFS Protocols for Non-Existent Radio Systems 

Spectrum-sharing development has the advantage of knowing exactly which systems are already 
incumbent in a proposed sharing band, and what most of the technical characteristics of those 
systems are. But it has the disadvantage of not knowing the technical characteristics of future 
systems to be introduced into the band. Something is typically known of the likely general 
technology that will be used in the new sharing systems, but specifics may be hard to come by 
because nobody, not even industry itself, may know exactly what they intend to deploy. 

This uncertainty may be caused by the desire of a government to remain technology-neutral 
regarding what it going to be newly introduced to a band. Thus only the broadest guidance 
outlines may be provided to industry, such as “communication systems will be introduced…”. In 
the case of the 5 GHz band, it was agreed at WRC-03 that the new systems would be wide area 
networks and radio local area networks (WANs and RLANs). This is fairly broad. Only later was 
the U.S. implementation at 5 GHz limited to U-NIIs. And even that was a broad technology area. 
For example, there were two general types of technology employed by U-NII devices: IEEE 
802.11 standard technology and frame-based transmissions defined by IEEE 802.16. It can be an 
open question as to whether one type of spectrum sharing technology can or will work across all 
available types of communication systems within a single service such as U-NII. 

6.2 Advantages of Working on a Blank Slate 

Government agencies may have to be somewhat vague and general about exactly what the 
requirements of their spectrum sharing protocols will be. They may specify channel-check times 
and channel move times based on the vulnerabilities of their own incumbent systems (5 GHz 
radars in this case). But other sharing requirements may depend on the characteristics of the new 
radar systems that are to be eventually introduced into a band at a later date. As noted above, 
those characteristic may be unknown in advance. 

A good aspect of this situation is that it may be regarded as an opportunity for some party, either 
a government agency or industry or both, to move the process forward by considering that the 
new spectrum sharing is going to be a blank slate for new development. This condition can then 
become an opportunity for innovation. But some initiative may be required of both sides to take 
advantage of this situation. In the case of 5 GHz DFS development, forward movement was 
achieved over time by numerous technical interchanges in which certain aspects of sharing were 
negotiated. These included: 

• Only AP units (not clients) would monitor for radar signals 
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• The government would provide industry with a monitoring threshold for radar signals 

• The government would not ask industry how their radar detection algorithms worked 

• Industry would submit their DFS devices for general-purpose radar waveform detection 
testing rather than radar-specific testing 

• Industry could use any basis for U-NII data packet protocols (i.e., both IEEE 802.11 based 
and frame based systems). They would all be submitted to a single set of tests and would be 
subject to a uniform set of pass-fail criteria. 

6.3 Disadvantages of Having Areas of Developmental Doubt and Uncertainty 

Neither government nor industry may necessarily be able to specify other important aspects of 
the spectrum sharing protocols in advance of actual sharing implementation. This is because 
some protocols may depend on design characteristics of the new sharing devices that cannot be 
known until the devices (or at least good prototypes) have finally been built. 

In the case of 5 GHz DFS, two such problems had to be solved. The first was to determine the 
power levels in 5 GHz radar receivers that would cause harmful interference. This was not a 
parameter that had ever been defined for radar receivers. Very little work had been done in that 
area, or at least none that had been published in open technical literature. Thus government 
engineers (ITS and OSM) had to undertake a multi-year, roughly million-dollar effort to 
determine harmful interference thresholds for a number of different radar system receivers. This 
work involved numerous other agencies including the Department of Transportation (FAA); 
DoD (Army and Navy); and Department of Homeland Security (Coast Guard). Industry was also 
involved as they were manufacturers of the radar systems. Some of the work was even done by 
NTIA engineers in cooperation with the UK administration89 at Southampton and Funtington 
sites in that country. 

In the end the government was able to provide an I/N ratio of -6 dB that would be considered a 
threshold for harmful interference. That interference threshold for radar receivers was then 
converted into a detection threshold at the antenna outputs of DFS devices, to preclude 
interference to radar receivers. So the problem was solvable in advance of DFS deployment via 
mathematical and simulation modeling. Federal agencies and U-NII industry engineers worked 
together to develop the simulations based on common assumptions, scenarios, and propagation 
settings. They developed and ran independent simulations that showed common outputs. 

The other main problem that occurred in this area was the question of how much frequency 
change would be required of the DFS units when they had detected a radar. This problem was 
not so easily solved in advance of DFS-system construction because it depends on two factors, 
only one of which could be accommodated in advance: The 3-dB bandwidth and shape of radar 
receiver intermediate frequency (IF) stages and the roll-off rate of U-NII spectrum emissions. 
The radar IF problem was addressed by measuring radar IF stage responses for every radar type 
that was checked for I/N response. But the U-NII roll-off rates could not be known until the 
                                                
89 Office of Communications (OFCOM) and the Ministry of Defense (MoD). 
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U-NIIs were built, and the U-NIIs were not going to be built until the rules for sharing were in 
place. It was a classic Catch-22 situation. 

In the end, the original DFS rules ended up simply calling for U-NII devices to vacate their 
operational channels when they sensed a radar signal. Thus they could jump as little as one 
channel up or down in frequency in their band when they sensed a radar, so long as they first did 
a channel check. If that new channel showed radar activity, then they would have to keep 
selecting and attempting other channels or simply go to another band entirely, such as 2.4 GHz. 

This one-channel minimum jump requirement turned out to not always be adequate in practice. 
With the evolution of the 802.11 standard and wider bandwidth devices, the newer devices in 
some cases did not move enough and still affected TDWRs. But it could not be modified until 
DFS U-NIIs were built and a government agency (NTIA) had an opportunity to measure the 
emissions of an entire family of such devices. These measurements were eventually published in 
[4]. They were used as the basis for refined estimates of how much frequency (channel) change 
would be needed to preclude interference to radars when DFS U-NIIs sensed them.90 

Lesson 8: Some technical spectrum sharing parameters cannot be known until after spectrum-
sharing devices have been built and possibly deployed. This lack of knowledge can result in 
flaws in spectrum sharing device certification testing.91 

                                                
90 In practice many U-NIIs ended up not jumping a single channel at a time upon radar detection, but instead simply 
changing operating bands and going to the Industrial, Scientific, and Medical (ISM) band at 2.4 GHz to preclude 
interference. This was an industry expedient rather than an FCC requirement. 
91 ITS was not able to measure the emission spectra of the U-NII devices until they were available via commercial 
production. Simulations done prior to U-NII devices being commercially produced were based on proposals or 
existing data for similar devices operating in other radio bands. 
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7. EARLY DFS DEPLOYMENTS: FIRST SUCCESSES AND FAILURES IN THE FIELD 

The events recounted in this section have already been described in detail in two NTIA 
Technical Reports [5], [6]. They are summarized briefly here for their relevance to the problem 
of DFS Lessons Learned. 

7.1 San Juan, Puerto Rico and New York City Harmful Interference Events Review 

In 2009 the FAA began to experience a puzzling new type of interference at multiple TDWR 
stations in the continental U.S. and the Possession of Puerto Rico. The worst of the interference 
occurred at the San Juan, Puerto Rico, TDWR with the second-worst interference occurring at 
New York City area TDWRs. FAA teams met with some initial success with examining the 
interference. Based on initial information from the FAA there were indications that the 
interference might be caused by 5 GHz DFS-enabled U-NII devices in these areas. The FAA 
contacted NTIA and requested a joint effort to examine and resolve the interference problem. 
Because the interference sources were suspected to be private-sector systems, the FCC was also 
contacted for support and assistance via their offices in Washington, DC, and San Juan, Puerto 
Rico. 

7.2 Identification of Interfering DFS-Equipped Devices at San Juan 

It was agreed that, since the interference characteristics were similar at all TDWR locations, a 
detailed study of a single such location was necessary. Its results would be applicable to all 
locations. The interference problem was worst at San Juan, Puerto Rico, so this was selected as 
the study location. 

Prior to traveling to San Juan, the lead author of this report made a one-day field trip to the FAA 
Aeronautical Center in Oklahoma City to examine the TDWR there. He especially needed to see 
how to partially disassemble the radar for the work that would need to be done in San Juan so 
that he could determine how to access the various test points in the TDWR receiver chain, from 
the antenna output to the IF output that feeds the quadrature and in-phase (I and Q) detector prior 
to signal processing. 

Shortly afterward, the joint FAA-FCC-NTIA (ITS and OSM) team assembled at San Juan. The 
approach for identifying the interference sources was methodical: 

• First, examine and document the interference characteristics on the radar data display. This 
included observation of how many radial interference lines (strobes) appeared.92 

• Second, examine and document the appearance of the radar in the time domain in the radar 
receiver IF stage. This examination showed that the interfering signals were coming from 

                                                
92 Multiple strobes could indicate either multiple sources of interference. Alternatively they could be produced by a 
single interference source that was hitting the radar hard enough to couple into both the radar antenna main beam 
and its side lobes. Such antenna multi-lobe coupling can produce a multi-strobe “rising-sun” radar display. 
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multiple sources that used both 802.11 and frame based data packet protocols (which of 
course meant that the problem was originating with U-NII devices). 

• Third, partially disassemble the radar’s radiofrequency (RF) front end stage and examine its 
responses to the interference and to input test signals. This was to determine whether any 
front-end overload was occurring. As part of this stage in the work the radar’s RF low noise 
amplifier (LNA) was tested to determine its overload point and compare that power level to 
the interference power level. 

• Check and document the exact correlation between every azimuth where interference was 
occurring and the type of signal causing interference on each of those azimuths. 

• Perform field work with the FCC to locate interfering transmitters and determine their 
technical characteristics, including whether they were adhering to DFS rules. 

• Tests on an in-service operational radar must be performed carefully and expeditiously. 
While tests are being performed the radar is considered to be out of service and its data are 
not available for monitoring or controlling airspace and weather. 

The entire effort took two weeks. The work at the radar was completed by the second day and 
the rest of the two-week period was absorbed in locating and examining interfering DFS-
equipped U-NII devices. Several interfering U-NIIs were identified and located. In the end it was 
determined that one U-NII device had been illegally imported and operated in the TDWR band 
without DFS functionality. Other units were nominally legal as purchased but had been illegally 
modified, as for example being operated with after-market antennas. Puzzlingly (at that time), 
some units seemed to have been bought and set up legally but nevertheless were causing 
interference to the TDWR, as documented in [5]. 

San Juan turned out to have the worst interference problem in US&P because the local 
topography is extremely rugged; local WISPs found wireless links to be an attractive solution to 
their Internet backhaul problem under this condition [5]. U-NII devices being utilized for Internet 
backhaul communications tended to be sited at high elevations, such as on mountains, and thus 
often had direct line of sight to the San Juan TDWR antenna. This resulted in the interference 
coupling into the TDWR mainbeam as the radar antenna rotated.  

7.3 NTIA-FAA-FCC Cooperative Efforts at Field Locations 

The problem with the San Juan DFS U-NIIs that had passed certification testing and had been 
properly installed but had nevertheless failed to detect a TDWR in the field was a mystery that 
had to be resolved. To do this, NTIA and FAA set up a series of tests and measurements with the 
FAA TDWR in Oklahoma City. Since this was an engineering unit at the Aeronautical Center, it 
could be used for such work without interrupting service in any airport operations. 

The work, as documented in [6], showed that the protocols being used for radar test-bin 
waveforms for DFS certification could be passed by DFS-equipped AP monitors that 
nevertheless could not reliably detect actual TDWR transmitter stations. The problem was 
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rectified by adding more waveforms to the existing radar test-bin waveforms, waveforms that 
were more representative of the pulses actually transmitted by TDWRs. 

It is important to note that this problem did not occur for all DFS U-NII device types that had 
been certified. Some devices certified with the original radar waveforms did detect TDWRs 
reliably. In other words, the problem of insufficiently designed radar-testing waveforms could 
only be discovered and found after several different models of DFS-equipped U-NII devices had 
been put through the testing and deployed in the field. 

Another outcome of the work at San Juan and Oklahoma City was that local FCC field agents 
acquired a great deal of proficiency in developing measurement techniques that can be used to 
search and locate U-NII devices that cause interference to TDWR. These measurement 
techniques have been used extensively since then to identify non-compliant U-NII devices at 
locations across US&P. 

The FCC staff working on these efforts found that the transmission of service set identifiers 
(SSIDs) was of enormous assistance in identifying interference sources. They developed an 
equipment package to read SSIDs (as also noted in the discussion of the Air Force experience in 
locating interference to Range Instrumentation Radars in Section 8). The transmission of SSIDs 
(or some other identifying information, i.e. GPS coordinates) would greatly simplify the 
identification of interference sources. 

Lesson 9: Shortcomings in certification testing (such as initially inadequate radar waveform 
characterization for DFS) may only be discovered after a variety of devices (multiple models 
marketed by numerous manufacturers) have already been tested, certified, and deployed. 

Corollary to Lesson 9: In hindsight, it would have been well advised for commercially 
produced 5 GHz DFS-equipped U-NII devices to have been initially introduced at a limited 
number of pre-identified field sites in close proximity to TDWRs (and other 5 GHz radars). Their 
operations at those sites could have been evaluated, with corrections to certification testing, prior 
to full-scale certification and deployment of such devices in open markets. 

Lesson 10: Certification testing requirements for spectrum sharing devices need to be as 
technically robust as possible. Manufacturers may have concerns that some certification testing 
might be difficult to pass. But experience has shown that if devices are allowed to pass testing 
with less-than-robust protocols, their developers tend to build devices that only meet the reduced 
requirements. Such devices may then tend, disproportionately, to cause harmful interference to 
incumbent systems when they are deployed at field locations. 

Lesson 11: Some technical modifications or additions may need to be made to develop new or 
improved spectrum sharing technology subsequent to initial market introduction. 



 

55 

8. HARMFUL INTERFERENCE AT U.S. ROCKET TEST AND SPACE LAUNCH 
RANGES 

Harmful interference from U-NII transmitters to TDWR receivers has been thoroughly 
documented in previous NTIA Technical Reports ([4]–[6]) and has been summarized again in 
this report (Section 7). Since the original publications, additional harmful interference has 
occurred from U-NII transmitters to Range Instrumentation Radars (RIRs), more formally known 
as Missile Precision Instrumentation Radars (MIPIRs), at U.S. rocket test and space launch 
ranges on the east and west coasts. This section focuses on the problem as it exists at Cape 
Canaveral, Florida, because NTIA, the FCC, and the U.S. Air Force have documented first-hand 
experience with the problem at that location. This section is structured as follows: 

• The use of 5 GHz RIRs during normal range operations, including 

 Radar skin tracking and reinforced-pulse radar beaconing 
 Radar calibrations 
 Space observation missions 

• Overview of spectrum sharing between RIRs and 5 GHz U-NIIs 

• Interference coupling from U-NIIs to RIR receivers 

• How U-NII interference affects the radars and implications for possible impacts on range 
operations 

• Proposed ways forward to prevent the interference, both now and in the intermediate and 
long-term future 

Some of these topics involve detailed, digressive technical discussions. Those discussions have 
been placed in Appendices B through D. 

8.1 Overview of 5 GHz Range Instrumentation Radars 

The federal government uses RIRs to track launch vehicles (LVs) during their ascents. An 
example of one of these radars is pictured in Figure 5. This equipment operates mostly in the 
5250–5925 MHz band, which is allocated on a primary basis for radiolocation functions. 
Occupancy of the upper part of this band is described in [7]. 

Tracking radars do not sweep broad swaths of sky in the manner of air traffic control or weather 
radars.93 Instead, they use narrow beams of highly directed energy to locate and actively follow 
objects on individual tracks as they move across the sky, as shown in Figure 6. Some of these 
radars have an additional mission to observe objects in Earth orbit, but again as individual 
objects at a single time. 

                                                
93 One RIR variant, the AN/TPQ-39, has been modified to function as a weather surveillance radar. 
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Figure 5. A RIR antenna (8.8 m diameter). Note three strut support points for an earlier-
generation RF feed. Circular aperture at right is for a co-axial telescopic camera. 

Figure 6. Example of multiple-RIR deployment at a single range. 

As described in Appendix B (Table B-1), a substantial variety of 5 GHz RIR models (at least 
15 types) exists. But with the exception of the phased array AN/MPS-39 and AN/FPQ-17 they 



 

57 

are all related to each other by common descent from the Radio Corporation of America (RCA) 
AN/FPS-16, itself developed from the experimental Navy Bumblebee radar of 1946–50. With 
the arguable exception of the original FPS-16, each RIR model has been produced individually 
in small numbers. But as shown in Appendix B (Figure B-1) their deployments are widespread at 
many test and launch ranges. Each of these places typically hosts multiple RIRs, as shown by 
example in Figure 6 for the Eastern Range at Cape Canaveral. 

8.2 RIR Missions 

To understand how RIRs are used, what their susceptibility is to RF interference, and how they 
are affected by RF interference, it is necessary to first understand how they work. And how they 
work is a direct result of their three operational missions. 

The first mission is missile-launch tracking, in which a target’s three-dimensional position 
(range, azimuth angle, and elevation angle (r, θ, φ)) is measured relative to the radar station on a 
continuously updated basis during a launch or flight (providing a set of (r (t), θ (t), φ (t) data). 
Even more important than position-versus-time data are rapidly updated target velocity 
component vectors (V1,2,3 (t)) that are required for range safety, as described further below. 

The second mission is tracking debris from launch anomalies, these events ordinarily being 
either dynamic break-up or intentional termination (destruction) of LVs in flight. In the event of 
an anomaly, the RIR tracking follows, in order of priority: crewed elements emerging from the 
break-up, thrusting elements (e.g., still-burning solid-fuel booster sections), and then the payload 
section. Other debris may be followed with lower priority. If a cloud of hazardous, aerosolized 
fuel is released and drifting, the RIRs may track the cloud’s progress for provision of safety 
warnings.94 

The third RIR mission is observation of space objects. This, too, is fundamentally a tracking 
operation. As an object in space is held in the radar’s tracking beam for an arbitrarily long time 
interval,95 the number of pulse echoes that can be integrated from the target can likewise be 
made arbitrarily large. Long-term integration of thousands or even millions of pulse echoes 
allows space objects with very small echo-return cross sections to be closely observed and 
processed with fine detail. Observation data include highly accurate orbital element 
determination and, with chirped pulses, observations of objects’ spatial forms. 

Given that all RIR missions involve tracking, it is necessary to understand how the tracking 
works to see in turn how U-NII transmitters can interfere with the tracking and what the 
interference mechanism is. These topics are explained in detail in Appendices C and D. 

8.3 Range Safety and 5 GHz RIR Tracking 

With the operational missions and functionality of the 5 GHz RIRs understood, the next step is to 
examine the role that these radars play in range safety. Prior to a launch, a range is cleared 

                                                
94 Information in this paragraph is pers. comm., Mr. C. C. Harrison, Eastern Range Radar 0.134. 
95 Even brief space object transits above a local horizon may last for a few minutes. 
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through a combination of visual observations from aircraft and boats, sweeps of water surfaces 
with 3 GHz and 9 GHz surface surveillance radars, and observation and coordination of the local 
airspace via 1030–1090 MHz air traffic control transponders and short-range (approx. 80 nmi) 
2.7–2.9 GHz surveillance radars such as ASR-9s, ASR-11s, and GPN-30s. 

With the range cleared and the vehicle prepared for launch, the RIRs are trained as closely as 
possible96 on the launch pad (or water surface for submarine launches or mother aircraft for 
airborne launches). As the vehicle clears the launch gantry (or water or mother aircraft) and 
begins its pitch-over maneuver, it is tracked by at least two and sometimes three of the following 
systems: 5 GHz skin tracking, 5 GHz beaconing, and S-Band (roughly 3 GHz) metric GPS 
tracking. Table 3 describes the criteria for employing these systems with any given vehicle. 

As the vehicle flies downrange its progress is followed by a pair of Range Safety Officers 
(RSOs) sitting side-by-side at a control panel with an identical pair of displays and control 
switches in front of them. Although the tracking systems provide vehicle position updates, the 
most important thing for the RSOs to know is not where a vehicle is but where it is going. The 
tracking systems’ most important data is therefore vehicle velocity vectors (direction and speed 
of movement). High-speed digital computers convert raw tracking data into rapidly updated 
(about 10 updates per second) predictions for impact points ahead of the flight track for the 
vehicle based on its currently reported velocity vectors. 

Table 3. Overview of Criteria for Launch Vehicle Tracking Selections 

Launch Guidance & Control (G&C) Reliability: Tracking Systems Used: 
Vehicle G&C system has been proven to be reliable through 
numerous successful flights 

Two: S-Band (3 GHz) GPS beacon and 5 GHz 
skin tracking 

Vehicle G&C system has not flown enough successful 
missions to be considered proven 

Three: S-Band GPS (3 GHz) beacon, 5 GHz radar 
beaconing and 5 GHz skin tracking 

 
Redundancy in the data sources for impact predictions is vital. The two best data sources are the 
5 GHz radar beacon and the GPS beacon. This is because the beacon pulses are received at 
higher power than skin echoes; the beacons provide better tracking and velocity information than 
the 5 GHz skin echoes. 

But skin tracking is still critically important. Skin tracking is independent of any systems carried 
on-board a launch vehicle (LV). It is the only redundancy for the GPS beacon for vehicles with 
proven guidance and control systems which therefore do not carry the 5 GHz radar beacon 
(Table 3). And only skin tracking can follow booster elements that have been hurled randomly 
across the sky after a launch anomaly in which a vehicle breaks up. Figure 7 shows a schematic 
booster being skin-tracked while flying both beacon systems. 

                                                
96 In populated areas such as Cape Canaveral radiation safety cut-outs may preclude exact radar antenna 
boresighting on the launch pad, as noted above. 
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Figure 7. Schematic diagram of a booster being skin tracked while flying both possible beacons. 

If RSOs lack tracking information to provide location, velocity and impact-point updates, they 
cannot guarantee that the vehicle is flying nominally. Lacking adequate tracking information, 
their range-safety protocols can require termination (destruction) of a vehicle along with its 
payload in that circumstance. This destruction requirement can occur even if the vehicle itself is 
actually flying and guiding completely nominally. This is why it is crucially important to 
maintain multiple redundant tracking sources throughout every launch. 

To state the situation slightly differently, in the event that data should be lost due to 5 GHz RF 
interference to the skin tracking radar signal and the 5 GHz beacon (if an LV is so equipped per 
criteria of Table 3), the RSOs would be left with a single tracking system, the S-Band GPS 
beacon, to verify LV performance and impact points. If the LV is not flying with the 5 GHz radar 
beacon then interference to just the skin tracking would reduce the RSOs to having only the GPS 
beacon data for flight monitoring at that point in the mission. 

If for any reason that last line of defense, that last GPS-based tracking data flow, should then be 
lost, the RSOs would be unable to verify that predicted impact points were still in safe zones. 
This could put them into the position described above, where they could be faced with a 
requirement to terminate an LV and its payload even though the vehicle might in fact be guiding 
and thrusting perfectly well.97 

                                                
97 Within the next few years this issue will extend to crewed vehicles being launched from Cape Canaveral. 
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8.4 RIR Spectrum Shared with U-NII Transmitters 

Figure 8 shows a schematic of 5 GHz spectrum that is shared between RIRs and U-NIIs. 98 The 
Eastern Range RIR frequencies are shown by way of example; other particular frequencies are 
used for RIRs at other facilities. 

 

Figure 8. The 5 GHz spectrum that is shared between RIRs and U-NIIs, with Eastern Range 
frequencies used as an example case. U-NII Band 3 shares spectrum with radars, including some 

RIR frequencies, but has never had any DFS requirement. 

The spectrum between 5250 and 5925 MHz is allocated on a primary basis for radiolocation 
(radar) operations. RIR operations use the upper part of this band, 5640–5850 MHz in the case of 
the Eastern Range, for example.99 Skin tracking at that range is done on frequencies of 5672 and 
5710 MHz. Radar beaconing is done for all of the Eastern Range radars on a common, shared 
downlink frequency of 5765 MHz. (The beacon uplink is a shared frequency of 5690 MHz.) 

Unlicensed intentionally radiating devices (FCC Part 15), including 5 GHz U-NIIs, operate on a 
not-to-interfere basis in four bands at 5 GHz, three of which are shared with radiolocation. The 
lowest U-NII band, designated U-NII-1, is 5150–5250 MHz. It is below the lower edge of the 
radiolocation band and is of no further concern here. 

The next two U-NII bands, 5250–5350 and 5470–5725 MHz, are designated 2A and 2C (see 
Figure 8). They share spectrum with radars. This includes frequencies near 5.6 GHz that are used 
by FAA TDWRs. In both of these bands the U-NIIs are required to employ DFS technology. 

Finally comes the uppermost U-NII band, designated U-NII-3, between 5725 and 5850 MHz. 
U-NII-3 devices are not required to use DFS detect-and-avoid technology to prevent interference 
to radar receivers. The power limit for U-NII-3 transmitters is an EIRP of 4 watts = +36 dBm, 
                                                
98 U-NII bands in Figure 8 are from CFR 47, Sub-Part 15.407. Channels are taken from Annex J of IEEE 802.11-
2007, as modified by amendments k, y, and n. 
99 A range radar at Wallops Island, Virginia, is authorized to operate at frequencies up to 5925 MHz. 
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the same as is used for our interference distance calculation in Appendix A. The U-NII allocation 
for it was made prior to the development of DFS. It is not clear why this third U-NII band that 
shares spectrum with radars has never had a DFS requirement for its sharing. 

All of the U-NII bands are divided into channels according to designations specified by the IEEE 
802.11 standards committee. The channeling scheme is somewhat complicated. Basic channels 
(Figure 8) can be combined to make wider channels for operators to use.100 

8.5 Example U-NII-to-RIR Interference Case Histories at Cape Canaveral 

U-NII transmitters are causing harmful interference to RIR receivers at Cape Canaveral (the 
Eastern Range) and have caused such interference at Vandenberg AFB. U-NII interference may 
possibly be occurring to RIR receivers at some other locations. The ongoing Eastern Range 
interference is described here in some detail because the authors have had access to complete 
case histories at that location and have been able to interview range personnel there. The Cape 
interference cases are examples of what is apparently happening at a number of locations. 

At the Eastern Range, for example, 5 GHz skin tracking is done on frequencies of 5672 and 
5710 MHz (Figure 8). These frequencies are within the U-NII-2C band in which DFS 
employment is mandatory. Radar beaconing at the range is performed on a shared downlink 
frequency of 5765 MHz. This frequency is in the U-NII-3 band where DFS is not required. 

Interference occurs in both of these bands at Cape Canaveral. Range radar and frequency 
management personnel101 have estimated that roughly ten percent of the problems are occurring 
on the skin-tracking frequencies in the DFS-required U-NII-2C band and that the remaining 
ninety percent of problems are in the non-DFS U-NII-3 band where the beacons are operated. 

Unfortunately, since the beacons provide better data than skin tracking and are therefore 
considered more important for range operations and safety than the skin tracking data, the 5 GHz 
RIR band where the most important data (beacon data) are produced is also the one where the 
bulk of the interference problem exists, at least at the Eastern Range. 

8.5.1 Interference in the DFS-Required U-NII-2C Band 

Eastern Range radar personnel have seen persistent interference to skin-tracking operations at 
multiple RIR stations (see Figure 6). The interference has originated from a variety of devices 
that are mostly terrestrial and sometimes marine. Some systems are used by private individuals 
but many are operated by businesses or companies. The sources are typically but not always used 
for wireless backhaul by WISPs. The U-NIIs are used in WANs and RLANs. Most interference 
has been caused by outdoor transmitters but a minority share of problems has come from indoor 

                                                
100 IEEE 802.11 provides for channels that are 20 MHz wide and can be combined into multiples that are 40, 80, and 
160 MHz wide. 
101 Mr. Scott Peterman, Senior EMC engineer of the Frequency Control and Analysis (FCA) Space Communications 
Squadron (SCS), 45th Space Wing, and Mr. C.C. Harrison, engineer at Eastern Range Radar Station 0.134. 
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devices. This suggests the outdoor devices such as outdoor Internet backhaul communications 
represent the greatest interference potential to incumbent radar operations. 

Because DFS is required for all devices operating in the U-NII-2C band, Eastern Range radar 
operators have attempted on multiple occasions to force the U-NIIs off the radar frequencies by 
directly aiming their radar mainbeams in the directions of interference sources (with allowance 
being made for radiation safety cut-outs). In no cases have the U-NIIs detected the RIR signals 
and vacated the radar frequencies, as would have been expected for DFS-equipped U-NIIs. As 
described below, we believe that this non-detection problem is due to the fact that the range 
radars use pulse repetition rates (PRRs) that are outside the range of PRRs used to test and 
certify 5 GHz DFS devices. 

A particular problem occurs with U-NII transmitters on cruise ships. A number of these vessels 
operate out of Port Canaveral and employ on-board 5 GHz U-NIIs. They are mostly non-U.S. 
flagged and may therefore have 5 GHz U-NII systems operating onboard that are not necessarily 
set to the U.S. country code that would enable DFS. These ships sometimes route their U-NII 
traffic to shore stations (e.g., in at least one known case to an AP at a shore-side restaurant) to 
avoid the cost of satellite-based backhaul links. 

When the cruise ships first leave Port Canaveral, they often stop dead in the water due east of the 
Eastern Range radars while they perform mandatory lifeboat-muster drills. Their ship-to-shore 
links then boresight the radar stations and cause harmful interference for extended periods of 
time. This type of situation or scenario was not considered when the U-NII rules were developed. 
Some RIR receivers are equipped to observe interference from U-NIIs in their receiver 
diagnostic outputs. A sketch of one of these is shown in Figure 9. 

 

Figure 9. Sketch of a RIR receiver diagnostic display where operators can see interference during 
radar operations (drawn from the lead author’s in situ notes at a Cape Canaveral radar station). 
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The radar operators can see the U-NII data packets in the time domain, along with the radar’s 
own pulses, in the upper portion of their display. In the lower part of their display, three channels 
are streamed from bottom to top as the radar runs. These channels are Reference, Azimuth and 
Elevation. Interfering U-NII packets will manifest as harmful interference in one or both of the 
azimuth and elevation channels but not in the reference channel. When an operator sees a feature 
in either or both of the azimuth and elevation channels but not in the reference channel, that 
feature represents harmful interference. This situation occurs frequently at Eastern Range radars. 

8.5.2 Interference in the Non-DFS U-NII-3 Band 

The same comments and descriptions regarding interference for the DFS U-NII-2C band (above) 
are true for the non-DFS U-NII-3 band. Of course, there is no expectation that interference 
sources should detect and avoid radar channels in the U-NII-3 band. As noted already, range 
personnel estimate that ninety per cent of all U-NII interference problems are occurring in this 
band. The interference harms the radar beacon tracking even more than the skin tracking; in both 
cases range personnel state that the interference pulls the tracking away from targets. 

8.5.3 Interference Case Summary for Cape Canaveral 

The 45th Space Wing staff have written well-documented reports describing their efforts to locate 
and mitigate 5 GHz interference at the Eastern Range. They have developed a specialized system 
for automatically reading 802.11 standard SSID numbers so as to identify transmitters relatively 
quickly and efficiently. Use of SSID is effective for identifying most transmitters. Some units 
that use proprietary, non-SSID communication protocols still have to be identified with manual 
direction-finding and door-to-door visits. (U-NII rules do not mandate SSIDs be transmitted to 
make it easier to identify and locate possible interference sources.) 

The number of individual interference cases that have been documented at Cape Canaveral over 
the last few years is, to estimate from the Air Force reports, in the low hundreds. Range 
personnel have not been the only ones who have dealt with these cases. The FCC has repeatedly 
deployed technical investigatory teams into the area from offices in Tampa and Washington, DC. 
These teams have likewise found and documented numerous harmful interference cases. 

Hotels, restaurants, apartments, condominiums, private residences, and cruise ships have all been 
documented as hosting interfering devices,102 usually as outdoor transmitters but sometimes 
indoors, too. When these devices’ U-NII channels are identified, they are almost always co-
channel or adjacent-channel to the radar skin tracking and beacon tracking frequencies. 

Observed interference distances have turned out to be completely consistent with the back-of-
the-envelope calculation in this report: 10 km or more for ground-level transmitters and 

                                                
102 Many interfering 5 GHz devices once operated within base housing at Patrick AFB. A dedicated effort by the Air 
Force to remove them from the housing has reduced harmful interference from that source to essentially zero, 
according to Air Force personnel who have been involved in mitigation efforts. (Pers. Comm., Mr. Scott Peterman, 
Air Force 45th Space Wing, Patrick AFB.) 
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essentially unlimited (to the edge of line-of-sight) distances for transmitters on building upper 
floors and rooftops. 

Whenever U-NII operators have been contacted by Air Force spectrum engineers and FCC 
engineers tracing interference to their transmitters, they have been told to cease operations on the 
interfering channels. Ordinarily they do cease such operations. But as quickly as one operator 
abandons a channel, another operator finds the channel to be available and re-occupies it. One 
local WISP developed a pattern of attempting to re-use interfering channels after having been 
told to cease using the channels.103 

Another problem with vacating interfering U-NII channels has been documented: After a power 
failure and subsequent re-powering, some U-NII transmitters with volatile memory do not 
remember the channels that were being used prior to the power failure. Instead, they re-boot on 
default start-up channels that were originally programmed into their firmware by their 
manufacturers. Operators of these devices who have vacated interfering channels are often 
unaware that power failures and automated re-boots have occurred. Even if they are aware of 
drop-outs and re-boots, they typically do not know that their devices have re-awakened on 
interfering channels that they had earlier vacated. These re-booted devices must then be tracked 
down repeatedly by spectrum engineers. The operators have to be instructed to more carefully 
monitor their devices for re-boots, and to monitor their devices’ channel selections subsequent to 
those events. 

8.5.4 Interference Analysis 

The 5 GHz U-NII-to-RIR interference that has been documented is technically straightforward. It 
is mostly co-channel and sometimes adjacent-channel to the RIRs. Co-channel interference 
interactions are suggestive of disabled or otherwise ineffective DFS capability. Adjacent-channel 
interference is explained by the out-of-band (OoB) roll-offs of the U-NII transmitters putting 
enough power into the adjacent RIR frequencies to cause interference to the RIR receivers. 

Interference to RIR receivers is easily observed by radar operators with high-quality, state-of-
the-art diagnostic displays inside the radar stations. When the interference occurs it potentially 
endangers range safety by pulling RIR antennas (both reinforced radar beacons (most important) 
and skin tracking (less important but still necessary)) away from desired targets. The mechanism 
for being drawn off is explainable by the way that monopulse tracking works (see Appendix C 
and Appendix D). 

As noted above, there are scenarios in which the interference effect of RIR antennas being drawn 
away from LVs could, in conjunction with an unrelated failure of a metric-tracking GPS beacon, 
cause RSOs to be forced to terminate (destroy) an LV with its payload even if the vehicle were 
thrusting and guiding normally. 

Additional impacts of U-NII interference to the 5 GHz radars include interference to the radar 
calibrations that run prior to launch operations and interference to space-object observations that 
these radars routinely perform for a number of federal agencies. Future impacts may occur as 
                                                
103 Pers. Comm., Mr. Scott Peterman, Air Force 45th Space Wing, Patrick AFB. 
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well on wideband-chirped pulsed radar operations for enhanced space observations. But the most 
serious and immediate impact of U-NII interference is on the safety and effectiveness of launch 
operations. 

The harmful interference cases that occur due to non-detection of radar signals in the DFS-
required U-NII-2C band are explainable by the DFS certification regime: DFS certification tests 
currently only go down to PRRs of about 300/second (as described in detail in Appendix E). But 
the range radars almost always use a PRR of 160/second. The current DFS certification 
requirement is insufficient to detect the range radars on their most-used (ordinarily the only used) 
PRR mode of 160/second. 

The range radars have available PRRs of 160, 320, 640 and 1280 pulses per second. The higher 
PRRs fall within the DFS test-and-certification regime. We believe that personnel who at one 
time or another reviewed a database of RIR technical characteristics during the development of 
DFS may have imagined, when they saw PRRs as high as 1280/second, that the RIR emissions 
would therefore be detected by DFS-equipped U-NIIs. But the radars at the ranges must track 
LVs at long distances where only the lowest PRR of 160/second will suffice.104 So the ranges 
only rarely use the higher PRRs. The ordinary use of the low PRR of 160/second prevents the 
RIRs from being seen by the U-NII APs. Because the commonly-used 160/second PRR was not 
incorporated into the test suite of radar signals provided to the FCC for use in lab testing, the 
devices that emerged from certification testing would not ordinarily respond to the range radars. 

Interference cases have been well documented in the hundreds by range personnel and the FCC 
in the Cape Canaveral area alone. Similar problems have been documented at other test and 
rocket-launch ranges. Most U-NII operators have cooperated with efforts to keep the affected 
frequencies clear but a few operators have persisted in testing the situation by re-occupying 
channels after being told to stand down on previously identified channels. 

But as quickly as one operator vacates a frequency another often occupies it (because it has 
become “available”). The harmful interference re-occurs co-channel to the radars. Clearly a 
comprehensive solution is needed for both the short term and the long term. As relates to the 
topic of this report, DFS, the certification testing requirement needs to be extended to include 
lower PRRs (down to 160 pulses per second) that are not part of the current testing regime. 

The DFS experience with U-NII-2C transmitters interfering with 5 GHz RIRs reinforces Lessons 
Learned numbers 3 (some interference will inevitably occur), 9 (some flaws in certification 
testing (in this case, PRRs that are not low enough) may only be discovered after the fact), and 
10 (certification testing needs to be as robust as possible). Regarding Lesson 10, this robustness 
must include the full range of operational parameters (e.g., all of a radar system’s available pulse 
repetition rates) of incumbent systems that require protection from harmful interference. 

                                                
104 With the exception of some airborne radars, radar pulses are conventionally emitted at a rate that allows each 
transmitted pulse to travel to the operational range limit and reflect back to the receiver before the next pulse is 
emitted. This conventional minimum pulse-to-pulse interval is 12.4 microseconds per nautical mile of radar range. 
For LVs that must be tracked at up to 500 nautical miles distance before they drop below the local horizon, the 
interval between pulses must therefore be at least 500 nautical miles times 12.4 microseconds per nautical mile, or 
0.0062 seconds. This equates to 160 pulses per second. 
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9. ONGOING DFS SPECTRUM SHARING SUPPORT 

It should be clear at this point that DFS spectrum sharing technology is not a shoot-and-forget 
method. It requires ongoing support. This section summarizes that support. This need for 
ongoing support may turn out to be true for most complex spectrum sharing technologies. 

9.1 Continuing Monitoring of Legal FCC-Certified DFS Devices 

As noted above, DFS-equipped systems can fail after they have been certified and field-
deployed. The primary reason for such failure of properly installed and operated systems is 
firmware updates105 that can cause DFS to be unintentionally impaired or disabled. Other than 
waiting for interference reports submitted to the FCC, this problem calls for ongoing spot-check 
monitoring of DFS-enabled U-NII devices that are for sale to the public. 

At the ITS laboratory in Boulder, NTIA periodically selects, on a random basis, some 5 GHz 
DFS U-NIIs for such testing. The units are purchased from commercial outlets without 
interaction with manufacturers. The DFS testbed system in Figure 1 is used for the testing. Some 
of the higher-end commercial grade U-NII devices can cost more than three thousand dollars; 
ITS does not have funding for such purchases. 

NTIA also undertakes DFS performance checks on U-NII devices that have been reported by the 
FAA and FCC to be causing interference to TDWR even though those units have been DFS-
certified. Again, the problem has usually turned out to be new firmware loads that 
unintentionally affected DFS functionality. All of this work requires some ongoing support from 
NTIA (for the Boulder laboratory work) and from the FAA and FCC field offices (to track down 
interfering U-NII devices). 

9.2 Illegal (Non-DFS-Equipped) Device Imports 

Illegally imported and operated 5 GHz transmitters, although not strictly a DFS problem, may, as 
noted above, be an unintended consequence of having opened the 5 GHz DFS bands for 
worldwide sharing. As for legal devices with problematic firmware downloads, locating and 
disabling these devices requires ongoing support from FAA and FCC field offices. 

9.3 Accommodating More Complex Future Radar Waveforms 

NTIA works with other federal agencies to determine the characteristics of future radars that are 
being built at 5 GHz in the DFS sharing bands. If these radars should have waveforms that would 
call for modification of the DFS radar test bins, NTIA will alert the FCC and new test bin 
protocols can be published in the CFR. Keeping track of new 5 GHz radar development requires 
continuing, ongoing support in this area from both NTIA and FCC. 

                                                
105 Ordinarily firmware updates are authorized by manufacturers. Some unauthorized firmware files have however 
been provided by third parties to intentionally make devices that are FCC compliant operate in an unauthorized 
manner. 
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9.4 Accommodating Changing U-NII Device Technology 

U-NII device technology will probably not remain static. As industry seeks to develop and 
deploy new sorts of U-NIIs, DFS rules, regulations and technology will likely need to be adapted 
to accommodate those changes. It remains to be see how much difficulty will be entailed in 
implementing such changes. 

Lesson 11: Some technical modifications or additions may need to be made to develop new or 
improved spectrum sharing technology subsequent to initial market introduction. 
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10. SUMMARY OF LESSONS LEARNED FOR FUTURE DYNAMIC SPECTRUM 
SHARING TECHNOLOGIES 

The lessons learned for future dynamic spectrum sharing technologies developed from the 5 GHz 
DFS experience are summarized in this section. 

Lesson 1: The development time for dynamic spectrum technologies, even when government 
and industry work closely and cooperatively together on the necessary technical and regulatory 
framework, can be something on the order of a decade. This is because innovation requires 
considerable advance work in the absence of existing implementations. The more innovative and 
technically challenging the new sharing scheme, the longer the advance-work timeline can be 
expected to be. 

Lesson 2: The use of dynamically based spectrum sharing technologies requires permanent, 
ongoing government expenditures for testing facilities and maintenance of trained, competent 
engineering staff for permanent ongoing surveillance of such devices. This state must continue 
for as long as any given class of dynamic spectrum-sharing devices continues to be sold and used 
in markets. Dynamic spectrum sharing is associated with ongoing post-certification compliance 
auditing106 costs. This is not to say that the expenditures are not worth the advantages that 
society gains from more and better spectrum sharing; it is to say that such sharing has recurring 
technology-opportunity costs. The need for adequate ongoing technical auditing resources needs 
to be recognized. 

Corollary to Lesson 2: Technical analysis and measurements will have to be performed to 
assess the impact of changing U-NII device technology on incumbent federal radar systems. 

Lesson 3: Any non-trivial, innovative, dynamic spectrum sharing technology introduction, no 
matter how carefully it is initially devised, may result in some elevated interference potential 
when it is initially deployed. The more complicated or innovative the technology, the more likely 
it is that some unanticipated field-deployment situation may result in an increase in the potential 
for interference. 

Corollary to Lesson 3: When new, innovative dynamic spectrum sharing technologies are 
introduced, resources should be set aside in advance to accommodate and resolve the inevitable 
initial harmful interference cases that may be expected to occur. 

Lesson 4: Post-certification compliance auditing107 may be necessary to identify spectrum 
sharing devices that have been illegally sold without proper regulatory certification. 

Lesson 5: If installers and operators are physically able to illegally modify spectrum sharing 
devices to disable spectrum-sharing features, some will do so even knowing that they will be 
fined by regulators when they are eventually caught.  

                                                
106 Such auditing, when done by NTIA, is done on DFS-equipped U-NII devices that NTIA purchases off-the-shelf 
from commercial vendors. 
107 Auditing, when done by NTIA, is done on devices that NTIA purchases off-the-shelf from commercial vendors. 
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Corollary 1 to Lesson 5: Manufacturers need to restrict the ability to disable or modify their 
devices’ spectrum sharing functionality as much as is physically possible. Regulatory entities 
need to do thoroughly examine all of a spectrum-sharing device’s set-up and control sub-menus. 

Corollary 2 to Lesson 5: Introducing legitimate, legal spectrum sharing devices to a band can 
have the unintended consequence of encouraging the proliferation of illegal devices in the same 
band. This is especially true if the band is used worldwide for such functions, but does not have 
the same spectrum sharing rules internationally as the U.S. has domestically.  

Lesson 6: There is no substitute for person-to-person interchanges of critically important design 
information about technical requirements and needs for spectrum sharing systems. These human 
interchanges (as opposed to non-human interactions such as database sharing) must be between 
and among multiple government agencies (including regulatory agencies and agencies operating 
incumbent radio systems), industry that is developing new devices, and private sector companies 
that will eventually buy and operate the devices. 

Lesson 7: Development and implementation of a dedicated operational testbed might be well-
advised, prior to widespread introduction of a new spectrum sharing technology. But testbeds 
consume time and resources to build and operate. They tend to run counter to the desire to 
develop and deploy new technologies as quickly and inexpensively as possible. 

Lesson 8: Some technical spectrum sharing parameters cannot be known until after spectrum-
sharing devices have been built and possibly deployed. This lack of knowledge can result in 
flaws in spectrum sharing device certification testing.  

Lesson 9: Some flaws in spectrum sharing device certification testing may only be discovered 
after a variety (various device models marketed by numerous manufacturers) of spectrum sharing 
radio models have already been tested, certified, and deployed. 

Corollary to Lesson 9: In hindsight, it would have been well advised for commercially 
produced 5 GHz DFS-equipped U-NII devices to have been initially introduced at a limited 
number of pre-identified field sites in close proximity to TDWRs (and other 5 GHz radars). Their 
operations at those sites could have been evaluated, with corrections to certification testing, prior 
to full-scale certification and deployment of such devices in open markets. 

Lesson 10: Certification testing requirements for spectrum sharing devices need to be as 
technically robust as possible. Manufacturers may have concerns that some certification testing 
might be difficult to pass. But experience has shown that if devices are allowed to pass testing 
with less-than-robust protocols, their developers tend to build devices that only meet the reduced 
requirements. Such devices may then tend, disproportionately, to cause harmful interference to 
incumbent systems when they are deployed at field locations. 

Lesson 11: Some technical modifications or additions may need to be made to develop new or 
improved spectrum sharing technology subsequent to initial market introduction. 
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APPENDIX A 
HOW DFS DETECTION THRESHOLDS ARE COMPUTED AND WHY DFS 

DETECTION DOES NOT REQUIRE RADAR MAINBEAM COUPLING TO WORK 

Variables used in this Appendix, in the order that they are introduced: 

Prx_radar | tx_UNII = power received by radar given UNII transmitter, dBm. 

Ptx_UNII = output power of the U-NII transmitter, fed to the antenna, dBm.  

Gtx_UNII = gain of the U-NII transmitter antenna, dBi. 

L prop, radar-UNII  = propagation loss between the U-NII and the radar, dB, taken as a 
negative number. 

Grx_radar = gain of the radar receiver antenna, dBi. 

Pradar_interf_thresh = power threshold in radar receiver that causes harmful interference, 
dBm/MHz. 

Pradar_DFS_thresh  = DFS power threshold for harmful interference, same as Pradar_interf_thresh, 
dBm/MHz. 

k = Boltzmann’s constant, 1.38⋅10-23 J/K = -138.6 dBm/MHz/K. 

T = ambient temperature, ordinarily taken to be 290 K. 

Bradar = radar receiver bandwidth, hertz. 

NFradar = noise figure of the radar receiver, dB. 

Lrx_radar = loss between the radar receiver RF front end and its antenna, dB. 

(I/N) radar_interf_thresh = ratio of interference power to noise power that causes harmful 
interference in a radar receiver, linear; 10log of this quantity gives the ratio in dB. 

Prx_AP_monitor = power received in the AP monitor receiver circuitry, dBm/MHz. 

Ptx_radar = peak power produced by the radar transmitter antenna, dBm. 

Gtx_radar = gain of the radar transmitter antenna, dBi. 

Grx_UNII = gain of the U-NII receiver antenna, dBi. 

For a (potentially victim) radar receiver, power received from a U-NII transmitter is (working in 
decibel units): 

 Prx_radar | tx_UNII  = Ptx_UNII + Gtx_UNII + L prop, radar – UNII + Grx_radar (A-1) 
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and 

Pradar_interf_thresh = Pradar_DFS_thresh = 10log(kTBradar) + NFradar + Lrx_radar + 10log(I/N)interf_thresh (A-2) 

For the U-NII AP DFS monitor: 

 Prx_AP_monitor = Ptx_radar + Gtx_radar + L prop, radar-UNII  + Grx_UNII.  (A-3) 

Now we solve (A-1) and (A-2) for L prop, radar-UNII to obtain (A-1′) and (A-2′): 

 L prop, radar-UNII  = Prx_radar | tx_UNII – Ptx_UNII – Gtx_UNII – Grx_radar  (A-1′) 

and 

 L prop, radar-UNII  = Prx_AP_monitor – Ptx_radar – Gtx_radar – Grx_UNII (A-2′) 

and then we equate these two expressions for Lprop: 

 Prx_radar | tx_UNII  – Ptx_UNII – Gtx_UNII – Grx_radar = Prx_AP_monitor – Ptx_radar – Gtx_radar – Grx_UNII. (A-4) 

Now solve (A-4) for Prx_AP_monitor: 

 Prx_AP_monitor = Ptx_radar + Gtx_radar + Grx_UNII + Prx_radar | tx_UNII – Ptx_UNII – Gtx_UNII – Grx_radar. (A-4′) 

This equation simplifies because by reciprocity Gtx_radar always equals Grx_radar at every point in 
the radar antenna pattern. This is why DFS does not require radar mainbeam coupling to work. 
This is illustrated graphically in Figure A-1. 

  

Figure A-1. Radar antenna gain subtracts out of the DFS equations via reciprocity. 

So, (A-4′) reduces to: 

 Prx_AP_monitor = Ptx_radar + Grx_UNII + Prx_radar | tx_UNII – Ptx_UNII – Gtx_UNII  (A-5) 
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What is Prx_radar | tx_UNII? For DFS protection it is Pradar_DFS_thresh from (A-1): 

 Pradar_DFS_thresh = 10log(kTBradar) + NFradar + Lrx_radar + (I/N)radar_interf_thresh (A-6) 

Typical values for these are: T = 290 K; Bradar = 1 MHz = 106 Hz; NFradar = 1 dB; Lrx_radar = 
1 dB; 10log(I/N)interf_thresh = -6 dB; and k = 1.38 × 10-23 J/K = -138.6 dBm/MHz/K. 

This gives Pradar_DFS_thresh = (-174 dBm/Hz + 60 dB + 1 dB + 1 dB + (-6 dB)) = -118 dBm. 

Therefore (A-5) is: 

 Prx_AP_monitor = Ptx_radar + Grx_UNII  – 118 dBm – Ptx_UNII – Gtx_UNII. (A-5′) 

Finally, inserting values for radar and U-NII parameters as follows: 

 Ptx_radar = 1 MW = +90 dBm; Ptx_UNII = 4 W = +36 dBm; Grx_UNII = Grx_UNII = 0 dBi, 

we get 

 Prx_AP_monitor = (+90 dBm + 0 dBi – 118 dBm – 36 dBm – 0 dBi) = -64 dBm. 

This level of -64 dBm is the DFS detection threshold specified by the FCC for U-NIIs with 
transmitter power of 200 milliwatts or more.108 This calculation demonstrates the origin of the 
specified thresholds.109 

Reviewing the terms in (A-5′) for DFS detection threshold for U-NII AP monitors, 

 PDFS_AP_detect_threshold = Ptx_radar + Grx_UNII – 118 dBm – Ptx_UNII – Gtx_UNII. (A-5′) 

If a U-NII uses the same antenna for transmitting and monitoring radars, then the form of (A-5′) 
reduces to: 

 PDFS_AP_detect_threshold = Ptx_radar – 118 dBm – Ptx_UNII. (A-5′′) 

The preceding discussion shows that: 

• The regulatory DFS detection threshold (e.g., -62 dBm per megahertz) is calculable from, 
and determined entirely by, the technical characteristics of U-NIIs and radars. 

                                                
108 Higher-powered U-NII transmitters have a detection threshold of -64 dBm. Full details in Table 3, “DFS 
Detection Thresholds for Master Devices and Client Devices with Radar Detection,” in “Compliance Measurement 
Procedures for Unlicensed-National Information Infrastructure Devices Operating in the 5250-5350 MHz and 5470-
5725 MHz Bands Incorporating Dynamic Frequency Selection,” Office of Engineering and Technology Laboratory 
Division, FCC, Washington, DC. 
https://apps.fcc.gov/kdb/GetAttachment.html?id=V2DzGgztnfxjTcht59nQ7Q%3D%3D&desc=905462%20D02%20
UNII%20DFS%20Compliance%20Procedures%20New%20Rules%20v02&tracking_number=27155 
109 The final detection thresholds of -62 dBm and -64 dBm per megahertz involved negotiations and considerations 
that went beyond this simple calculation. The mathematical calculation shown here demonstrates the core physical 
principle upon which the final, negotiated detection thresholds were based. 

https://apps.fcc.gov/kdb/GetAttachment.html?id=V2DzGgztnfxjTcht59nQ7Q%3D%3D&desc=905462%20D02%20UNII%20DFS%20Compliance%20Procedures%20New%20Rules%20v02&tracking_number=27155
https://apps.fcc.gov/kdb/GetAttachment.html?id=V2DzGgztnfxjTcht59nQ7Q%3D%3D&desc=905462%20D02%20UNII%20DFS%20Compliance%20Procedures%20New%20Rules%20v02&tracking_number=27155
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• It is possible to incorporate all detect-and-avoid triggering in DFS-equipped U-NIIs without 
needing to modify incumbent radars themselves to do anything with DFS. 

• Radar antenna pattern gain values do not matter for DFS detection. Mainbeam, sidelobe, and 
backlobe levels are not part of the final equation. Radio signal path reciprocity eliminates 
antenna characteristics and radio propagation factors from the equations and from the 
physical problem. 

• If a U-NII uses the same antenna for monitoring radar signals as it does for transmitting data, 
then its antenna gain likewise drops out of the equations via reciprocity. 

• The DFS detection threshold increases as radar transmitter peak power increases. 

• The DFS detection threshold decreases as U-NII transmitter power increases. 
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APPENDIX B 
TECHNICAL CHARACTERISTICS OF RANGE INSTRUMENTATION RADARS 

Table B-1 provides a summary of 5 GHz RIR parameters. Table B-2 lists RIR parameters values 
that are relevant to spectrum sharing. Figure B-1 shows some 5 GHz RIR locations in the U.S. 

Table B-1. Technical Summary of 5 GHz RIRs110 

Radar Nomenclature111 Description Notes 

AN/FPS-16 

High-precision fixed-based RIR. Magnetron 
oscillator transmitter tube, 1 MW peak power; 
3.6 m (12 ft) diameter +44 dBi gain parabolic 

antenna. Beamwidth = 1.2 deg.; range resolution 
= 5 meters (15 ft). 

Derived from 1946-50 Navy 
Bumblebee radar, circa 
1952-55. First purpose-

designed RIR/MIPIR. 52 
built by RCA 1955-1969. 

AN/MPS-25 Mobile (trailer modules) version of the FPS-16. Seven built 1956-1966. 

AN/FPQ-6 

Upgraded version of FPS-16. Transmitter 
modulator feeds traveling wave tube (TWT) 

which drives klystron, 3 MW peak power. 8.8 m 
(29 ft) diameter antenna, +52 dBi gain. 

Beamwidth = 0.38 deg. 

Five built 1958-1964. 

AN/TPQ-18 Transportable (trailer modules) version of FPQ-
6. Six built 1958-1967. 

FPS-105 Compact RIR. Five built 1962-1969. 

AN/MPS-36 Another mobile version of the FPS-16. Fourteen built 1966-1973. 
Two units at Kwajalein. 

AN/FPQ-14 Upgraded version of the FPQ-6/TPQ-18. Unknown number. 

AN/FPS-134 Version of the FPQ-14. Direct conversion of RF 
to IF (no LO stage) in the receiver. Unknown number. 

AN/MPS-39 (aka Multiple 
Object Tracking Radar (MOTR)) 

High power phased array using 1 MW TWT and 
crossed-field (CFA) amplifiers. Simultaneously 

tracks 40 targets; data feeds for 10 targets. 
+46 dBi antenna w. 1 deg. angular resolution. 

Five built 1988-1994. 

FPQ-17 (aka Multiple Target 
Instrumentation Radar (MIR)) 

Phased array using 150 kW TWT. Tracks up to 
16 targets simultaneously. One built. 

RIR-716, RIR-778, RIR-778C 
RIR-980, 

High Accuracy Instrumentation 
Radar (HAIR), 

Remotely Operated 
Instrumentation and Test Radar 

(ROTR) 

Variants of the original FPS-16 design. 
Numerous, at many test 
range, rocket launch and 
space launch locations 

 

                                                
110 The AN/TPQ-39, a weather surveillance variant of the FPS-16, is not included in this table. 
111 “AN” in these designations originally meant Army-Navy (antecedent to 1947 creation of the U.S. Air Force). The 
codes that follow are from the Joint Electronics Type Designation System (JETDS). JETDS details are in Military 
Standards Document MIL-STD-196. 
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Table B-2. Typical 5 GHz RIR Technical Parameter Values Relevant to Spectrum Sharing 

RIR Technical Parameter Typical Value 
5 GHz Radiolocation Band 5250-5925 MHz 
Band Primary Allocation Radiolocation 

Operating Frequency Range Mostly between 5640-5850 MHz112 (210 MHz of spectrum) 
Mainbeam Antenna Gain Between +44 to +54 dBi; +52 dBi is typical. 

Sidelobe and Backlobe Gain ≅ 0 dBi 

Pulse Repetition Rates Between 20/second to 2560/second, non-staggered. 
160/second is commonly used. 

Pulse Modulations CW (P0N) for beaconing; chirped (Q3N) for skin tracking. 
CW (P0N) Pulse Widths Between 0.25 to 5 µs; 1 µs is commonly used. 

Chirped (Q3N) Pulse Widths Between 6 to 50 µs. 
Chirped (Q3N) Bandwidths Between 4 MHz to 100 MHz; 5 MHz is commonly used 

Future Pulse Bandwidth (Q3N) 
Capability for Some Units Upgraded chirp bandwidths of 250 and 500 MHz 

Polarization Circular or linear depending on individual radar 

Beam Scanning Tracking on individual vehicles in the atmosphere or space. 
No wide-angle sky searching or volume scanning. 

 

 

Figure B-1. Some 5 GHz RIR locations in the U.S. 

                                                
112 This 210 MHz is the currently allowed operational frequency range for typical 5 GHz RIRs. The available 
hardware tuning range for many of these radars is wider than this. 
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APPENDIX C 
RANGE INSTRUMENTATION RADAR TRACKING TECHNIQUES 

C.1 Monopulse Technique for RIR Tracking 

The fundamental RIR missions all involve tracking. Tracking requirements set the design 
parameters of these radars. Although there are a number of ways to build tracking radars, RIRs 
use what is arguably the best overall method. It is called single-pulse, or monopulse, technology. 
A diagram of a basic monopulse radar receiver, and of the antenna beam geometry necessary to 
make monopulse target-track processing work, is shown in Figure C-1. 

 

Figure C-1. Block diagram of a monopulse radar receiver including the sum-and-difference 
(Σ and ∆) antenna beam-feed geometry required to make it work. Radar boresight is the center-

line axis of symmetry in each diagram. 

To understand the monopulse process, begin by imagining a pair of microwave horns located at 
the focal point of a high-gain parabolic dish reflector, the feed point for the dish. Bolted together 
side-by-side, the horns have identical radiation patterns that are slightly laterally displaced from 
the center113 as depicted in Figure C-1. Radar pulse echoes received by these two horns are 
                                                
113 The angular horn-pattern displacement shown in Figure C-1 results automatically from the fact that neither horn 
is exactly at the receiving dish focal point. One is a little to the left and the other a bit to the right, the focus itself 
being exactly in-between the two. So each horn sees the incoming plane-wave from a pulse echo at a slightly 
different angle relative to the wave front. Neither horn is at an exact right angle to the wave front as would be the 
case if either were located precisely at the dish focus. 
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routed into a hybrid electronic network with two inputs (one for each horn) and two outputs. The 
network is built so as to produce two outputs that are the angle-dependent sum and difference 
(Σ and ∆ in Figure C-1) radiation patterns of the two offset, input horn patterns. This sum-and-
difference output from the hybrid circuit works on a single radar pulse echo at a time, hence the 
term monopulse. 

The sum-and-difference hybrid outputs are mixed down (classically) or more often direct-
digitized (nowadays) to an intermediate frequency (IF) where they are independently amplified. 
The sum IF path is used to acquire a target and to process its range and Doppler shift (equivalent 
to its velocity) using classic radar receiver processing techniques. This path is ineffective for 
determining angular information about a target’s bearing because the sum lobe is angularly 
broad. 

The IF difference path, in contrast, forms a sharp null. This null makes it unsuitable for 
acquisition, range, and velocity processing. But it is perfect for determining the (absolute) value 
of the angle between the target’s true bearing and the center of the null (the radar antenna’s 
pointing direction) with high accuracy. This differential between the target bearing and the radar 
antenna pointing direction is called the angle error. 

It is not possible, however, to know which side of the null (up/down or left/right) the target is on 
from the difference-path output alone; only the absolute angular distance from the center of the 
null is known. To know which direction the angle error has moved, which is the sign (+/–) of the 
angle error, a separate phase-detection circuit takes in the sum and difference signals from the 
radar’s two IF paths and outputs the side of the null on which it lies. This is the directional sense 
of the angle error. This output is based on which phase (sum or difference) leads the other. 

All of these data from the radar’s three output channels (range, Doppler shift, and sense-signed 
angle error) are fed back to a controller computer that has been pre-calibrated to know how much 
and in which direction to move the radar antenna via servo controllers to update the antenna 
pointing angle to the next place where the target should be in the sky. It implements this as a 
solution to a classic feedback control-loop problem. 

In actual implementation, a set of four or five RF feed horns (a left-right pair, an up-down pair 
and perhaps a reference) are used to produce a full two-dimensional (θ (t), φ (t)) angle-update set 
of outputs for the pointing-system feedback controller. (The concept is easily extended, in theory 
if not so easily in practice, to phased-array antenna elements.) Further, modern monopulse RIR 
tracking systems use stored information about a target’s recent positions and velocities to 
augment the receiver’s raw monopulse data and thus produce digital computer calculation-based 
predictions that give better and smoother pointing-angle updates than would otherwise have been 
available from monopulse outputs alone. Called Radar Open System Architecture (ROSA), this 
modern computer-augmented type of monopulse feedback tracking has been implemented, for 
example, in the FPS-134 radar. 
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C.2 Monopulse Skin Tracking with RIRs at Launch Facilities 

Prior to each launch support operation, each RIR is calibrated using towers located a number of 
kilometers from each radar station. As can be gleaned from the description of monopulse 
tracking given above, the monopulse technique is highly sensitive to the exact radiation pattern 
characteristics of the monopulse antenna feed elements, the positions and orientations of those 
elements relative to the dish surface, and ancillary factors such as gains and losses and phase-
response characteristics of RF cabling. The performance of a monopulse radar is no better, in 
other words, than the pre-flight calibration results. This will be a factor to consider when 
interference is discussed below, as interference can (and does) occur during calibrations as well 
as during launch supports; interference-corrupted calibrations can adversely affect subsequent 
tracking performance. 

Just before each launch, the RIR mainbeam is pivoted to the azimuth of the launch pad and is 
depressed to nearly zero degrees elevation angle, allowance being made for any prescribed 
radiation-hazard exposure cut-outs near the horizon around each station. For many RIRs, such as 
for example those near Cape Canaveral, this initial pre-launch beam positioning puts the 
mainbeams of the radars or at least their first sidelobes directly into strong RF coupling with 
developed town areas where potentially interfering sources are operating. This geometry is 
shown for example in Figure 6 for the RIR at Patrick AFB, south of Cape Canaveral. 

As soon as the vehicle clears the gantry at the pad (or clears the water or separates from a carrier 
aircraft for submarine or airborne launches, respectively), monopulse skin tracking commences. 
In skin tracking, the radar’s transmitted pulses (typically 4 or 5 MHz Q3N chirped modulation at 
a PRF of 160/second) impinge on the vehicle and are reflected (echoed) back toward the 
receiver. The radar receiver and associated feedback-loop control system, including ROSA, work 
for the rest of the flight to track the vehicle using those skin-reflected echoes. 

Initially climbing vertically, vehicles headed for Earth orbit (or for the South Atlantic if they are 
ballistic) perform a pronounced pitch-over maneuver shortly after launch so as to start gaining 
horizontal velocity (ultimately about 28,000 km/hr = 17,500 mi/hr) for orbit. Radars that are 
located collinearly with the flight track (e.g., the three Canaveral RIRs located west of the launch 
pads in Figure 6) tend to have sub-optimal geometry toward the boosters as they are looking into 
a fairly small radar echo-return cross section (mostly the engine bells) and are seeing through 
dense, ionized engine exhaust gases subsequent to pitch-over. RIRs with side-looking geometry, 
such as the fourth radar south of Cape Canaveral in Figure 6, have better geometry for tracking 
since they are seeing larger side-aspect cross-sections and are not looking through exhaust gases 
for their echo returns. In other words, not all RIRs are equally useful for skin tracking; 
impairment of a single, more-useful RIR due to harmful interference can have a disproportionate 
effect on overall tracking accuracy. 

Tracking continues until the LV drops below the RIR’s local horizon. For atmospheric flight 
trajectories that are bound for orbit, this corresponds to a slant distance of about 900 km 
(500 nmi) downrange and a total tracking interval on the order of about 8–10 minutes. (A vehicle 
will enter orbit after about 12–15 minutes of powered flight.) 
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C.3 Monopulse Beacon Tracking 

Radar skin tracking suffers from the disadvantage that every transmitted pulse spreads out on an 
expanding spherical surface as it travels and thus spatially dissipates its energy as the square of 
distance traveled. Its echoes back toward the radar receiver likewise dissipate as the square of the 
return distance; every received radar pulse echo therefore sees an energy loss that goes as the 
fourth power of target range. In decibel terms this loss goes as –40log(r), where r is the target 
distance. An additional significant loss to radar echo returns occurs due to the cross section, σ, of 
the target, which is always less than unity and often around 0.01. For example, σ = 0.01 gives an 
additional –20 dB of echo-return loss in addition to the factor of –40log(r). 

Some LVs carry a radar beacon transponder to improve on the performance of skin tracking.  
Figure C-2 shows a block diagram of such a transponder. 

 

Figure C-2. Block diagram of a simple radar-pulse beacon transponder. 

Although exact designs will vary from one LV to the next, Figure C-2 shows a simple design. A 
single conformal antenna on the LV skin with a hemispherical radiation pattern (and therefore 
about +3 dBi gain) is used for both transmit and receive. The antenna is connected to a four-port 
circulator. Radar pulses received from the RIR are routed by the circulator to a receiver. The 
receiver output is gated to trigger a transmitter, which itself produces high-power RF pulses. 
These pulses are generated on a different frequency than the received pulses but have the same 
pulse width, modulation, and PRR as the received pulse sequence. The transmitted pulses are 
routed back to the transponder antenna via the circulator. RIR beacon systems use constant-
carrier (CW, P0N) pulses that are around 500 ns to 1 µs long, running at a PRR of 160/second. 
The separate uplink and downlink frequencies are discussed below. 
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The key to the beacon system’s desirability compared to conventional pulse-echo skin tracking is 
that the transponder’s on-board transmitter, running from vehicle-supplied power, significantly 
boosts the power of the downlink pulses relative to the strength of radar skin echoes. 
Additionally, the reliable directive gain factor, G, of the beacon transponder system’s antenna 
takes the place of the variability, uncertainty, and loss of the booster’s physical radar echo-return 
cross section σ. 

Overall the use of the radar beacon system converts a system with a –40log(r) round-trip signal 
drop-off and perhaps –20 dB of cross sectional loss into a round-trip loop with just –20log(r) loss 
and roughly +3 dBi antenna gain in the middle. The transmit power of the beacon’s return pulses 
is 400 watts. 

In RIR receivers, monopulse tracking is performed on the beacon transponder downlink pulses in 
the same manner as skin-reflected echoes. The only difference is that the beacon system uses 
different frequencies for uplink and downlink, whereas with skin tracking the emitted and 
reflected energy is always on a single carrier frequency (with allowance made for Doppler 
shifting of the reflected pulses). The disadvantage of beaconing is that it can fail if a vehicle 
breaks up in flight. 

C.4 Metric-Tracking GPS Beaconing 

A second, independent LV beacon system is available. This system is based on reception, 
processing, and re-transmission of Global Positioning System (GPS) position and velocity data. 
Timing signals are received from GPS satellites at L-Band frequencies near 1.6 GHz; processed 
data are re-transmitted to ground-based receivers at the launch facility via a so-called S-Band (2–
4 GHz) transmitter and body-conformal antenna. This system is called metric-tracking GPS 
beaconing. 

At some launch ranges (e.g., the Eastern Range at Canaveral) most or all LVs are so equipped. 
Just as for monopulse beaconing, GPS beaconing can fail if a vehicle breaks up in flight. This 
potential failure mode creates a requirement for skin tracking, which does not depend upon any 
on-board systems in LVs. 
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APPENDIX D 
INTERFERENCE FROM U-NII TRANSMITTERS TO 5 GHZ RANGE RADARS 

D.1 Effect of RF Interference on Monopulse Radar Tracking 

With the 5 GHz RIR tracking system designs and operations understood (Appendix C), we move 
to the topic of how these radars’ tracking is affected by co-channel RF interference. This 
description is cursory but it highlights the first and foremost effect, which is to corrupt and 
disrupt radar tracking channels. Consider the interference situation as drawn in Figure D-1. 

 

Figure D-1. Interference effect in a monopulse radar’s difference (angle error) channel. 

In Figure D-1 the monopulse radar initially tracks an object that is held nearly in the center of the 
radar’s mainbeam. The object’s direction is nearly collinear with the radar antenna’s central axis. 
Then an RF interference signal couples into the radar antenna. As discussed further below, the 
interference will almost certainly not couple via the radar mainbeam; it will instead couple into 
the radar antenna via its backlobes or sidelobes. And so the wave front of the interference arrives 
at the radar’s monopulse feeds from a direction that is off-axis from that of the radar antenna. 
When this happens, the difference channel (that is, the angle error tracking channel) in the radar 
receiver sees the signal from the object being followed plus a second, significantly off-axis 
signal from the interference source. If the signal power from the interference source is 
comparable to or stronger than the radar echo power from the tracked object, then the tracking 
channel may lock onto the interference signal as if it were the “object” being tracked. In that case 
the radar’s track channel will be pulled off-axis, away from the actual object of interest; proper 
tracking will be lost. 

According to Eastern Range (Cape Canaveral) radar personnel, this effect has happened and has 
been documented during launch operations. The quote of note is: “The radar antenna pulls away 
[from the target that needs to be tracked] toward the interference source.”114 Because skin 

                                                
114 Pers. Comm., Mr. C. C. Harrison at Eastern Range (Cape Canaveral) range instrumentation radar number 0.134. 
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tracking and beacon tracking are both performed via monopulse processing, they both will be 
(and apparently are) affected this way. 

D.2 Other Possible Effects of RF Interference on RIR Receivers 

The sum channel (used for target acquisition and ranging) of a monopulse radar may also be 
affected by RF interference. This interference would presumably cause the same sort of target-
loss as has been described and documented in previous NTIA Technical Reports (e.g., [3]) for 
search-and-surveillance radars. Unlike search radars that only return 15–20 echo pulses from 
each target in each scan, RIRs expose their targets to thousands or even millions of pulses during 
long, continuous observations. Such long integrations may reduce target losses in these radars’ 
sum channels. But this mitigating factor is academic if overall target tracking is lost in the first 
place due to the difference-channel tracking interference effect described above. 

NTIA has not done interference-effects testing on wideband chirped radars. We do not know to 
what extent and with what effects future wideband-chirped (250-500 MHz bandwidth) RIR 
observations of space objects may be impacted by RF interference. 

D.3 Interference Coupling from U-NII Transmitters to RIR Receivers 

As described in Table B-2, the RIR antenna mainbeams have gains between +44 and +54 dBi, 
with +52 dBi being typical. Measuring well under an angular degree wide at their 3 dB points 
and being aimed into the sky except at the beginnings and ends of each launch support, these 
beams will not usually couple directly into terrestrial interference sources. 

The RIR antenna backlobes and sidelobes can and do, however, couple interference into the 
monopulse radar antenna feeds. An order-of-magnitude calculation follows for an estimation of 
how much distance would be required between a 4 watt effective isotropic radiated power 
(EIRP) interfering source and a RIR receiver station to avoid interference if the interference 
couples into the RIR via its backlobes or sidelobes. 

The power received by a RIR receiver from the interference source will be: 

 Prx_radar = Ptx_interf + Gtx_interf + Lprop + Grx_radar (D-1) 

where: 

Prx_radar = power coupled into the radar receiver; 

Ptx_interf = power out of the interfering transmitter; 

Gtx_interf = antenna gain of the interfering transmitter; 

Lprop = propagation loss between the interfering transmitter and the radar receiver; 

Grx_radar = gain of the radar antenna in the direction of the interfering source. 
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The threshold for harmful interference into the radar receiver is taken to be, from previous 
studies, 6 dB below the radar receiver’s internal thermal noise floor: 

 Pradar_rx_harmful_interf_thresh = 10log(k × T × Bradar_rx) + NF + Lradar_rx – 6 dB (D-2) 

where: 

Pradar_rx_harmful_interf_thresh = threshold of harmful interference power in radar receiver 

10log(k × T × Bradar_rx) = radar receiver internal thermal noise floor in bandwidth Bradar_rx; 

k = Boltzmann’s Constant = 1.38⋅10-23 J/K = -138.6 dBm/MHz/K; 

T = radar receiver temperature = 290 K; 

NF = RIR receiver noise figure, dB; 

Lradar_rx = other losses in radar receiver. 

In (D-2) we take Bradar_rx = (1/(1 µs pulse width)) = 106 Hz, NF = 8 dB and Lradar_rx = 3 dB. 

So our estimate for a RIR receiver interference threshold is: 

Pradar_rx_harmful_interf_thresh = -174 dBm/Hz + 60 dB + 8 dB + 3 dB – 6 dB = -109 dBm. 

Going back to (D-1) and inserting the value from (D-2) into it, 

 Prx_radar = -109 dBm = Ptx_interf + Gtx_interf + Lprop + Grx_radar . (D-1) 

We solve this for the value of Lprop that would be needed to decouple enough to avoid 
interference: 

 Lprop = -109 dBm – Ptx_interf – Gtx_interf – Grx_radar . (D-1') 

Inserting some nominal values for the remaining variables, 

 (Ptx_interf + Gtx_interf ) = 4 W = +36 dBm in 1 MHz bandwidth (UNII-3 limit) 

and  

 Grx_radar = 0 dBi in backlobe/sidelobe. 

We get for Lprop (the decoupling needed to prevent interference): 

 Lprop = -109 dBm – 36 dB – 0 dBi = -145 dB. 

This would correspond to a free-space separation distance of 80 km (50 mi) at 5.6 GHz. 
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Even if we assume 20 dB of propagation loss above free space due to clutter effects (absorption 
and scattering) so that we only need -125 dB of propagation loss, the required separation distance 
to get below the harmful interference threshold in victim RIR receivers is still 8 km (5 mi). 

This calculation shows that interference sources such as U-NII transmitters with EIRPs on the 
order of just a few watts can cause interference to RIR receivers at distances of at least a few 
kilometers and sometimes (e.g., when the interferers are on rooftops) all the way to the edge of 
local line-of-sight coverage between the interferers and the radar stations, at distances on the 
order of 80 km (50 mi). 
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APPENDIX E 
CURRENT DFS PRF CERTIFICATION TESTING LIMITS 

The FCC Office of Engineering technology (OET) has published the requirements for 
certification of DFS-capable devices [8]. A summary is provided here, pertaining to the 
requirements for pulse repetition frequencies (PRFs) of test radar waveforms, called bins. 

B.1 Radar Test Waveforms for DFS Certification 

Tables E-1 through E-4 show the waveforms used in DFS certification testing, as taken from the 
FCC Knowledge Database (KDB) [8]. 

Table E-1. DFS Certification Short Pulse Radar Test Waveforms 

Radar Type 
Pulse 
Width 
(μsec) 

Pulse Repetition 
Interval (PRI) 

(μsec) 

Number of 
Pulses 

Minimum 
Percentage of 

Successful 
Detection 

Minimum 
Number of 

Trials 

0 1 1428 18 See Note 1 See Note 1 

1 1 

Test A: 15 unique PRI 
values randomly 

selected from the list 
of 23 PRI values in 

Table 5a of [8] 
Roundup: 

 
[(1/360)* 

(19⋅106)]/PRIus 

60% 30 
Test B: 15 unique PRI 

values randomly 
selected within the 

range of 518-
3066 μsec, with a 

minimum increment 
of 1 μsec, excluding 

PRI values selected in 
Test A 

2 1-5 150-230 23-29 60% 30 
3 6-10 200-500 16-18 60% 30 
4 11-20 200-500 12-16 60% 30 

Aggregate 
(Radar Types 1-4) 80% 120 

Note 1: Short Pulse Radar Type 0 should be used for the detection bandwidth test, channel move time, and 
channel closing time tests.  

 
Table E-2. Pulse Repetition Interval Values for DFS Certification Test A 

Pulse Repetition Frequency 
Number 

Pulse Repetition Rate (PRR) 
(pulses per second) 

Pulse Repetition Interval 
(microseconds) 

1 1930.5 518 
2 1858.7 538 
3 1792.1 558 
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Pulse Repetition Frequency 
Number 

Pulse Repetition Rate (PRR) 
(pulses per second) 

Pulse Repetition Interval 
(microseconds) 

4 1730.1 578 
5 1672.2 598 
6 1618.1 618 
7 1567.4 638 
8 1519.8 658 
9 1474.9 678 
10 1432.7 698 
11 1392.8 718 
12 1355 738 
13 1319.3 758 
14 1285.3 778 
15 1253.1 798 
16 1222.5 818 
17 1193.3 838 
18 1165.6 858 
19 1139 878 
20 1113.6 898 
21 1089.3 918 
22 1066.1 938 
23 326.2 3066 

 
Table E-3. DFS Certification Long Pulse Radar Test Waveforms 

Radar Type Pulse Width 
(μsec) 

Chirp 
Width 
(MHz) 

PRI 
(μsec) 

Number of 
Pulses per 

Burst 

Number of 
Bursts 

Minimum 
Percentage of 

Successful 
Detection 

Minimum 
Number of 

Trials 

5 50-100 5-20 1000-
2000 1-3 8-20 80% 30  

 
Table E-4. DFS Certification Frequency Hopping Radar Test Waveform 

Radar Type Pulse Width 
(μsec) 

PRI 
(μsec) 

Pulses 
per Hop 

Hopping 
Rate 
(kHz) 

Hopping 
Sequence 
Length 
(msec) 

Minimum 
Percentage of 

Successful 
Detection 

Minimum 
Number of 

Trials 

6 1 333 9 0.333 300 70% 30 
 
The largest PRI values in the tables correspond to the lowest PRRs. In the tables, the largest PRI 
values are 200-500 microseconds. 
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Table E-5. Largest PRIs Used in DFS Certification Testing with Corresponding PRRs 

Reference Table Largest PRIs (µs) Corresponding PRRs Notes 
E-1 200-500 2000-5000/second  
E-2 3066 326/second Lowest of all DFS-testing PRRs 
E-3 1000-2000 500-1000/second  
E-4 333 3003/second  

 
None of the current DFS certification waveforms comes close to the 160/second PRR that is 
preferred for RIR operations. The closest testing waveform, 326/second from Table E-2, is used 
in just one set of DFS certification tests. This omission of the low PRR from DFS testing is 
thought to be root cause of the U-NII-2C interference to RIR receivers. 
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