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DISCLAIMER 

Certain products, technologies, and corporations are mentioned in this report to describe aspects 
of the ways that digital images and videos are created, modified, transmitted, and consumed at 
present or may be in the future. The mention of such entities should not be construed as any 
endorsement, approval, recommendation, prediction of success, or that they are in any way 
superior to or more noteworthy than similar entities that were not mentioned. 
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CONFIDENCE INTERVALS FOR SUBJECTIVE TESTS AND OBJECTIVE METRICS 
THAT ASSESS IMAGE, VIDEO, SPEECH, OR AUDIOVISUAL QUALITY 

Margaret H Pinson1 

This report describes a methodology that measures the precision of objective 
metrics that assess image quality, video quality, speech quality, or the overall 
audiovisual quality. We assess the confidence intervals of 60 subjective tests and 
use a confusion matrix to classify the conclusions reached when two subjective 
test labs perform the same experiment. This allows us to compute the metric’s 
confidence interval and, when confidence intervals are used to make decisions, to 
prove whether the metric performs similarly to a subjective test with 15 or 24 
subjects. When confidence intervals are not used, the metric’s precision is likened 
to a certain number of people in an ad-hoc quality assessment. The methods in 
this report are developed and evaluated using speech quality, video quality, image 
quality, and audiovisual quality datasets.  

Keywords:  Audiovisual quality, confidence interval, image quality, metric, speech quality, 
subjective test, video quality  

1. INTRODUCTION 

Standard statistical techniques fail to answer critical questions raised by standards developing 
organizations (SDO) when validating quality metrics. The SDOs have agreed upon subjective 
test methods where panels of people rate the quality of images, speech, video, or audiovisual 
media and then aggregate these ratings to produce Mean Opinion Scores (MOS). The SDOs have 
also agreed upon statistical methods to assess the accuracy of metrics that estimate MOSs.   

The most common unanswered questions are:  

• How do we decide that a metric is good enough?  

• When does a metric’s performance rise to that of subjective testing?  

• How do we explain a metric’s precision to naive users? 

Through early 2020, lack of verifiable answers caused three problems. First, SDOs assume that 
metrics cannot rise to the accuracy of subjective testing, which is unproven. Second, metric 
developers and International Telecommunications Union (ITU) Recommendations fail to provide 
guidance on metric precision. Consequently, many users assume metrics have infinite precision, 

 
1 The author is with the Institute for Telecommunication Sciences, National Telecommunications and Information 
Administration, U.S. Department of Commerce, Boulder, CO 80305. 
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which we know to be incorrect. Third, SDOs use Peak Signal to Noise Ratio (PSNR) as a 
minimum performance benchmark.  

The PSNR benchmark asks the question, “Would a well-informed user choose PSNR instead of 
this alternative metric?” A metric is judged worthy if its accuracy is statistically better than 
PSNR. If the user could not use PSNR, due to the lack of a high quality version of the media to 
act as a reference, then the metric is judged worthy if its accuracy is statistically equivalent to or 
better than PSNR. The PSNR performance benchmark is pragmatic yet hotly disputed. For 
example, PSNR is not based on human perception, performs poorly for transmission errors, has a 
non-linear relationship to MOS, and has a strong scene bias (e.g., PSNR’s accuracy can be 
improved by removing an offset for each reference video).  

We collected individual subject ratings from 60 subjective tests that were performed in 
compliance with ITU-R Rec. BT.500, ITU-T Rec. P.913, and ITU-T P.800. When aggregated, 
2,331 subjects rated the quality of 17,665 media files, for a total of 433,398 subject ratings. The 
media files include 2,592 images (15%), 7,959 speech samples (45%), 6,445 silent videos (36%), 
and 669 audiovisual files (4%). The ratings include 90 lab-to-lab comparisons, where two labs 
conducted the same subjective test. The ratings also include 13 comparisons between similar 
subjective tests (e.g., the same stimuli but a different rating method, at the same lab or a different 
lab). These 60 subjective tests were supplemented by MOSs from 28 video quality subjective 
tests for which individual subject ratings are not available.  

We begin by analyzing the expected behavior of subjective tests. We define ΔSCI, which is a new 
method to measure the precision of subjective test. Conceptually, ΔSCI is the subjective test’s 
overall confidence interval (CI). We also establish a confusion matrix that categorizes the 
conclusions reached by multiple labs conducting the same subjective test. 

Using our 60 datasets, we calculate ΔSCI and the relationship between ΔSCI and the number of 
subjects in the test. We condense our findings into the expected CI of a well-designed and 
carefully conducted subjective test that uses 24, 15, 9, or 6 subjects and the Absolute Category 
Rating (ACR) method. Using the confusion matrix, we measure the likelihood that two 
subjective tests will reach different conclusions. These measurements establish the expected 
precision of subjective ratings.  

We use a second confusion matrix to compare conclusions reached by the metric with 
conclusions reached by subjective tests. Within that confusion matrix, we use a constant value to 
categorize the metric’s conclusions (i.e., A is better than, equivalent to, or worse than B). To be 
fair, we ignore the subjective test’s rating distributions and use our empirical data to categorize 
the subjective test’s conclusions, based on the expected CI of a well-designed and carefully 
conducted subjective test. These design elements prevent unintended bias in favor of subjective 
tests.  

We propose a method for calculating a CI that indicates the metric’s precision. We select the CI 
where the metric is no more likely to falsely differentiate between two stimuli or falsely rank two 
stimuli than a subjective test. Our subjective data analyses provide error rate thresholds. We 
recommend an ideal CI (selected with stringent criteria) and a practical CI (selected with less 
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stringent criteria). We propose a method to show that the metric is equivalent to a subjective test, 
when these CIs are used to make decisions. 

Metric values are often compared directly, without CIs. Therefore, we also propose a method to 
equate the metric to a certain number of subjects in an ad-hoc quality assessment or pilot test. 
This method assesses the metric’s precision when CIs are not used. We use a confusion matrix, a 
figure-of-merit based on the level of agreement between subjective tests, and a threshold based 
on the level of disagreement between subjective tests. 

These new methods provide insights into the metric’s precision. Our supporting analyses of 
subjective ratings provide insights into the precision and repeatability of subjective tests. The 
statistical methods and observed trends can be used to predict future trends when assessing 
image quality, video quality, speech quality, and audiovisual quality. Code implementing the 
statistics described in this report can be found in the NRMetricFramework GitHub repository [1]. 



 

4 

2. BACKGROUND 

2.1 Confidence Intervals for Metrics 

In the early 1990s, subject matter experts met at NTIA/ITS to brainstorm improved methods to 
express the precision of video quality metrics. These discussions culminated in ATIS T1.TR.72 
[2] and ITU-T Rec. J.149 [3]. 

The first proposed solution, resolving power, was included in both Recommendations. Brill et al. 
[4] provides the clearest presentation of the resolving power statistic. Pinson and Wolf [5] 
demonstrates resolving power on subjective test data. Loosely described, resolving power is the 
threshold at which 95% of all stimulus pairs are significantly different. Resolving power is 
calculated for a specific subjective dataset (e.g., a subjective dataset conducted to validate the 
metric). Either the metric is mapped to the subjective test or vice versa.  

Resolving power has been quietly rejected by industry and subject matter experts. Resolving 
power yields large thresholds and a pessimistic conclusion that even the best metric has minimal 
practical value. See [5] for example data.  

The second proposed solution, based on a confusion matrix, appears in [6] and ATIS T1.TR.72. 
In a nutshell, the idea is to use a confusion matrix that classifies the conclusions reached by a 
subjective test with the conclusions reached by the metric, measured as a function of the change 
in metric value that has been deemed to be significant. When two stimuli A and B are compared, 
we conclude that either A is better than B, A is equivalent to B, or A is worse than B. We can 
compute such comparisons for all pairs of stimuli in a dataset to calculate overall statistics on, 
for example, how often the subjective test and the metric reach the same conclusion. 

This confusion matrix idea also failed to gain traction. One problem is that the method analyzes 
many CI options without recommending how to choose among them. The method proposed in 
this report is inspired by the ATIS T1.TR.72 confusion matrix method, yet includes major 
changes to the underlying algorithm. 
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3. SUMMARY OF SUBJECTIVE DATASETS 

Table 1 summarizes the subjective datasets that we will use in this report. Occasionally, this 
simplified presentation may be confusing or misleading. For example, if this report uses only 
part of a dataset, then Table 1 does not describe the unused parts of the dataset. To fully 
understand the experiment designs, refer to the original publications [7] to [34].  

Reading these references should not be necessary. The omitted information is not used by this 
report’s analyses (e.g., media subject matter, impairments, test environment, and subject 
demographics). We would need significantly more data to develop a general rule that 
characterizes the influence of these secondary factors.  

Table 1 uses horizontal lines to distinguish between experiments. Most of these experiments 
contain one subjective test, but the following experiments contain two or more distinct subjective 
tests: ITS4S3, ITU-T P.Sup23, Private Video Dataset #1, and all of the VQEG validation tests. 
The tally of 60 subjective tests in the introduction accounts for this distinction. 

Several of these experiments contain a complex division of stimuli among subjects at different 
labs. We define a stimulus to be one file containing an image, video, or speech sample. If the 
stimuli are divided into subsets and rated by different subject pools, then Table 1 contains one 
line for each subset. This line specifies the number of labs, stimuli, and subjects associated with 
that subset.  

Table 1 contains the following columns: 

• Dataset Name of the dataset 

• Ref. Reference to a publication that describes the dataset  

• Open Access Whether the dataset is available to researchers (as of August 2020) 

• Study Type “Crowdsource” for crowdsourcing experiments; 
“Field” for field studies (e.g., exploratory designs, real-world impairments 
with confounding variables, prototype tests with few subjects);  
“Lab” for controlled lab studies; or 
“SDO” for controlled lab studies conducted by standards developing 
organizations according to rigorous test plans 

• Media Whether the dataset contains images, speech, video (without sound), or 
audiovisual media (video with sound) 

• Method Subjective test method 

• Scale [1..5] for the discrete 5-level scale: excellent, good, fair, poor, and bad;  
[0..100] for the continuous 100-level scale;  
[-3..3] for the 7-level comparison scale 
[0,1] for a Boolean scale (acceptable, or unacceptable)  
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• Subsets The names of media subsets (assessed by distinct subject pools); or 
 “—” if all subjects rated all stimuli 

• Labs Number of labs that contributed subject ratings  

• Stimuli Number of stimuli 

• Subjects Number of subjects; 
“—” if individual subject ratings are not available; or 
(Y = X1 + X2 + … + XN) if subjects at multiple labs rated the same 
stimuli, where Y is the total number of subjects, Xi is the number of 
subjects from one lab, and N is the number of labs  

• Available “Ratings” if individual subject ratings are available; 
“MOS” if only mean opinion scores (MOS) are available; or 
“Simulated ratings” if a technique other than subjective testing was used 
to simulated MOSs (see [13]) 

Most of these datasets use the ACR method, where subjects view and rate each stimulus in 
isolation. One dataset uses the Comparison Category Rating (CCR) method, which is also known 
as the Double Stimulus Comparison Scale (DSCS) or Pair Comparison (PC). CCR presents two 
stimuli in random order, using a 7-level scale. We removed the random ordering before our 
analyses, so most of the data is in the range [0..3]. Several datasets use the Double Stimulus 
Continuous Quality Scale (DSCQS) method. DSCQS subjects view the source (SRC) video, 
view the processed video sequence (PVS), and then rate the SRC and PVS separately on [0..100] 
scales. The Difference of Scores (DOS) is calculated from these separate ratings. We will 
analyze all three sets of ratings (SRC, PVS, and DOS). These subjective methods are described 
in [35]. 

Several datasets use non-standard methods. Public safety #1 and Public Safety #2 asked subjects 
to rate all stimuli on both a 5-level ACR scale and a Boolean scale. The latter assessed whether 
the video quality presented was acceptable for public safety practitioner tasks (e.g., tactical 
response, observation, video recordings). The UPM-Acreo dataset compares 5-level ACR with 
the Content-Immersive Evaluation of Transmission Impairments (CIETI) method. CIETI 
produces single stimulus ratings on the ACR’s [1..5] scale. For details on the CIETI method, see 
[25] and its references. The Private Video Dataset #3, Netflix Quality Variation 2017, uses both 
5-level ACR and Single Stimulus Continuous Quality Evaluation (SSCQE). 

The CCRIQ [10] dataset’s subjects rated each image on an HD monitor and a 4K monitor. An 
increase of ≈0.2 MOS was associated with the 4K monitor for images with MOS greater than 3.0 
on a [1..5] scale, while the 4K and HD monitor MOSs were equivalent for images with MOS less 
than 3.0. We will merge the 4K and HD ratings into a single subject pool with twice the number 
of subjects (i.e., one for the 4K monitor and another for the HD monitor). Thus, CCRIQ 
demonstrates a subjective test where there is a small but statistically significant difference of 
opinion among subjects (due to the monitor used). 
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Some of the datasets are distributed with individual subject ratings, which makes more analyses 
possible. Most of these datasets are distributed through the Consumer Digital Video Library 
(CDVL, www.cdvl.org). The Supplement 23 to the ITU-T P Series (P.Sup23) datasets are 
available on the ITU website (see [16]). Some of the datasets are distributed with MOSs only. 
More information on these datasets, including the download link, can be found in the 
NRMetricFramework GitHub repository [36]. 

The remainder of the datasets in Table 1 cannot be distributed. The private speech dataset #1 
contains results from proprietary subjective ACR tests conducted on narrowband speech codecs 
using simulated wireless channels. The private speech dataset #2 contains results from 
proprietary subjective ACR tests conducted on narrowband speech codecs using wireline and 
simulated wireless channels. The private video dataset #1 contains two subjective tests 
conducted on the 100-point scale: one rated by experts and the other by crowdsourcing. The 
private video dataset #2 contains 1-minute video sequences.  

The Video Quality Experts Group (VQEG) Multimedia experiment designs are published in 
[32], but the ratings, metric data, and videos are protected by a multiple party non-disclosure 
agreement. ITS obtained permission from all participants to use the VQEG Multimedia ratings to 
develop improved statistical analysis methods for objective metrics. The original analysis 
produced a technique to use common subsets of stimuli to map multiple datasets onto a single 
scale, as proposed in [5]. Common subsets of stimuli are available for the VQEG Multimedia, 
High Definition Television (HDTV), and Hybrid Perceptual Bit-stream (Hybrid) datasets. These 
common sets are not noted in the table below.   

Table 1 contains datasets that assess the quality of images, videos, audiovisual media, and 
speech. The subjective test methods and rating tasks are fundamentally alike. However, the 
experiment designs contain major differences due to the treatment of impairments, which are 
referred to as conditions by speech quality researchers and Hypothetical Reference Circuits 
(HRC) by video quality researchers. 

The image and video datasets use similar experiment designs, because images are a simplified 
case of “video without motion” when both are presented on digital monitors. Different scenes 
have a major impact on image and video impairments, which results in a wide variance of MOSs. 
While experiment designs focus on impairments, analyses focus on individual PVSs (i.e., rating 
distributions for a single image or video file). Therefore, each file is typically rated by 15 or 24 
subjects. Audiovisual datasets follow these same trends.  

Speech tests are organized differently. Different talkers and utterances produce similar MOSs. 
Analyses typically ignore the file response (e.g., distribution of ratings for a single speech file) in 
favor of condition response (e.g., a particular speech codec, bit-rate, and packet loss rate). 
Consequently, speech quality datasets typically contain fewer subject ratings per file (e.g., 8 to 
12) and more files per condition (i.e., more source stimuli for each impairment).  

Because of this difference, we will occasionally analyze the condition response of speech quality 
datasets. Still, speech quality metrics predict the quality of a single stimulus (file), just like image 
and video quality metrics. Therefore, our ultimate goal for both subjective test and metric 
analyses is to analyze individual files (i.e., an image, short video, or speech utterance).  

https://www.cdvl.org/
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When a video quality test is conducted in multiple labs, all subjects view and rate the same video 
files. By contrast, when a speech quality test is conducted in multiple labs, each lab typically 
selects original speech utterances in their native language to associate with each impairment. 
That is, subjects from different labs analyze the same condition using different files. The ITU-T 
Rec. P.Sup23 dataset is designed this way, so we cannot use it for lab-to-lab comparisons. The 
only speech dataset that we can use for lab-to-lab comparisons is private speech dataset #3. 
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Table 1. Subjective Tests with Published Subject Rating 

Dataset Ref. Open 
Access Study Type Media Method Scale Subsets Labs Stimuli Subjects Available 

401 
[7] Yes Crowdsource Speech 

ACR [1..5] — 1 1152 8 (192 per condition) 
Ratings 501 ACR [1..5] — 1 200 24 (96 per condition) 

701 ACR [1..5] — 1 1152 8 (128 per condition) 
AGH/NTIA/Dolby [8]  Yes Field Video ACR [1..5] — 3 230 71 = 31 + 22 + 18 Ratings 
BID [9] Yes Lab Image ACR [1..5] — 1 582 — MOS 

CCRIQ [10] Yes Field Image ACR [1..5] Blue 
Red 3 221 

171 
26 = 9 + 8 + 9 
27 = 9 + 9 + 9 Ratings 

CCRIQ2 [11] Yes Field Image ACR [1..5] — 1 88 19 Ratings 
CID2013 [12] Yes  Image ACR [1..5] — 1 474 — MOS 

DIQA [13] Yes Field Image Objective — 
Fine Reader 
Omni 
Tesseract 

— 175 — Simulated 
ratings 

ITS 2010 [14] Yes Lab Audio & 
video ACR [1..5] — 1 240 ≈26 Ratings 

ITS AV-Sync 
2010 [15] Yes Lab Audio & 

video ACR [1..5] — 1 297 28 = 12 + 16 Ratings 

ITU-T P.Sup23 [16] Yes2 SDO Speech 
ACR 
CCR 
ACR 

[1..5] 
[-3..3] 
[1..5] 

EXP1 
EXP2 
EXP3 

3 
3 
4 

176 
136 
200 

72 = 24 + 24 + 24 
144 = 48 + 48 + 48 
96 = 24 + 24 + 24 + 24 

Ratings 

ITS4S [17] Yes Field Video ACR [1..5] Full 
Partial 

1 
2 

813 
212 

27 
51 = 27 + 24 Ratings 

ITS4S2 [18] Yes Field Image ACR [1..5] — 1 1429 16 Ratings 

ITS4S3 [19] Yes Field Video ACR [1..5] 

CS 
SR 
CW 
VW 

1 
1 
1 
1 

99 
99 
99 
99 

14 
17 
14 
15 

Ratings 

 
2 ITU-T P.Sup23 constrains use of the speech files to the development of new and revised ITU-T Recommendations. This report does not use the speech files. 
Also, our goal is to develop and socialize new analysis techniques for potential inclusion in ITU-T Rec. P.1401, “Methods, metrics and procedures for statistical 
evaluation, qualification and comparison of objective quality prediction models.”  
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Dataset Ref. Open 
Access Study Type Media Method Scale Subsets Labs Stimuli Subjects Available 

MPR 
FG 

1 
1 

99 
99 

13 
19 

ITS4S4 [20]  Yes Field Video ACR [1..5] — 1 196 26 Ratings 

KoNVid-1k [21], 
[22] Yes Crowdsource Image ACR [1..5] — 1 961 — MOS 

LIVE-Wild [23] Yes Crowdsource Image ACR [0..100] — 1 1,153 — MOS 

Private Speech 
Dataset #1 — No Lab Speech ACR [1..5] —3 1 1,359 

≈11, ≈22, or 43 per file 
344 or 440 per 
condition 

Ratings 

Private Speech 
Dataset #2 — No Lab Speech ACR [1..5] — 1 2,432 8 per file 

512 per condition Ratings 

Private Speech 
Dataset #3 — No Lab Speech ACR [1..5] 

A 
B 
C 
D 

2 

288 
288 
288 
288 

18 = 10 + 8 
16 = 8 + 8 
16 = 8 + 8 
16 = 8 + 8 

Ratings 

Private Video 
Dataset #1 — No Lab 

Crowdsource Video ACR [0..100] A 
B 1 75 

112 
15 experts 
61 crowdsource Ratings 

Private Video 
Dataset #2, 
OPTICOM 

— No Lab Video ACR [1..5] — 1 60 30 Ratings 

Private Video 
Dataset #3, Netflix 
Quality Variation 
2017 

— No Lab Video ACR, 
SSCQE [1..5] Subset 1 

Subset 2 
2 
2 

180 
180 

102 = 51 + 51 
98 = 50 + 48 Ratings 

Public Safety #1 [24] Yes Lab Video ACR [1..5] 
0 or 1 — 1 400 16 first responders Ratings 

Public Safety #2 — Yes Lab Video ACR [1..5] 
0 or 1 — 1 576 19 first responders Ratings 

UPM-Acreo [25] Ratings Lab Audio & 
Video 

ACR, 
CIETI [1..5] 

ACR(V) 
CIETI(V) 
CIETI(AV) 

2 132 
20 
22 
21 

Ratings 

 
3 The files and subjects were divided into overlapping subsets.   
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Dataset Ref. Open 
Access Study Type Media Method Scale Subsets Labs Stimuli Subjects Available 

VIME1 [11] Yes Field Image ACR [1..5] — 1 101 21 Ratings 

VQEG FRTV 
Phase I 

[26], 
[27] Yes SDO Video DSCQS [0..100] 

525-line, low  
525-line, high 
625-line, low 
625-line, high 

4 
4 
4 
4 

100 
100 
100 
100 

70 = 18 + 18 + 18 + 16 
70 = 18 + 18 + 18 + 16 
70 = 18 + 18 + 18 + 16 
67 = 18 + 17 + 16 + 16 

Ratings 

VQEG FRTV 
Phase II 

[28], 
[29] Ratings SDO Video DSCQS [0..100] 525-line 

625-line 
2 
1 

63 
70 

64 = 32 + 32 
27 Ratings 

VQEG HDTV [30] Yes 
(Mostly) SDO Video ACR [1..5] 

HD1 1 168 

24 each 
 Ratings 

HD2 1 168 
HD3 1 152 
HD4 1 168 
HD5 1 168 
HD6 1 168 

VQEG Hybrid [31] Ratings SDO Video ACR [1..5] 

HD1 1 184 

24 each Ratings 

HD2 1 184 
HD3 1 184 
HD4 1 184 
HD5 1 184 
VGA1 1 114 
VGA2 1 194 
VGA3 1 184 
WVGA1 1 194 
WVGA2 1 120 

VQEG 
Multimedia (MM) [32] No SDO Video ACR [1..5] 

13 VGA 
resolution 
subsets 

13 166 each — MOS 

VQEG 
Multimedia 2 
(MM2) 

[33] Yes Lab & Field Video ACR [1..5] — 10 60 
213 = 

28+9+34+25+25+ 
24+24+14+15+15 

Ratings 

VQEG RRNR-TV [34] Ratings SDO Video ACR [1..5] 525-line 
625-line 

2 
2 

168 
168 

32 = 16 + 15 
31 = 16 + 15  Ratings 
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4. CONFIDENCE INTERVALS FOR SUBJECTIVE TESTS 

Let us begin by analyzing the precision of subjective tests. The intermediate data for this section 
appears in Appendix A. Section 3 contains information on where to obtain the subjective ratings, 
if these are publicly available. 

Pinson et al. [33] proves that MOSs are relative, not absolute. That is, we expect the ordering 
and relative distances between MOSs to be replicable when we conduct the same subjective test 
in two labs. Conversely, we do not expect multiple labs to produce identical MOSs. We will 
accept the theorem that MOSs are relative for the remainder of this report.  

One of the most common analyses performed on subjective data is to compare the MOSs of two 
stimuli. For example, we encode the same sequence at two different bit-rates and apply the 
paired sample Student’s t-test to determine if the MOSs are statistically different, given the 
distribution of subject ratings for each stimulus.  

Video quality metrics traditionally estimate MOS, which we will refer to as 𝑀𝑀𝑀𝑀𝑀𝑀� . Very few 
metrics estimate the distribution of subject ratings, so we cannot use the Student’s t-test to 
compare 𝑀𝑀𝑀𝑀𝑀𝑀�𝑠𝑠. We have two options to determine whether the difference between two 𝑀𝑀𝑀𝑀𝑀𝑀� s is 
significant. First, we can use a CI. Second, we can use deterministic math (e.g., any difference in 
metric values is assumed to be significant).  

Either way, we have confounding factors:  

• Source of data (subjective ratings versus objective metric)  

• Type of data (collection of ratings versus 𝑀𝑀𝑀𝑀𝑀𝑀� )  

• Method of comparison (statistical test, CI, or deterministic math)  

This predisposes our measurement sensitivity in favor of subjective testing. Philosophically, this 
is undesirable. Our lack of understanding of the sensitivity of subjective test data can lead users 
to draw unwarranted negative conclusions about the accuracy of metrics. When we evaluate the 
accuracy and precision of subjective tests, we use probability theory with the understanding that 
quality ratings include random processes. However, we do not take the final step of describing 
the precision of the subjective test’s MOSs in a way that can be easily applied to 𝑀𝑀𝑀𝑀𝑀𝑀� s. 
Therefore, we will begin by investigating the precision of subjective tests, measured as a 
constant CI. We will then delve deeply into the differences that occur when a subjective test is 
repeated at two different labs. We will conclude by investigating the impact of the rating scale on 
these lab-to-lab differences.  

4.1 From Student’s t-test to Confidence Interval 

In this section, we will explore the relationship between conclusions reached by the Student’s 
t-test and the distance between two MOSs. This prepares us to define ΔSCI, which is a new 
measure of the precision of subjective test.  
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Given a subjective test, we will choose all pairs of stimuli, A and B, where both stimuli were 
rated by the same subjects and the stimuli are drawn from the same dataset. An occasional 
missing rating is acceptable. For each pair of stimuli, A and B, we will measure ΔS, the absolute 
value of the distance between the MOSs of A and B (i.e. MOS(A) – MOS(B)). We will also use 
the paired stimuli Student’s t-test to compare the rating distributions for A and B at the 95% 
confidence level.4 We will record 0 if the conclusion is that the stimuli are equivalent, and 1 if 
the conclusion is that A and B are different. We will tally these comparisons in a new binary 
variable, EQ.  

We will bin ΔS by 0.1 MOS intervals (0 ±0.05, 0.1 ±0.05, 0.2 ±0.05, …) and compute π, the 
average response for that population, expressed as a percentage (i.e., average the 0/1 responses 
and multiply by 100).  

 π = mean(EQ) × 100 (1) 

Note that π ranges from [0..100] where 0% means that all pairs of stimuli (A, B) have equivalent 
quality, and 100% indicates that all pairs of stimuli have significantly different quality (measured 
at the 95% confidence level). 

Figure 1 plots π as a function of ΔS. For this computation, subjects from different labs are pooled 
together. If the dataset contains subsets of stimuli rated by different subsets of subjects, then the 
pairs (A, B) are constrained such that both A and B must appear in the same subset of subjects. 
The left sub-figure contains VQEG HDTV and VQEG Hybrid datasets, which include data from 
16 subjective tests. These lab studies were conducted according to VQEG validation test plans as 
a critical element of the standards development process. These datasets use conventional 
experiment designs (e.g., a full matrix of scenes and impairments). The right sub-figure contains 
field studies (i.e., AGH/NTIA/Dolby, CCRIQ, CCRIQ2, ITS4S2, ITS4S3, ITS4S4, and VIME1). 
These datasets seek increased realism at the cost of reduced control and more confounding 
factors in the experiment design. AGH/NTIA/Dolby explores novel experiment designs, while 
the other datasets analyze photographs from commercial cameras. The VQEG MM2 field study 
is omitted from Figure 1 due to the abnormally large number of subjects. Notice how compact 
the lab studies are compared to the field studies. This indicates the value of carefully constructed 
experiment designs that control as many variables as possible.  

Each dataset is plotted separately as narrow blue lines. Datasets with 24+ subjects are plotted as 
solid blue lines, and datasets with 23 to 13 subjects are plotted as dashed-dotted blue lines. The 
heavy black line aggregates the pairwise conclusions from all datasets on that sub-plot, further 
constrained that all pairs (A, B) must be drawn from the same dataset. Thus, the heavy black line 
indicates the median response.  

Figure 2 plots π as a function of ΔS for four datasets that were conducted in multiple labs: 
CCRIQ, ITS4S4, AGH/NTIA/Dolby, and VQEG MM2. Each thin line (blue or pink) contains 
data from one lab’s subjects. Blue indicates the subjects were in a controlled environment; purple 

 
4 The other logical choice would be 100%, thus ensuring all stimulus pairs can be distinguished. Subject ratings are 
impacted by random processes, so we must expect unusual outliers: stimulus pairs that cannot be distinguished 
despite being separated by a relatively large ΔS. We do not want to give these outliers undue influence. We will 
apply this same philosophy to objective metric outliers. 
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indicates the subjects were in a public environment (e.g., cafeteria, patio, or hallway). CCRIQ 
subdivides each lab into the two subsets (Red and Blue), for a total of six sets of subjects. Solid 
lines indicate 24+ subjects, dot-dashed lines indicate 23 to 13 subjects, and dashed lines indicate 
9 to 8 subjects. The thick black line includes all subjects (i.e., pairs (A, B) use ratings from all 
labs). Thus, the heavy black line shows a low ΔS that reflects the conclusions reached by the 
entire dataset, when all subjects are pooled. 

 

Figure 1. Relationship between π and ΔS for lab studies (left) and field studies (right).  

 

Figure 2. Relationship between π and ΔS for subjective tests conducted at multiple labs. 
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Figure 2 shows us that the ΔS needed to distinguish between stimulus pairs increases as the 
number of subjects decreases. ITU-R Rec. BT.500 recommends 15 subjects and has 
recommended so for decades. ITU-T Rec. P.913 recommends 24 subjects, based on the 
experience of subject matter experts shared during discussions at VQEG meetings and analyses 
of the VQEG MM2 multiple lab study [33]. To summarize [33], 24 subject experiments yield a 
much more stable and repeatable experiment result across different test labs than 15 subject 
experiments; and the averaged lab-to-lab correlations are always 0.96 or greater, which indicates 
a well conducted experiment. Also note that two of the four experiments in Figure 2 have an 
abnormally large number of subjects: 213 for CCRIQ and 71 for AGH/NTIA/Dolby.  

Caution must be taken to not extrapolate other facets of subjective tests based on the trends 
shown in Figures 1 and 2. The VQEG MM2 data in Figure 2 plots labs with different test 
environments and different numbers of subjects. When we examine only the solid lines or only 
the dot-dashed lines (containing a similar number of subjects), the test environment (controlled 
or public) has minimal impact on the relationship between π and ΔS. However, the analyses of 
the VQEG MM2 experiment presented in [33] concluded that 35 subjects are needed in a public 
environment to imitate the precision of 24 subjects in a laboratory environment. That analysis 
asked a very different question (i.e., the percentage of stimulus pairs that could be differentiated 
using the Student’s t-test). Similarly, Figures 1 and 2 change by less than 1% when subject bias 
is removed, despite reducing the standard deviation of scores (see [38] and [37]). The 
aggregation required to calculate the ΔS versus π curves masks these phenomena. 

We now define a new measure of the precision of a subjective test, ΔSCI. We call this the test’s 
CI, but this should not be confused with CIs calculated by other statistical processes. We define a 
subjective test’s CI, ΔSCI, as the ΔS level that is closest to distinguishing between 95% of all 
stimuli pairs. For example, the thick black line in Figure 1 yields the following CIs for 5-level 
ACR tests: lab studies reach π = 93% for ΔSCI  = 0.5, and field studies reach π = 96% for 
ΔS = 0.7. 

4.2 Confidence Interval for a Typical Subjective Test  

In this section, we will calculate ΔSCI for many datasets, to establish trends. We calculate ΔSCI  
as the ΔS that comes closest to producing π = 95% for the datasets in Table 1 for which 
individual subject ratings are available. Figure 3 shows the resulting relationship between ΔSCI 
and the number of subjects for 5-level ACR datasets. This figure omits datasets that used other 
rating scales (e.g., DSCQS, CCR, ACR-HR); these will be discussed later.  

Figure 3 presents the same relationship in three different ways: a 2-D histogram and two scatter 
plots. On the histogram, color indicates the number of datasets in the bin. On the scatter plots, 
the area of the dot increases linearly with the number of datasets that produce this result. The 
large blue dot represents the most common result (ΔSCI = 0.5 for 24 subjects). The blue circles 
mark extrapolations for fewer subjects. 

VQEG HDTV, VQEG Hybrid, VQEG RRNR-TV, and ITU-T P.Sup23 were conducted by SDOs 
using the 5-level ACR scale and 24 subjects. These tests represent an ideal of carefully designed 
and executed lab studies. Considered individually, 21 of the 27 subjective tests yield ΔSCI = 0.5, 
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and 6 of 27 yield ΔSCI  = 0.6. The type of media (speech or video) does not appear to impact 
ΔSCI.  

 

Figure 3. Relationship between ΔSCI and number of subjects in the dataset, presented as a 
histogram (top), scatter plot (bottom left), and scatter plot with log y-axis (bottom right). 

We will now focus on the VQEG HDTV and VQEG Hybrid datasets, because these 16 datasets 
were conducted according to two test plans with many similar characteristics. When stimulus 
pairs from these 16 datasets are aggregated, ΔSCI = 0.5. Using these 233,655 stimulus pairs, we 
will extrapolate ΔSCI values for experiments with 15, 9, and 6 subjects. We selected subjects at 
random from each dataset, calculated ΔSCI, recorded the results, and repeated with different 
random selections of subjects a total of six times. The results were stable, so no additional 
random selection cycles were performed. These results, marked with blue circles on Figure 3, 
yielded (ΔSCI  = 0.7 for 15 subjects), (ΔSCI  = 1.1 for 9 subjects), and (ΔSCI  = 1.5 for 6 subjects). 
All plots in this section include these three extrapolated values.  

Figure 3 shows that ΔSCI decreases as the number of subject increases, as we expected. The 
range of ΔSCI values associated with a particular number of subjects is fairly low (± 0.1 MOS). 
We observe some variations that are worth closer examination on subsequent graphs. Datasets 
with more than 45 subjects are omitted from these graphs, to highlight differences among 
datasets with more typical numbers of subjects. 
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Figure 4 shows the impact of test environment and experiment design on ΔSCI. In these scatter 
plots, the area of the dot increases linearly with the number of datasets. The current subset is 
plotted in blue, and the other data are plotted in green. Subjective tests conducted by SDOs 
(Figure 4 upper-left) have lower values for ΔSCI, near the limit of what we have observed. This is 
no doubt due to the care taken in crafting and executing the subjective tests. Subjective tests 
conducted in public environments (Figure 4 lower-right) seem to have larger values for ΔSCI, 
however all of this data comes from one experiment (VQEG MM2). Lab studies and field studies 
span the full spread of ΔSCI. This indicates that exploratory designs and real-world impairments 
do not negatively impact ΔSCI—or that the low precision of our measurements masks a subtle 
difference between the number of subjects needed in lab studies and field studies. The low 
precision of our measurements masks other phenomena, such as the analysis presented in [10].  

Figure 5 shows the impact of media on ΔSCI. These scatter plots follow the same size and color 
convention as used in Figure 4. We have relatively few datasets with images, speech, or 
audiovisual media, so we cannot reach strong conclusions. Speech tests seem to have lower ΔSCI 
values that are within the observed range of image and video tests. This is plausible, as the 
variability among phonemes is smaller than the variability of visual subject matter; ears have 
higher sensitivity than eyes; and our auditory system can listen to multiple sounds 
simultaneously, while our visual system is influenced by attention (e.g., where we focus within 
the field of view). Audiovisual media seem to have slightly high ΔSCI irrespective of the number 
of subjects. This is also plausible, because the spread of ratings is impacted by two variables: the 
visual quality and the audio quality.  

Dataset ITS 2010 yields the worst outlier (26 subjects, ΔSCI = 1.3), and ITS AV-Sync 2010 
yields the second worst outlier (16 subjects, ΔSCI = 1.3). These two experiments explored the 
relationship between audio quality and video quality on the overall audiovisual quality. ITS AV-
Sync 2010 added delay as another further variable. These two experiments asked subjects to rate 
media that in some cases mingle very different impairment levels (e.g., high quality video with 
low quality audio). These outliers are explained by experiment design. Perhaps more surprising 
is that the other subset of ITS AV-Sync 2010 was not an outlier (12 subjects, ΔSCI = 1.0).  

As expected, tests with more subjects have tighter distributions of votes and this enables smaller 
differences in MOS to become significant. Overall, we observe the following trend connecting 
ΔSCI (MOS difference for which 95% of stimulus pairs are significantly different) and the 
number of subjects:  

• ΔSCI  = 0.5  24 subjects  

• ΔSCI  = 0.7  15 subjects  

• ΔSCI  = 1.1  9 subjects 

• ΔSCI  = 1.5  6 subjects 

These values provide a lower limit to expected performance, based on well-designed 
experiments conducted by SDOs. Deviations from this ideal produce larger values of ΔSCI for the 
given numbers of subjects. The distribution of data in Figure 3 shows variation among datasets, 



 

18 

resulting in slightly higher values for ΔSCI. Put another way, we expect ΔSCI ≥ 0.5 for 24 
subjects; and we will need from 24 to ≈34 subjects to achieve ΔSCI = 0.5. As a rule of thumb, the 
actual CI will probably fall between the value given above and the value for the next lower 
category of subjects (e.g., 24 subjects yield ΔSCI from 0.5 to 0.7). 

The ΔS versus π curves also indicate a lower bound around ΔS = 0.2, below which quality 
differences are unlikely to be detected, regardless of the number of subjects used. The ΔSCI 
versus number of subject curves indicate a soft lower bound. Datasets with ΔSCI ≤ 0.3 are very 
difficult to achieve. The number of subjects would need to be increased dramatically above 
numbers typically used today. Janowski and Pinson [37] observe that such small differences are 
masked by the noise (error) associated with subject rating behaviors. Note that the only dataset 
with ΔSCI ≤ 0.3, CCRIQ, provides 213 subject ratings for each medium. 

   

Figure 4. Impact of environment and experiment design on the relationship between ΔSCI and 
number of subjects in the dataset. 
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Figure 5. Impact of media type on the relationship between ΔSCI and number of subjects in the 
dataset. 

4.3 Reduced Range 

We know that there is a phenomenon close to the end of a rating scale, where MOSs compress 
and the standard deviation of ratings decreases. How much does this impact ΔSCI?  

When we aggregate data from the VQEG HDTV and VQEG Hybrid datasets, we notice that 
ΔSCI = 0.5. We will now limit the stimuli to high MOSs (i.e., MOS > 4.0), medium MOSs 
(2.0 < MOS ≤ 4.0), and low MOSs (MOS ≤ 2.0). Each of these three ranges yields ΔSCI = 0.5. 
We note that, when datasets are considered individually, the low and high range occasionally 
have ΔSCI = 0.4. Thus, the expected compression exists; it is simply smaller than the granularity 
of our measurements. 

4.4 Speech Conditions 

Figure 6 examines speech datasets where ΔSCI is calculated for conditions instead of files. In 
these scatter plots, the per-condition speech data are plotted in blue. The other data, including the 
per-file speech datasets, are plotted in green. This must be plotted on a logarithmic y-axis, due to 
the very large number of subjects. Three of these are crowdsourcing tests (d401, d501, and 
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d701). For the private speech datasets, Table 2 presents both per-file and per-condition data. 
Figure 6 indicates there is likely a lower limit to condition ΔSCI of ≈0.3.  

Table 2. Speech ΔSCI, File versus Condition  

Dataset Subjects Evaluate ΔSCI 
d401 
d501 
d701 

227 
115 
144 

Condition 
Condition 
Condition 

0.3 
0.3 
0.4 

Private Speech 
Dataset #1 

≈11 
≈22 
43 
344 to 440  

File 
File 
File 
Condition 

0.9 
0.5 
0.4 
0.3 

Private Speech 
Dataset #2 

8 
512 

File 
Condition 

1.4 
0.3 

 

 

Figure 6. Impact of speech per-condition evaluation the relationship between ΔSCI and number of 
subjects in the dataset. 

4.5 ΔSCI for DSCQS, ACR 100-level, and CCR 

We have individual subject ratings from very few experiments conducted with methods other 
than ACR 5-level. This section reports those results.   

Table 3 lists ΔSCI for datasets that use a continuous, 100-level scale. The “SS ΔSCI” column 
contains data for the single stimulus ratings that constitute intermediate results of the DSCQS 
ratings. The first number is ΔSCI calculated from the source ratings; and the second number is 
ΔSCI calculated from the processed video sequence ratings. The ΔSCI for ACR 100-level and 
DSCQS cannot be directly compared, as we will explain in Section 4.6. 
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Table 3. ΔSCI for DSCQS and ACR 100-level 

DSCQS Dataset Subset Scale Used Subjects SS ΔSCI ΔSCI 

VQEG FRTV Phase I 

Low 525-line 
Low 625-line 
High 525-line 
High 625-line 

75% 
56% 
51% 
39% 

90 
79 
90 
90 

5, 5 
5, 6 
4, 5 
5, 6 

6 
8 
5 
6 

VQEG FRTV Phase II 625-line 
525-line 

55% 
57% 

27 
64 

6, 8 
4, 5 

7 
5 

ACR 100-level Dataset Subset Scale Used Subjects ΔSCI 

Private Video Dataset #1 Experts 
Crowdsource 

83% 
83% 

15 
61 

11 
10 

 
ITU-T Rec. P.Sup23, EXP 2 provides subject data for the CCR method, using speech files and 
24 subjects. Subjects enter data on a discrete [-3..3] scale, but after the random presentation is 
removed, most of the data is on a [0..3] scale. Each of these three datasets yields ΔSCI = 0.8. 

Public Safety #1 and Public Safety #2 used both an ACR 5-level scale and a Boolean 
acceptability scale that can be interpreted as ACR 2-level with range [0..1]. The Boolean data 
yielded ΔSCI = 0.4, which is 40% of the available scale. By comparison, both datasets have 
ΔSCI = 0.6 for the ACR 5-level scale, with 16 and 19 subjects respectively. These values are 
within expectations and are included in the prior analyses. Despite our warnings not to compare 
the ΔSCI from different methods, it is safe to conclude that the Boolean rating method is flawed 
(i.e., significant differences are difficult to detect). The team that conducted this study changed 
tactics and developed a subjective method that later became ITU-T Rec. P.912, “Subjective 
video quality assessment methods for recognition tasks.”  

4.6 Relationship between Method, MOS Range, and Confidence Interval  

Most of the datasets in Table 1 use the 5-level ACR method. This is the most popular method 
today, largely due to a compelling study by Nippon Telegraph and Telephone (NTT) [39]. NTT 
evaluated the following subjective test methods: ACR with a 5-level scale, ACR with an 11-level 
scale, Double Stimulus Impairment Scale (DSIS), Double Stimulus Continuous Quality Scale 
(DSCQS), and Subjective Assessment of Multimedia Video Quality (SAMVIQ). Regarding 
rating scales and ignoring other differences, 

• ACR 5-level and DSIS use a discrete [1..5] scale  

• ACR 11-level uses a discrete [1..11] scale   

• DSCQS and SAMVIQ use a continuous [0..100] scale  

Reference removal is a technique where the original (reference) stimuli are included in the 
subjective test, and their ratings are subtracted from the ratings of impaired stimuli in post-
processing. The DSCQS method always implements reference removal. ACR and SAMVIQ can 
be implemented with reference removal using a Hidden Reference (HR). The HR variants were 
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included in the NTT study (i.e., ACR-HR 5-level, ACR-HR 11-level, and SAMVIQ-HR). Note 
that reference removal occasionally yields values outside the range of the rating scale.  

In the NTT study, 48 subjects evaluated the same 42 videos with these eight different methods. 
The subjective methods were compared in terms of the range of MOSs (MOSrange), correlation of 
MOSs, total assessment time, ease of evaluation (assessed via a questionnaire), and mean CI 
(MCI). The absolute value of the Pearson and Spearman correlations between each pair of 
methods was always 0.97 or higher. We recommend reading this landmark study to understand 
their other analyses. This report only considers their MMOS range and MCI results.  

This report evaluates subjective CIs (ΔSCI) based on 95% of stimulus pairs, while the NTT study 
reports the average (MCI). This difference is unimportant as we are only concerned with the 
relative impact of rating method on ΔSCI. The two pieces of information we can garner from the 
NTT study are (a) how much of the available ratings scale was used by each method, and (b) 
how the CIs of other methods compare to the CIs of the ACR 5-level method.  

Table 4 presents the NTT study’s range and MCI data, formatted as follows: 

• “Scale used” is the percentage of the rating scale used by the actual subjects, compared to the 
usable rating scale  

• “MCInorm” is MCI normalized by the scale’s range (i.e., 𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑀𝑀𝑀𝑀𝑀𝑀/𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛𝑟𝑟𝑛𝑛𝑟𝑟𝑟𝑟)  

• “Relative MCInorm” is MCInorm divided by ACR 5-level’s MCInorm  

MCInorm is copied directly from [39], where it is provided with the low precision shown in 
Table 4. We calculated “Relative MCInorm” from the MCI and MOSrange values provided in [39], 
which are provided with higher precision. If “Relative MCInorm” is calculated as a ratio of 
MCInorm values in Table 4, the results will differ due to rounding error. All percentages are 
rounded to 5%; we do not believe added precision is justified, due to rounding in [39] and the 
limited size of this dataset.  

Table 4. Impact of Subjective Test Method on CI 

Method Scale Used MCInorm Relative MCInorm 
ACR 5-level 75% 0.07 100% 
ACR-HR 5-level 75% 0.09 120% 
ACR 11-level 60% 0.08 110% 
ACR-HR 11-level 55% 0.10 135% 
DSCQS 55% 0.09 115% 
DSIS 90% 0.07 95% 
SAMVIQ 60% 0.07 95% 
SAMVIQ-HR 60% 0.08 110% 

 
Table 4 provides critical context, as we examine ΔSCI for datasets that do not use the ACR 
5-level method. Without this data, we would naively expect subjects to use these other scales 
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similarly to the ACR 5-level scale. Instead, we must acknowledge that the differences in how 
subjects use each rating scale impact the range of MOS values and therefore the relative meaning 
of the resulting CIs. Any comparisons between CIs from different methods will require a bridge, 
similar to a Rosetta stone.  

The CI normalization technique described above does not solve this problem for the general 
case. Increasing or decreasing the quality range in an experiment, without changing the method, 
does not influence the precision of subject ratings.  

In the present context, the most important conclusion in the NTT report is that all subjective 
methods produce CIs that are similar to or slightly worse than those of ACR 5-level ratings. 
Small improvements may be possible, for example when using SAMVIQ or DSIS. However, the 
variations in Relative MCInorm in Table 4 are within the distribution we observe in Figure 3. 
Therefore, unknown factors may be involved. Theoretically, if the rating method suits the 
experiment particularly well, the resulting CI should decrease. This would explain the diversity 
of opinions and experiences shared anecdotally among experts.  

4.7 Conclusions  

Our analysis of subjective tests gives the following relationships between the number of subjects 
and our newly-defined MOS CI, ΔSCI, for well-designed and carefully executed subjective tests 
using the 5-level ACR scale: 

• 24 subjects yield a MOS CI of ΔSCI = 0.5 

• 15 subjects yield a MOS CI of ΔSCI = 0.7 

• 9 subjects yield a MOS CI of ΔSCI = 1.1 

• 6 subjects yield a MOS CI of ΔSCI = 1.5 

Here the MOS CI is the difference in MOS values at which 95% of the pairs will be statistically 
different (according to the Student’s t-test using a 95% confidence level). 

These values indicate the expected performance of a well-designed and carefully conducted 
subjective test. Deviations from this ideal yield larger ΔSCI or require more subjects to obtain the 
specified ΔSCI. Unexplained factors in the experiment design and implementation may produce 
CIs up to the next category of subjects (e.g., 24 subject tests typically have ΔSCI between 0.5 and 
0.7). Other methods and scales will yield CIs that are similar or slightly larger, when adjusted for 
differences in rating scales and subject rating behaviors (e.g., how much of the scale is used). 
Reference removal, when conducted as post-processing, yields slightly larger CIs (ΔSCI).  
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5. DECISIONS REACHED BY DIFFERENT LABS 

When a subjective test is repeated in multiple labs, we observe different MOSs and different 
rating distributions for the same stimuli. This allows us to calculate the repeatability of 
subjective testing, based on the frequency at which different conclusions are reached by different 
labs. See [33] and [37] for a more in depth analyses of lab-to-lab comparisons. The intermediate 
data for this section appears in Appendix B. 

Given a subjective test, we will choose all pairs of stimuli, A and B, where both stimuli were 
rated by the same subjects and the stimuli are drawn from the same dataset. An occasional 
missing rating is acceptable. We will use the MOS values and the paired stimuli Student’s t-test 
to compare the rating distributions for A and B at the 95% confidence level. For each lab’s 
subjects, we will decide whether A is better than, equivalent to, or worse than B. We will then 
tally the frequency of the four possible classification types, defined below. The confusion matrix 
is presented in Table 5. 

• Agree Ranking Both labs conclude that quality of A is better than the quality of B, or both 
labs conclude that the quality of A is worse than the quality of B   

• Agree Tie  Both labs conclude that A and B have statistically equivalent quality 

• Unconfirmed One lab can rank order the quality of A and B but the other lab concludes 
that A and B have statistically equivalent quality 

• Disagree  The labs reach opposing conclusion on the quality ranking of A and B  

Table 5. Confusion Matrix For Different Subjective Test Labs 

  Subjective Test 1 
  Better Equivalent Worse 

Subjective 
Test 2 

Better Agree Ranking Unconfirmed Disagree 
Equivalent Unconfirmed Agree Tie Unconfirmed 
Worse Disagree Unconfirmed Agree Ranking 

5.1 Decisions Reached by Multiple Labs Conducting the Same Experiment 

Table 1 provides us with several datasets that were conducted identically at multiple labs: 
AGH/NTIA/Dolby, ITS4S, CCRIQ, Private Speech Dataset #3, VQEG MM2, VQEG FRTV 
Phase I, VQEG FRTV Phase II 525-line, RRNR-TV, and the VQEG Hybrid HDTV Common 
Sets. These datasets allow us to compute the frequency of each outcome. Data from the Hybrid 
HDTV common sets are aggregated into a single measurement, because the small number of 
stimuli (24) yields unstable measurements (i.e., extreme results are more likely to be observed 
due to the sample size).  

VQEG FRTV Phase I has two severe disadvantages. First, each dataset spans a narrow range of 
quality. VQEG uses these datasets as an illustrative example of a flawed experiment design. 
Despite being conducted by an SDO, we do not consider VQEG FRTV Phase I to be a well-
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designed experiment. Second, the ratings include scoring inversion errors. Subjects marked 
ratings for both the original and impaired sequence at the same time on paper scoring sheets. 
Accidents occurred where subjects switched their ratings.5 These errors can only be reliably 
detected and removed from the data when the quality of the PVS is much lower than the quality 
of the SRC. We will retain all ratings, including such obvious errors.6  

The VQEG FRTV Phase I dataset also has several advantageous characteristics. VQEG FRTV 
Phase I contains four subjective tests: 525-line low, 525-line high, 625-line low, and 625-line 
high. “525-line” means the test contains NTSC format standard definition video, and “625-line” 
means the test contains PAL format standard definition video. “Low” means the test contains 
low quality videos, and “high” means the test contains high quality videos. For each, we have 
ratings from 67 or 70 subjects divided among 4 labs. The rating method was DSCQS, so we have 
easy access to two ratings for each stimulus7 (PVS and DOS). The SRC ratings will not be used, 
because the range of quality is abnormally narrow.  

Therefore, we will divide our datasets into two subsets. First is the VQEG FRTV Phase I 
datasets: 24 lab-to-lab comparisons that will be treated separately. Second is the remainder, 66 
lab-to-lab comparisons that will be referred to as well-designed experiments. This subset is 
heavily influenced by the VQEG MM2 dataset, which contributes 45 of the 66 lab-to-lab 
comparisons.  

Figure 7 shows distribution of incident rates for the confusion matrix identified in Table 5. The 
blue histogram depicts the results from well-designed experiments (66 lab-to-lab comparisons). 
The tan overlay depicts the results from the VQEG FRTV Phase I dataset, which has a narrower 
quality range (24 lab-to-lab comparisons). Dark brown indicates areas where the tan and blue 
histograms overlap. From the agree ranking (upper left), agree tie (upper right), and 
unconfirmed (lower left) distributions, we observe that a narrow range of quality causes the 
agree ranking rate to fall, while the agree tie and unconfirmed rates rise. The disagree incidents 
are not impacted by the narrow range of quality (lower right). One of the 24 lab-to-lab 
comparisons is an outlier, with a 1.84% disagree rate.8  

 
5  In the DSCQS method, subjects view the SRC and PVS (in random order) and then rate them. Scoring inversions 
were found in the pretest data. Upon reviewing the ratings and videos, we found a very low quality PVS that was 
rated “high quality,” while the associated SRC was rated “low quality.” The subject confirmed that this was a 
scoring error.  
6 When obvious inversions are removed, using various thresholds, the results in this section do not substantially 
change. 
7 SRC ratings are available but will not be analyzed. Their range of quality is atypical.  
8 This outlier may be caused either by subtle rating inversions (e.g., for high quality PVSs) or differences in how the 
labs implemented the DSCQS method. Discussions among the labs identified differences in instructions, training, 
and test implementation.  



 

26 

 

Figure 7. These histograms show the likelihood of the conclusions reached when two labs 
perform the same subjective tests. 

Table 6 contains the overall trend of well-designed experiments. Notice that the disagree 
incidence is always less than 1%. Table 7 contains the overall trend when the subjective test 
contains a narrow range of quality, based on VQEG FRTV Phase I. Experiments with a narrow 
range of quality may exceed the agree ranking, agree tie, and unconfirmed rates of a well-
designed experiment. Specifically, agree ranking decreases, while agree tie and unconfirmed 
increases. Except for disagree, all of these incidence rates are strongly influenced by the range of 
quality in the experiment, as we can clearly see from Figure 7.  

Table 6. Lab-to-Lab Classification Incident Rates For Well Designed Tests 

Outcome Mean Mode Min Max 
Agree Rank 63% 67% 47% 77% 
Agree Tie 17% 14% 10% 29% 
Unconfirmed 19% 18% 10% 31% 
Disagree 0.17% 0.06% 0% 0.95% 
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Table 7. Lab-to-Lab Classification Incident Rates For Narrow Range of Quality 

Outcome Mean Mode Min Max 
Agree Rank 45% 37% 24% 65% 
Agree Tie 28% 25% 17% 48% 
Unconfirmed 26% 21% 19% 38% 
Disagree 0.32% 0.02 0% 1.82% 

 
In general, when the range of quality is smaller, agree ranking is reduced and agree tie becomes 
greater, consistent with intuition. Setting expectations for agree ranking and agree tie is thus 
confounded by the spread of quality in the test. To gain independence from the spread of quality, 
we observe that spread drives a fairly strong and reliable trade-off between agree ranking and 
agree tie. This trade-off is shown in Figure 8 and described by:  

 �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎 ≈  −1.2 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑟𝑟𝑎𝑎 + 1.0 (2) 

where agree ranking and agree tie are expressed as fractions. The square root is needed to 
remove a non-linearity.  

Motivated by (2) we now define a new statistic concur as: 

 𝑐𝑐𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑎𝑎 = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎 + 1.2 × 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡𝑟𝑟𝑎𝑎 (3) 

Note that concur takes a value of 1.0 when the approximation in (2) is exact, and it deviates 
about 1.0 for our data. Concur ranges from 0.91 to 1.05 and histograms of concur are shown in 
Figure 8. This mathematical function of agree ranking and agree tie allows us to remove the 
influence of the dataset’s quality range. This is demonstrated by the fact that the two classes of 
subjective tests largely overlap in Figure 8.  

Concur is a single figure-of-merit for comparing the results of two tests (subjective-to-
subjective, or subjective-to-objective). Larger values of concur indicate higher levels of 
agreement. The downside of this convenience is that concur is a bit more abstract than agree 
ranking or agree tie. Also note that concur is unitless. 
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Figure 8. The scatter plot (left) shows the relationship between agree ranking and agree tie 
incidence rates, with (1) plotted in red. The histogram (right) shows the distribution of (2) for 
well-designed tests in blue and tests with a narrow range of quality in tan. 

5.2 Decisions Reached When Method Changes 

The UPM-Acreo dataset has three sessions that rate the same stimuli using different rating 
methods: (a) video only ACR, (b) video only CIETI, and (c) audiovisual CIETI, which we will 
refer to as CIETI(AV). Audio was not impaired in this experiment. This data provides us with 
insights on how the incidence rates change when the subjective testing method is not held 
constant.  

The first three lines of Table 8 list the incidence rates for the UPM-Acreo datasets. The 
CIETI(AV) vs CIETI and CIET vs ACR incidence rates match our expectations from Section 4. 
However, CIETI(AV) vs ACR has an unusually high disagree incidence rate of 1.43%. This 
likely indicates genuine disagreement caused by the combined impact of the different rating 
methods, confounded by the influence of audio quality on CIETI(AV) MOSs. The range of 
quality present in the original video impacts the overall MOS, as shown in [14].   

The next three lines of Table 8 list the incidence rates for Private Video Dataset #3, Netflix 
Quality Variation 2017. The videos were split into overlapping pools of 180 videos and rated by 
different subjects. We will not evaluate the overlapping stimuli separately, due to the small 
number of videos (40). Each subject pool can be sub-divided by monitor type and rating method, 
for a total of four subsets. While some subjects used the standard ACR method, other subjects 
continuously rated each video with the single stimulus continuous quality evaluation (SSCQE) 
method, and then provided an overall score on the ACR 5-level scale. Thus the SSCQE ratings 
(not analyzed) could have impacted the ACR ratings. However, Table 8 indicates that none of 
these variables impacted the disagree incidence rate. In particular the disagree incidence rates 
fall within our expectations for a well-designed and carefully conducted subjective test on the 
5-level ACR scale.  
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The Public Safety #1 and #2 datasets had each subject rate each video on two different scales. 
The first scale was 5-level ACR. The second scale was a Boolean scale, measuring whether the 
system was acceptable for first responder applications. Both questions were asked at the same 
time. As with the prior two experiments, the disagree incidence rate in Table 8 is well above 1%. 

Unfortunately, we were not able to obtain datasets where subjects rated the same stimuli using 
two different standard methods (e.g., ACR 5-level vs 11-level). Such experiments are extremely 
rare. Generally, disagree incidence rates above 1% should be investigated, as these may indicate 
a major difference in the subjective test method or an error in data processing. For example, 
these incidence rates can only be calculated when all stimuli at one lab are rated by the same 
subjects. When this rule is broken, then disagree incidence rates skyrocket to 45%. This problem 
is caused by different subject offsets, as explained in [37].  

Table 8. Lab-to-Lab Classification Incident Rates Confounded by Different Rating Methods 

Comparison Stimuli Subjects Agree 
Ranking Agree Tie Unconfirmed Disagree 

UPM-Acreo  
CIETI(AV) vs CIETI 132 21 22 61% 18% 21% 0.12% 

UPM-Acreo 
CIETI(AV) vs ACR 132 21 20 53% 16% 30% 1.43% 

UPM-Acreo 
CIETI vs ACR 132 22 20 56% 20% 24% 0.16% 

Netflix Quality Variation 2017, 
Different Monitor, ACR 

180 
180 

25 
25 

25 
25 

74% 
76% 

13% 
14% 

13% 
11% 

0.04% 
0.01% 

Netflix Quality Variation 2017, 
Different Monitor, 
ACR/SSCQE 

180 
180 

26 
23 

26 
25 

74% 
74% 

13% 
13% 

13% 
12% 

0.03% 
0.01% 

Netflix Quality Variation 2017, 
ACR vs ACR/SSCQE 

180 
180 
180 
180 

25 
25 
25 
25 

26 
23 
26 
25 

73% 
74% 
76% 
76% 

14% 
14% 
12% 
13% 

13% 
11% 
12% 
11% 

0.08% 
0.04% 
0.04% 
0.02% 

PS1, ACR vs Boolean 400 16 16 47% 19% 26% 7.62% 
PS2, ACR vs Boolean 576 19 19 45% 18% 29% 7.78% 
 

5.3 Conclusions  

Our analysis of subjective tests reaches the following conclusions for agreement or disagreement 
between two well-designed and carefully executed subjective tests: 

• disagree is ≤ 1% and typically  ≈0.17% 

• unconfirmed is ≤ 31% and typically ≈20% 

• concur ranges from 0.91 to 1.05 
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• disagree and concur are minimally influenced by the range of quality in the dataset 

Outliers may exceed the above limits.  
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6. AD-HOC EVALUATION AND PILOT TESTS 

Pragmatically, metrics and subjective tests will never fully replace ad-hoc quality assessments. 
For example, two engineers encode their favorite test sequence at several different bit-rates, 
watch the resulting videos, and decide which version looks best. The management team receives 
hardware video systems on loan from competing vendors, transmits their favorite test sequences 
through them, and makes a purchase decision. Ad-hoc assessments dispense with the scientific 
method in favor of speed.  

A bit of subjective testing knowledge lets us add a minimum of structure and formality to an ad-
hoc evaluation. Two or three researchers watch and/or listen to each stimulus in a proposed 
experiment and write down their ratings. This produces MOSs with low precision that are 
compared deterministically (>, <, =, ≈). These MOSs can answer simple questions like whether a 
subjective test has too many high quality stimuli or whether the source video pool has enough 
variability to produce an interesting variety of quality responses from a video codec. 

From a statistical analysis standpoint, pilot studies are similar to ad-hoc assessments. ITU-T Rec. 
P.913 recommends 8 to 12 subjects for pilot studies to indicate trending. As we observed in 
Section 4, this few subjects makes a Student’s t-test undesirable, because most of the interesting 
comparisons will produce no significant difference in quality. Thus, pilot study MOSs are often 
evaluated deterministically.  

We would like to characterize the accuracy of these conclusions, to the extent possible, to serve 
as another reference point.  

6.1 Simulating Conclusions Reached by Ad-Hoc Tests 

While we do not have data for ad-hoc assessments, we have suitable data to simulate likely 
behaviors: the VQEG FRTV Phase I dataset. All of the characteristics that we previously 
identified as disadvantages will help us simulate ad-hoc assessments. The narrow range of 
quality, continuous scale, and occasional rating error seem appropriate and realistic for ad-hoc 
decisions. The ad-hoc subjects are likely to have an over-inflated sense of the accuracy of their 
judgements, and to make an occasional error due to miscommunication. The most interesting 
questions often involve a narrow range of quality. Section 4.6 indicates that DSCQS produces 
CIs only slightly worse than ACR 5-level, so the VQEG FRTV Phase I data is also suitable to 
simulate pilot tests.  

We want to establish the relationship between the decisions reached by an ad-hoc test and the 
decision reached by a formal subjective test. We have three interesting outcomes, defined below. 
We will ignore ties, since our ad-hoc or pilot test data will seldom produce identical MOSs.  

• Correct ranking Both conclude that quality of A is better than the quality of B  

• False distinction The ad-hoc test can rank order the quality of A and B but the subjective 
test cannot 
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• False ranking The ad-hoc test and subjective test reach opposing conclusion on the 
quality ranking of A and B  

To frame discussions, we will establish six performance levels: ad-hoc assessments with one, 
two, or three people; and pilot tests with six, nine, or twelve subjects. The former may consist of 
nothing more than verbal discussion, while the latter are presumed to follow the standard 
methods in an ITU Recommendation.  

As noted in Table 1, the VQEG FRTV Phase I dataset contains four subjective tests. Each test 
has 67 or 70 subjects total, split among four labs. We will simulate the one person ad-hoc test as 
follows. One of the labs is chosen to provide ad-hoc data. The “ground truth data,” a formal 
subjective test, will be simulated by drawing 24 subjects at random from the other three labs. We 
will compare the conclusions reached by that subject deterministically (A > B, A = B, and 
A < B) with conclusions reached by the “ground truth data” using a Student’s t-test. We will 
repeat this procedure for each subject in the ad-hoc lab. Then, this process will be repeated with 
each of the other three labs providing ad-hoc subjects.  

The 2, 3, 6, 9, and 12 person ad-hoc and pilot tests will be simulated with the same procedure, 
but by drawing that number of subjects at random from the ad-hoc lab and averaging their votes. 
This random choice and evaluation will be repeated 25 times for each ad-hoc lab.  

This entire process will be repeated for all four of the VQEG FRTV Phase I subjective tests (i.e., 
525-line low quality, 525-line high quality, 625-line low quality, and 625-line high quality).  

6.2 Ad-Hoc and Pilot Test Analyses 

Figures 9 and 10 show the correct ranking and false distinction rates, respectively. The data is 
divided into three categories, based on the range of MOSs spanned by the VQEG FRTV Phase 
II. Wide includes the low quality 525-line test, which spans 75% of the [0..100] scale. To put 
this into perspective, the NTT experiment spans 90% of the DSCQS scale (see Table 4). 
Medium includes both the high quality 525-line and low quality 625-line tests, which span 
similar ranges (51% and 56% respectively). Narrow includes the high quality 625-line test, 
which spans 39% of the [0..100] scale. In ACR 5-level scale language, narrow covers from 
“excellent” to part way between “good” and “fair.”  The colors used to indicate these three 
categories are shown in Figure 10. On these plots, the x-axis shows the likelihood in percent of 
one of the three quality comparison outcomes listed above. The y-axis shows the likelihood (over 
simulation runs) of a particular incidence rate. 

Figure 9 shows the estimated distribution of correct ranking incident rates for ad-hoc 
assessments and pilot tests. As expected the likelihood of correct ranking positively correlates 
with both the number of subjects and the range of stimulus quality. The worst case is a single 
person evaluating stimuli with similar quality levels, where we expect ≈36% of stimulus pairs 
will be correctly ranked. We do not have data for experts (e.g., golden eyes or golden ears), who 
may have higher success rates. The best case is a 6 to 12 subject pilot study with a wide range of 
quality, where we expect that ≈72% of stimulus pairs will be correctly ranked. 
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Figure 10 shows the estimated distribution of false distinction incidence rates for ad-hoc 
assessments and pilot tests. The average responses as follows: wide ≈ 25% false distinction, 
medium ≈ 35% false distinction, and narrow ≈ 51% false distinction. The levels for 1, 2, 3, 6, 9, 
and 12 subjects are not shown, because the false distinction incidence rate does not depend on 
the number of subjects (i.e., very similar histograms). 

Figure 11 shows the estimated distribution of false ranking incidence rates for ad-hoc 
assessments and pilot tests. The average false ranking incidence rates are also given in Table 9. 
Maximum observed rates are three to four times higher than the average rates, with a long tail 
that indicates higher values may occur. The sub-categories of the VQEG FRTV Phase I tests are 
not shown, because the range of quality is not influential. These false ranking rates are much 
higher than those observed in lab-to-lab comparisons between subjective tests, which are 
typically ≈0.06%.  

Subjects’ scoring includes a random component. This is expected behavior that must be 
accepted, not a flaw or fault that can be eliminated [37]. All the complexities of probability 
theory have been set aside to perform a deterministic analysis that does not accommodate the 
complexities of random processes. The natural consequence is that small numbers of subjects 
produce results that often differ from the results of full subjective tests.  

Table 9. Estimated False Ranking Rates for Ad-hoc Assessment and Pilot Tests 

 1 Person 2 People 3 People 6 Subjects 9 Subjects 12 Subjects 
Average 11.4% 8.5% 6.8% 4.4% 3.5% 3.0% 
Range 3% to 30% 2% to 26% 1% to 21% 1% to 17% 1% to 13% 0% to 10% 

 

 

Figure 9. Correct ranking incidence rates for ad-hoc and pilot tests.  



 

34 

 

Figure 10. False distinction ranking incidence rates for ad-hoc and pilot tests. 

 

Figure 11. False ranking incidence rates for ad-hoc and pilot tests. 
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7. METRIC CONFIDENCE INTERVALS AND AD-HOC TEST COMPARISON 

7.1 Confidence Interval Theory  

Objective quality metrics can be considered as substitutes—or proxies—for subjective quality 
ratings. For this reason, we typically denote the metric value for a certain stimulus, A, as 
(𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴). 

Let us define ΔM as the distance between the metric value for stimulus A (𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴) and metric 
value for B (𝑀𝑀𝑀𝑀𝑀𝑀�𝐵𝐵). We want to establish the relationship between the decisions reached by the 
metric and the decision reached by a subjective test, as a function of ΔM. We have five possible 
outcomes, defined below and in Table 10. For simplicity, we will assume that (𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴 ≥ 𝑀𝑀𝑀𝑀𝑀𝑀�𝐵𝐵).  

• Correct ranking Both subjective testing and objective metric conclude that quality of A is 
better than the quality of B  

• Correct tie Both conclude that A and B have statistically equivalent quality 

• False tie The subjective test can rank order the quality of A and B but the metric 
cannot 

• False distinction The metric rank orders the quality of A and B but the subjective test does 
not 

• False ranking The metric and subjective test reach opposing conclusions on the quality 
ranking of A and B  

Table 10. Confusion Matrix Between Subjective Test Results and Metric Results 

  Subjective Test 
  Better Equivalent Worse 

Metric 
Better Correct ranking False distinction False ranking 
Equivalent False tie Correct tie False tie 
Worse False ranking False distinction Correct ranking 

 
Our first goal is to calculate the ideal CI, which we will define as the value of ΔM that yields the 
same error rates as a well-designed subjective test with 24 subjects that is conducted in a 
controlled environment and adheres to ITU-R BT.500, ITU-T Rec. P.913, or ITU-T Rec. P.910. 
Based on results presented in Section 3, we will limit the false ranking rate to 1%. The 
unconfirmed incidence from Table 5 includes both false tie and false distinction categories, so 
the 20% unconfirmed criteria for a typical subjective test must be divided by two. Thus, we will 
limit the false distinction rate to 10%  

The ideal CI has two problems. First, metrics have a higher relative rate of false ranking 
compared to false distinction, due to imperfect modeling of human perception. In practice, the 
ideal CI will usually only depend on the false ranking rate. Second, the ideal CI will be too large 
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for some applications, where users are willing to tolerate more false ranking incidents to improve 
the correct ranking incidence rate.  

Our second goal is to calculate the practical CI, which will use less stringent ΔM selection 
criteria. We will merge false ranking and false distinction into a single category. Additionally, 
we will loosen our unconfirmed criteria from the typical subjective test (20%) to the maximum 
unconfirmed rate observed for a 15 subject test (31%). False ranking will remain at 1%, as we 
have no evidence for higher rates. Thus, we will limit the sum of false ranking plus false 
distinction to 16.5%, which is half of the maximum unconfirmed rate of 31% plus 1% false 
ranking rate. These criteria are justified by observed errors between actual subjective tests. 
Overall, we will define practical CI as the smallest value for ΔM that yields error rates no 
greater than those found when comparing two subjective tests with 15 subjects each. 

Other CIs can be chosen from examining the overall relationship between ΔM and the five 
incidence rates. For example, the false ranking rate could be limited to 2% or 4%.  

We need to avoid predisposing our measurement sensitivity in favor of subjective testing. The 
problem, as explained in the introduction to Section 4, is that we have confounding factors:  

• Source of data (subjective ratings versus objective metric)  

• Type of data (collection of ratings versus 𝑀𝑀𝑀𝑀𝑀𝑀� )  

• Method of comparison (statistical test, CI, or deterministic math)  

The metric’s stimulus pair comparisons must use deterministic math, because we only have 𝑀𝑀𝑀𝑀𝑀𝑀�  
(i.e., the metric will not predict the distribution of ratings for a subject panel).  

Therefore, the subjective data’s stimulus pair comparisons must use deterministic math and a CI, 
instead of the Student’s t-test or another statistical test. We will use the empirical CI of a well-
designed and carefully conducted subjective test, from Section 4. If we allowed the subjective 
test CI to vary (e.g., calculated for each test individually), then our baseline for comparison 
would be unstable. Additionally, this design choice simplifies the resulting algorithm.   

7.2 Algorithm to Calculate Ideal CI and Practical CI 

First, let us examine the subjective data. We will choose all pairs of stimuli, A and B, where both 
stimuli were rated by the same subjects and the stimuli are drawn from the same dataset. For 
each pair of stimuli, we will measure (MOSA – MOSB) and reach decisions as follows:  

• If MOSA – MOSB > ΔS, conclude A is “better” than B 

• If MOSA – MOSB < -ΔS, conclude A is “worse” than B 

• Otherwise, conclude A is “equivalent” to B 
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where ΔS = 0.5 (i.e., the expected precision of a well-designed and carefully conducted 
subjective test with 24 subjects and the ACR method, from Section 4). A lower value for ΔS 
could negatively impact the metric’s measured precision. If ΔS is too large, then a high 
performing metric will be more precise than this algorithm can measure. This problem can also 
be caused by using data from poorly-designed or carelessly conducted subjective tests.   

Second, we will examine the metric data. Given the range of metric values, we will choose 
possible values for the metric CI, ΔM, based on the range of metric values divided by 100 and 
rounded to two significant digits. Smaller distances would claim a level of precision that cannot 
be justified. We will choose the same pairs of stimuli, A and B, defined above. For each pair of 
stimuli and for each value of ΔM, we will calculate 𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴 −𝑀𝑀𝑀𝑀𝑀𝑀�𝐵𝐵 and the corresponding 
decisions reached as follows:  

• If 𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴 −𝑀𝑀𝑀𝑀𝑀𝑀�𝐵𝐵 > ΔM, conclude A is “better” than B 

• If 𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴 −𝑀𝑀𝑀𝑀𝑀𝑀�𝐵𝐵 < -ΔM, conclude A is “worse” than B 

• Otherwise, conclude A is “equivalent” to B 

Third, we will compare the conclusions reached by the subjective data and the metric. We will 
compute the frequency of each outcome in Table 10, as a function of ΔM. Note that the odds of a 
correct tie and false tie increase as ΔM increases, while the odds of correct ranking, false 
distinction, and false ranking decrease. 

Fourth, we will choose an appropriate level of ΔM based on our criterion from Section 7.1: 

• Ideal CI is the minimum ΔM where false ranking ≤ 1% and false distinction ≤ 10%  

• Practical CI is the minimum ΔM where false ranking plus false distinction ≤ 16.5% 

Special considerations apply when using data from multiple subjective tests. First, we 
recommend that each dataset be weighted equally. Second, the raw MOSs must be used. The 
accepted practice for most statistical analyses is to remove lab-to-lab differences (e.g., as per the 
VQEG HDTV Superset [30]). However, our calculations of ΔS in Section 5.3 depend on the 
expected behaviors of subjects using a 5-level ACR scale. Dataset rescaling could impact these 
assumptions and therefore ΔS. Therefore, lab-to-lab differences cannot be removed from the 
MOSs. Third, extreme differences between datasets may cause problems. For example, a 
subjective test that explores professional photographs may produce the same distribution of 
MOSs as a subjective test that explores low quality consumer videos, but the relationship 
between a metric and these very different datasets would be very different.  

7.3 Equivalence to a Subjective Test  

We would like to determine if a certain metric has the same precision as a subjective test, when 
decisions are reached using ideal CI or practical CI. We can re-use the false ranking and false 
distinction thresholds from Section 7.2. However, we will need to establish new thresholds for 
the other incidence rates.  
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It would be natural to use agree ranking and agree tie rates to define equivalence, but they are 
confounded by the range of quality in the test. Using agree ranking and agree tie to define the 
figure-of-merit concur in (2) removes this confounding factor. Thus we define equivalence using 
concur. All observed values of concur (between subjective tests) are no less than 0.91. Thus we 
define a metric to be equivalent to a subjective test when it produces concur ≥ 0.91.  

We will not place limits on the final category, false tie, for two reasons. First, all of our 
performance statistics from subjective testing include the confounding impact of the range of 
quality in the dataset. Pragmatically, we lack defensible limits. Second, the false tie rate is 
arguably the least offensive type of error a metric can make, and its rates are inherently limited 
by the other four factors.  

7.4 Equating a Metric to a Number of People 

Finally, we want to liken the metric to a number of people in an ad-hoc assessment or pilot test. 
This will let us make simple statements like, “This metric is as accurate as an ad-hoc test with 
two subjects.” The analogy assumes the use of deterministic math to compare 𝑀𝑀𝑀𝑀𝑀𝑀� s. The 
incidence rates from Section 6 give us appropriate data.  

First, let us examine the subjective data. We will choose all pairs of stimuli, A and B, where both 
stimuli were rated by the same subjects and the stimuli are drawn from the same dataset. For 
each pair of stimuli, we will measure (MOSA – MOSB) and reach the same decisions as described 
in Section 7.2:  

• If MOSA – MOSB > ΔS, conclude A is “better” than B 

• If MOSA – MOSB < -ΔS, conclude A is “worse” than B 

• Otherwise, conclude A is “equivalent” to B 

where ΔS = 0.5, which is the expected precision of a well-designed and carefully conducted 
subjective test with 24 subjects and the ACR method, from Section 4. 

Second, we will examine the metric data. We will choose the same pairs of stimuli, A and B, 
defined above. For each pair of stimuli, we will measure 𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴 −𝑀𝑀𝑀𝑀𝑀𝑀�𝐵𝐵 and calculate the 
decisions reached deterministically (better, worse, or equivalent).  

• If 𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴 > 𝑀𝑀𝑀𝑀𝑀𝑀�𝐵𝐵, conclude A is “better” than B 

• If 𝑀𝑀𝑀𝑀𝑀𝑀�𝐴𝐴 < 𝑀𝑀𝑀𝑀𝑀𝑀�𝐵𝐵, conclude A is “worse” than B 

• Otherwise, conclude A is “equivalent” to B 

This is like Section 7.2 but with ΔM set to zero. We use ΔM = 0 because we want to equate the 
performance of deterministic metric comparisons (as shown above) to deterministic comparisons 
of ad-hoc MOSs (as shown in Section 6.2).  
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Third, we will compare the conclusions reached by the subjective data and the metric. We will 
compute the frequency of false ranking. All other outcomes will be ignored, as they are highly 
influenced by the range of quality examined. In addition, false ranking is arguably the most 
egregious of the three errors that can be made. 

Fourth, we will equate the metric to a number of subjects using our observations from Section 6. 
We will use average false ranking incidence (e.g., false ranking rates of 11.4%, 8.5%, 6.8%, 
4.4%, 3.5% and 3.0% for 1, 2, 3, 6, 9, and 12 subjects respectively). Our decision thresholds are 
half way between observed mean values. We will limit the high end of a 1 person ad-hoc 
assessment to 12.85% based on the distance to the 2 person ad-hoc assessment. This is 
significantly more conservative than the alternative value described below. We will limit the 
lower range of the 12 person pilot test at 0%, as this was the lowest observed value. The 
decisions are as follows:  

• 1 person ad-hoc assessment:  12.85% ≥ false ranking > 9.95% 

• 2 person ad-hoc assessment:  9.95% ≥ false ranking > 7.65% 

• 3 person ad-hoc assessment:  7.65% ≥ false ranking > 5.60% 

• 6 subject pilot test:   5.60% ≥ false ranking > 3.95% 

• 9 subject pilot test:   3.95% ≥ false ranking > 3.25% 

• 12 subject pilot test:   3.25% ≥ false ranking  

The same special considerations apply when using data from multiple subjective tests. First, we 
recommend that each dataset be weighted equally. Second, the raw MOSs must be used.  

The ranges of false ranking rates we observed in Section 6.2 overlap. An argument could be 
made for defining the 1 person ad-hoc assessment to include false ranking rates up to the 
maximum observed value of 30% false ranking. We could also limit the false distinction 
incidence rate, but it would be difficult to justify a threshold other than 51% or 60%. With such a 
high threshold, the added value would be negligible.  
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8. MEASURED CONFIDENCE INTERVALS FOR VQEG VALIDATED METRICS 

8.1 Confidence Intervals and Subjective Test Equivalence of VQEG HDTV and 
Multimedia Metrics 

Let us begin with MOSs and metrics evaluated by VQEG during the HDTV [30] and Multimedia 
[40] validation tests. These datasets and metrics provide a robust set of well-designed subjective 
datasets to calculate ideal CI and practical CI. Here, all metrics except PSNR are referred to by a 
randomly assigned letter: A to E for the five HDTV metrics and A to H for the eight Multimedia 
metrics. Note that these are different metrics. All metrics are linearly mapped onto a [1..5] scale. 

The VQEG HDTV validation test includes 828 videos from six subjective tests. The MOSs are 
mapped onto a single scale using a common set of sequences that were included in all tests. The 
resulting merged dataset is referred to as the Superset. We will treat the six VQEG HDTV 
datasets as a single dataset and compute ideal CI and practical CI using the Superset MOSs.  

The Multimedia validation test evaluated metrics for three different video resolutions, but we 
will limit our analyses to the VGA resolution metrics. More analyses of this sort would have 
minimal added value. The VGA metrics were analyzed against 13 datasets: twelve with 166 
videos and one with 142 videos. Each dataset will be treated separately and weighted equally in 
our calculation of ideal CI and practical CI.  

Warning: Analyses in this report will not match the VQEG independent lab group analyses of 
these metrics, due to major differences in processing. For example, we will compare all metrics 
to the MOSs, where VQEG compared full reference and reduced reference metrics to 
Differential Mean Opinion Scores (DMOS); and VQEG performed a non-linear mapping of 
metrics to MOS or DMOS (see [30]).  

The VQEG HDTV metrics’ ideal CI and practical CI are presented in Tables 11 and 12, 
respectively. The VQEG Multimedia metrics’ ideal CI and practical CI are presented in Tables 
13 and 14, respectively. The column ρ contains the Pearson correlation between all MOSs and 
each metric. For Tables 13 and 14, ρ pools data from all 13 datasets (i.e., without rescaling to 
remove lab-to-lab differences), while the column 𝜌𝜌� computes Pearson correlation separately for 
each of the 13 Multimedia datasets and then takes the average. All metrics are sorted by the 
correct ranking incidence, which produces a different order for each table. 

The column “Equivalent” indicates whether the metric is equivalent to another subjective test 
lab, based on either ideal CI or practical CI. This determination is made using the figure-of-
merit concur, as described in Section 7.3. A hard threshold is used to determine equivalence, 
which means that some metrics will barely exceed that threshold. Metric F in Table 14 provides 
an example. If we lowered the concur threshold from 0.91 to 0.90, based on the tail of values in 
the Figure 8 histogram, metric F would be marked as equivalent to a subjective test, when using 
the practical CI. Alternatively, we could find outliers and omit these stimuli from the dataset ex 
post facto (e.g., a stimulus that is problematic for the metric, or a subject whose ratings shift the 
MOSs). Therefore, these statistics should be calculated and reported for both the entire dataset 
and the screened dataset (e.g., before and after subject screening).  
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These tables show that the best full-reference (FR) metrics produce decisions equivalent to those 
expected from a hypothetical subjective test lab using 24 (ideal CI) or 15 (practical CI) subjects.  

Table 11. Ideal CI for VQEG HDTV Validation Test Metrics 

Metric ρ Equivalent Ideal CI Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie Correct Tie 

E 0.86 Yes 1.00 50% 1% 6% 24% 19% 

C 0.82 No 1.40 40% 1% 4% 34% 21% 

PSNR 0.77 No 0.88 34% 1% 5% 40% 20% 

D 0.74 No 1.04 30% 1% 4% 44% 21% 

A 0.75 No 1.12 31% 1% 5% 43% 20% 

B 0.63 No 1.60 19% 1% 3% 55% 22% 

 
Table 12. Practical CI for VQEG HDTV Validation Test Metrics 

Metric ρ Equivalent Practical 
CI 

Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie 

Correct 
Tie 

E 0.86 Yes 0.48 60% 3% 13% 12% 12% 

C 0.82 No 0.64 56% 4% 12% 16% 13% 

PSNR 0.77 No 0.48 50% 3% 12% 22% 13% 

D 0.74 No 0.56 47% 4% 11% 25% 14% 

A 0.75 No 0.60 48% 4% 12% 24% 13% 

B 0.63 No 0.84 38% 5% 10% 32% 15% 

 
Table 13. Ideal CI for VQEG Multimedia Validation Test Metrics 

Metric ρ 𝝆𝝆� Equivalent Ideal CI Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie 

Correct 
Tie 

H 0.85 0.87 Yes 0.80 51% 1% 7% 21% 19% 

F 0.79 0.80 Yes 0.56 48% 1% 8% 25% 18% 

A 0.84 0.85 Yes 0.92 47% 1% 6% 26% 20% 

B 0.81 0.83 Yes 0.68 46% 1% 7% 26% 19% 

G 0.81 0.81 No 0.68 42% 1% 6% 30% 21% 

PSNR 0.75 0.77 No 0.88 37% 1% 6% 35% 20% 

D 0.74 0.75 No 1.56 30% 1% 4% 42% 23% 

E 0.50 0.54 No 1.44 11% 1% 2% 62% 25% 

C 0.38 0.39 No 2.88 6% 1% 2% 66% 25% 
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Table 14. Practical CI for VQEG Multimedia Validation Test Metrics 

Metric ρ 𝝆𝝆� Equivalent Practical 
CI 

Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie 

Correct 
Tie 

H 0.85 0.87 Yes 0.48 59% 2% 14% 12% 13% 

A 0.84 0.85 Yes 0.52 57% 3% 13% 14% 14% 

B 0.81 0.83 Yes 0.40 56% 2% 13% 15% 14% 

F 0.79 0.80 No9 0.36 56% 2% 13% 16% 14% 

G 0.81 0.81 No 0.36 55% 2% 12% 16% 14% 

D 0.74 0.75 No 0.72 49% 4% 12% 20% 15% 

PSNR 0.75 0.77 No 0.52 48% 3% 12% 23% 15% 

E 0.50 0.54 No 0.64 32% 6% 10% 36% 17% 

C 0.38 0.39 No 1.44 24% 7% 9% 43% 18% 

 

8.2 Ad-Hoc Test Equivalence for VQEG Validated Metrics 

Let us now evaluate metrics’ precision when CIs are not used. We will equate their performance 
to a number of subjects in an ad-hoc subjective test. For the ad-hoc subjective test, decisions are 
made using simple comparisons of average ratings, not statistical tests or CIs. For the metric 
decisions are made using simple comparisons of metric output values; again no statistical tests 
are used. 

Table 15 shows the results for the HDTV metrics, and Table 16 shows the results for the 
Multimedia metrics. The best metrics are equivalent to a three subject ad-hoc test. PSNR is 
equivalent to a one person subject ad-hoc test. These determinations are made using the figure-
of-merit false ranking, in accordance with the thresholds given in Section 7.4. 

These tables show that the best full-reference (FR) metrics are equivalent to a three-person ad-
hoc test. None of these metrics can replace a 6 subject pilot test.  

 
9 Concur = 0.9088, which is immediately below the 0.91 threshold for (2). The rounded incidence rates in this table 
ease comprehension but lessen the accuracy of this equivalence calculation.   
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Table 15. Ad-Hoc Test Equivalence for VQEG HDTV Validation Test Metrics 

Metric ρ Number of 
Subjects 

Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie Correct Tie 

E 0.86 3 68% 7% 25% 0% 0% 

C 0.82 2 66% 9% 25% 0% 0% 

D 0.74 1 63% 12% 25% 0% 0% 

PSNR 0.77 1 64% 11% 25% 0% 0% 

A 0.75 1 63% 12% 25% 0% 0% 

B 0.63 NA 58% 17% 25% 0% 0% 

 
Table 16. Ad-Hoc Test Equivalence for VQEG Multimedia Validation Test Metrics 

Metric ρ 𝝆𝝆� Number of 
Subjects 

Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie Correct Tie 

H 0.85 0.87 3 67% 6% 27% 0% 0% 

A 0.84 0.85 3 66% 7% 27% 0% 0% 

B 0.81 0.83 3 66% 7% 27% 0% 0% 

G 0.81 0.81 3 66% 7% 27% 0% 0% 

F 0.79 0.80 3 67% 7% 27% 0% 0% 

PSNR 0.75 0.77 1 63% 11% 27% 0% 0% 

D 0.74 0.75 1 62% 11% 27% 0% 0% 

E 0.50 0.54 NA 55% 19% 27% 0% 0% 

C 0.38 0.39 NA 51% 22% 27% 0% 0% 

 

8.3 Plots for Several Metrics  

Let us now more closely examine the following VQEG Multimedia metrics: 

• H, the most accurate metric 

• A, another accurate metric 

• PSNR, the de facto minimum performance baseline 

• E, an inaccurate metric  

Figure 12 shows the relationship between ΔM and the probability of each classification outcome. 
The x-axis plots increasing values for ΔM, and the y-axis plots the probability of each 
classification outcome. The ideal CI and practical CI are marked as vertical lines. Correct tie 
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and false tie increase as ΔM increases, while correct ranking, false ranking, and false distinction 
decrease as ΔM increases. The ratio (𝑝𝑝𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐𝑎𝑎𝑝𝑝 𝑀𝑀𝑀𝑀 𝑟𝑟𝑖𝑖𝑎𝑎𝑎𝑎𝑝𝑝 𝑀𝑀𝑀𝑀⁄ ) differs for each metric; the 
relationship between these CIs is not a simple.  

Generally speaking, worse metrics have larger CIs and a higher probability of errors. The relative 
probability error outcomes may also change. Our expectations from subjective tests in Sections 5 
and 6 are that false ranking should be much lower than disagree, and thus by extension false 
ranking should be much lower than false distinction. For the more accurate metrics (A, H, and 
PSNR), false ranking is much lower than false distinction. However, for the inaccurate metric, 
E, false ranking is only slightly less than false distinction.  

Figure 13 shows the accuracy of these four metrics by means of (metric versus MOS) scatter 
plots, using data from all 13 VQEG Multimedia VGA datasets without removing lab-to-lab 
differences. This matches our recommendation above to leave all MOSs on their native scale. 

Figure 14 displays (PSNR versus MOS) scatter plots for each dataset individually. This shows 
that the relationship between MOS and PSNR is similar for all 13 datasets, with only minor 
differences. For example, see the VGA13 dataset, for which PSNR under-predicts MOS more 
often than what is typical for the other twelve datasets. 
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Figure 12. The probability of each classification type is plotted for VQEG Multimedia metrics H 
(upper left), A (upper right), PSNR (lower left), and E (lower right).  
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Figure 13. These scatter plots depict the accuracy of VQEG Multimedia metrics H (upper left), 
A (upper right), PSNR (lower left), and E (lower right). Data from all 13 datasets are pooled 
without removal of lab-to-lab differences. The red line depicts a linear fit. 
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Figure 14. These scatter plots depict the accuracy of PSNR for each of the 13 VQEG Multimedia 
VGA datasets. The current dataset is plotted in blue. The light green points show the spread of 
(PSNR vs MOS) for all 13 datasets. The red line shows the linear fit between PSNR and MOS 
for the current dataset. 

8.4 Confidence Intervals and Subjective Test Equivalence of VQEG AVHD-AS / P.NATS 
Phase 2 Metrics 

So far, our metrics are anonymized and date from before 2010. This section provides 
measurements for a few contemporary metrics that can be evaluated by the reader. VQEG and 
the ITU conducted a joint validation test, referred to as AVHD-AS / P.NATS Phase 2. These are 
private datasets, whose use and distribution is limited by a multiple party non-disclosure 
agreement (NDA). The test plan is not publicly available, and the accuracy of the metrics is not 
publicly available. These datasets were designed according to rigorous test plans, similar to the 
other subjective tests conducted by VQEG and ITU as part of the standards development 
process.  

Participants in AVHD-AS / P.NATS Phase 2 were invited to evaluate their metrics on these 
datasets for this report. The inclusion of these metrics should not be construed as any 
endorsement, approval, recommendation, prediction of success, or that they are in any way 
superior to or more noteworthy than the AVHD-AS / P.NATS Phase 2 metrics that are not 
mentioned.  
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OPTICOM provided analyses for three metrics:  

• BSM0 is a parametric model that takes as a inputs the video codec, the encoded video bitrate 
(averaged over ~8 sec), the encoded video resolution, and the encoded video framerate;  

• BSM1 is a parametric model that takes as an input the BSM0 inputs plus the encoded video 
frame types (I or non-I frames) and the frame sizes in bytes; and  

• P.1204.5 is described in ITU-T Rec. P.1204.5 and takes as an input the BSM0 inputs plus the 
pixels of the degraded video  

These metrics were evaluated using 1,051 video stimuli from six databases: four that the working 
group considered “open databases” plus OPTICOM’s two proprietary databases. These datasets 
evaluated 4K videos (3840 × 2160) at 60 fps with approximately 8 second duration. More 
information about these metrics can be found at OPTICOM GmbH, at https://www.opticom.de/.  

Yonsei University provided analyses for one metric:  

• BSM0 is a parametric model that takes as inputs the video codec, the encoded video bitrate 
(averaged over ~8 sec), the encoded video resolution, and the encoded video framerate  

This metric was evaluated using Yonsei’s two proprietary databases. These datasets evaluated 
4K videos (3840 × 2160) at 60 fps with approximately 8 second duration. This metric has not yet 
been published.  

Table 17 lists the simplified conclusions that would be presented to a user: 

• When decisions are reached without CIs, the equivalent number of people in an ad-hoc 
test  

• Practical CI, and whether the metric is equivalent to a 15 subject test, when practical CI 
is used to make decisions 

• Ideal CI, and whether the metric is equivalent to a 24 subject test, when ideal CI is used 
to make decisions  

Table 17 showcases the admirable level of performance that can be achieved by the best video 
quality metrics. 

When examining Table 17, three constraints must be kept in mind. First, these metrics are 
analyzed on different subjective tests. Second, we cannot compare the accuracy of these metrics 
using the information in Table 17. Other statistics must be used to evaluate the relative accuracy 
of one metric over another (e.g., Pearson correlation or a significance test based on Root Mean 
Squared Error). Third, the “number of subjects equivalence in an ad-hoc test” provides limited 
granularity (i.e., 1, 2, 3, 6, 9, or 12 subjects). We cannot conclude that a metric is equivalent to 4 
or 5 subjects, for example. The coarse granularity of these measurements reflects the coarse 
granularity of our lab-to-lab comparisons.  

https://www.opticom.de/
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Table 17. AVHD-AS / P.NATS Phase 2 Metric CI and Ad-Hoc Test Equivalence 

Metric Range 
Number of Subject 
Equivalence in 
Ad-Hoc Test 

Practical CI 
Equivalent to 
15 Subject 
Test 

Ideal CI 
Equivalent to 
24 Subject 
Test 

OPTICOM 
BSM0 1.0 to 5.0 3 0.40 Yes 0.71 Yes 

OPTICOM 
BSM1 1.0 to 5.0 9 0.36 Yes 0.52 Yes 

P.1204.5 1.0 to 5.0 9 0.32 Yes 0.48 Yes 

Yonsei 
BSM0 1.55 to 4.63 6 0.27 Yes 0.45 Yes 
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9. IMPACT OF MULTIPLE DATASETS ON METRIC CONFIDENCE INTERVALS 

9.1.1 Datasets 

The VQEG datasets used in the prior section were carefully designed according to detailed test 
plans. Consequently, the Multimedia datasets respond similarly to each metric, as do the HDTV 
datasets. While there are certainly differences, these datasets cannot demonstrate the impact that 
major differences in experiment design and implementation have on ideal CI and practical CI. 

We need a variety of subjective datasets that explore similar topics but have very different 
experiment designs. The NRMetricFramework GitHub repository [36] identifies a suitable set of 
datasets. These datasets are particularly suited for NR metric development for the following 
reasons: 

• All media can be downloaded royalty free for research and development purposes 

• Media adhere to consumer expectations around the quality of modern cameras 

• Simulated impairments are avoided 

• The media are either images or short video sequences (e.g., 4 seconds) 

• Temporal changes in quality are avoided 

• The dataset implements an unrepeated scene experiment design [8] 

• Media were rated on the ACR scale 

Broadly speaking, each dataset depicts a commercial camera or broadcast video application that 
would benefit from an NR metric. Temporal quality variations are avoided, because this can be 
studied separately and applied as post-processing. Conventional experiment designs re-use the 
same image or video multiple times (e.g., compressed at different bit-rates), while unrepeated 
experiment designs avoid re-using scenes. Unrepeated scene designs are preferred, because NR 
metrics will encounter heterogeneous scenes (subject matter) when deployed.   

Table 18 lists the datasets identified in the NR Metric Framework repository. The information 
presented here differs from Table 1, because our dataset selection criteria differ. Table 18 
contains the following columns: 

• Dataset   Name of the dataset 

• Ref .   Reference containing details of the experiment 

• Media   Whether the dataset contains images or videos  

• Impairments Overall type of impairments:  
“Camera” for impairments created by the camera itself 
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“Compression” if the media was compressed with software after 
camera capture  
“Pans” for dataset ITS4S4; see the discussion below  

• Stimuli Number of media viewed and rated by subjects 

• Key Characteristics Brief insights into the nature of the experiment.  

• Suitability “Optimal” if the dataset adheres closely to the above criteria 
“Suboptimal” if it adheres to most but not all of the above criteria  

Table 18. Freely Available Datasets Suitable for NR Metric Research 

Dataset Ref. Media Impairments Stimuli Key Characteristics Suitability 

AGH-NTIA-Dolby [8]  Video Compression 230 Exploratory experiment 
design, diverse scenes Suboptimal 

BID [9] Image Camera 582 Diverse scenes Optimal 

CCRIQ [10] Image Camera 221 Rigorous experiment 
design, balanced scenes Optimal 

CCRIQ2 & VIME1 [11] Image Camera 189 
Limited scenes, 
exploratory experiment 
design 

Suboptimal 

CID2013 [12] Image Camera 474 
Rigorous design, limited 
scenes, unusual subjective 
method 

Optimal 

DIQA  [13] Image Camera 175 
Rigorous experiment 
design, black text on white 
paper  

Suboptimal 

ITS4S [17] Video Compression, 
Camera 813 Exploratory experiment 

design, diverse scenes  Optimal 

ITS4S2 [18] Image Camera 1,429 Diverse scenes, inexact 
experiment design Optimal 

ITS4S3 [19] Video Camera 594 Exploratory experiment 
design, diverse scenes Optimal 

ITS4S4 [20] Video Pans 196 
Exploratory experiment 
design, diverse subject 
matter 

Optimal 

KoNVid1k [21], 
[22] Video Camera 1,200 Rigorous experiment 

design, diverse scenes Suboptimal 

LIVE-Wild [23] Image Camera 1,153 Inexact experiment design, 
diverse subject matter Optimal 

vqegHDCuts [41] Video Compression 2,145 Conventional experiment 
design, diverse scenes Suboptimal 

 
Some datasets are not fully compliant with these specifications and are thus marked 
“suboptimal.” KonVId1k and AGH/NTIA/Dolby contain longer scenes with temporal quality 
variations (e.g., due to scene cuts). KoNVid1k contains videos filmed between 2004 and 2014, 
many of which contain a lower quality than we would expect from modern camera systems. The 
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VIME1 portion of the CCRIQ2 & VIME1 experiment uses a loose experiment design that 
yielded unreliable data. AGH-NTIA-Dolby and vqegHDcuts contain MPEG2, AVC, and HEVC 
compression artifacts. Unlike all other datasets in Table 18, camera impairments are excluded.  

The VQEG HDTV Superset videos contain changes in scene content and coding complexity that 
are outside the scope of the dataset selection criteria. To address this problem, we created a faux 
dataset, vqegHDcuts [41]. Transmission error impairments were eliminated. Each SRC was cut 
whenever the content or camera motion changed (e.g., at a scene cut, before and after a fade, 
before and after a camera pan). The MOS of the entire sequence was assigned to each segment, 
which adds error to the MOSs. This is an unprecedented technique, so the magnitude of this error 
is not known. Like the AGH-NTIA-Dolby dataset, the vqegHDcuts dataset avoids camera 
impairments. 

The DIQA dataset [13] contains objective ratings from optical character recognition (OCR) 
algorithm success/failure rates instead of MOSs. Three OCR algorithms (Omni, Tesseract, and 
Fine Reader) were used with the same set of document photographs, to create three sets of faux 
MOSs. Instead of “suboptimal,” the DIQA dataset could be more fairly labeled as an alternate 
strategy for creating NR metric training data. 

The following datasets have interesting characteristics. The BID dataset [9] explores blur 
impairments of different types. The ITS4S4 dataset [20] explores quality impairments associated 
with camera pans at different speeds. This dataset contains a mixture of actual camera pans and 
simulated camera pans. Other impairments are avoided where possible. The LIVE public-domain 
subjective in the wild image quality challenge database (LIVE-Wild) [23] contains images that 
have been cropped to (500 × 500) pixels. 

9.1.2 NR Parameter 

We will examine a sample metric provided in version 1.0 of the NR Metric Framework [36]. We 
will refer to it as an NR parameter, because it focuses on one aspect of quality, instead of 
estimating MOS. Note that this repository uses 90% of stimuli for training and reserves 10% of 
stimuli for metric verification. Our analyses use the 90% of stimuli intended for training. 

NR parameter Viqet-Sharpness calculates the sharpness/blurriness of an image or video using a 
Laplacian filter. Viqet-Sharpness is calculated as the average of the 1% of Laplacian filtered 
pixels with the highest magnitude, divided by the square root of the standard deviation of the 
Sobel filtered image. If that standard deviation is less than one, than this correction term is 
dropped. The Sobel filter adjusts Viqet-Sharpness for the overall magnitude of edge energy in the 
scene (e.g., whether the scene contains high contrast edges or mostly similar shades). There is 
also a correction term for 4K images, which are re-scaled to High Definition Television (HDTV) 
resolution. This is a simplification of the relationship observed in the CCRIQ dataset [10]. 

Viqet-Sharpness is an improved version of a blurring detection parameter developed on the 
CCRIQ dataset and distributed in the VIQET software [42]. Code for Viqet-Sharpness is 
available in version 1.0 of the NR Metric Framework function nrff_blur.m. Viqet-Sharpness was 
trained on CCRIQ, ITS4S, ITS4S2, ITS4S3, and LIVE-Wild. These datasets contain camera 
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impairments. AGH-NTIA-Dolby and vqegHDcuts were available but not used for training. 
These datasets do not contain camera impairments and respond differently to the Laplacian filter. 

Viqet-Sharpness adheres to the philosophy of the NR Metric Framework that temporal 
integration should be studied as a separate topic of research and applied as post-processing (see 
Section 2 of [17]). When applied to videos, Viqet-Sharpness examines each frame separately and 
takes the average (arithmetic mean) over time. Essentially, Viqet-Sharpness assumes that video 
quality changes over time are minimal and can be safely ignored. 

9.1.3 Practical CI Dataset Comparisons 

Figure 15 depicts the accuracy of Viqet-Sharpness for the Table 18 datasets. Using these scatter 
plots, we will visually categorize these 15 datasets into three subsets for further analysis: 
unfavorable, favorable, and moderate. Table 19 presents the practical CI for Viqet-Sharpness for 
each dataset. Table 20 presents the Viqet-Sharpness metric’s equivalence, as a number of 
subjects in an ad-hoc test. In both tables, datasets are sorted by Pearson correlation (ρ). 

The unfavorable subset contains AGH-NTIA-Dolby, vqegHDcuts, and KoNVid1k. For these 
three datasets, Viquet-Sharpness shows little relation to subjective scores. Unlike the other 
datasets in Table 18, AGH-NTIA-Dolby and vqegHDcuts contain compression impairments and 
no camera artifacts. The KoNVid1k dataset has very few stimuli with MOS above 4.0 (good) and 
many outliers where Viqet-Sharpness over-predicts quality. The KoNVid1k videos were filmed 
between 2004 and 2014, occasionally using cameras that pre-date 2004. Many of the videos do 
not adhere to consumer expectations, and the MOSs from subjects in 2016 reflect this. 
KoNVid1k and AGH-NTIA-Dolby contain longer sequences with temporal changes that Viqet-
Sharpness ignores. The vqegHDcuts dataset videos were cut to remove temporal changes, but the 
faux MOSs retain the impact of temporal integration. Overall, there are numerous reasons why 
Viqet-Sharpness respond poorly to the unfavorable subset. 

The favorable subset contains DIQA Finereader, DIQA Omni, DIQA Tesseract, CID2013, and 
CCRIQ2 & VIME1. These five datasets show high accuracy and a narrow scattering of data 
around the fit line. All three datasets contain a narrow scope of similar scene content, where the 
same composition is photographed by multiple cameras. VIME1, for example, focuses on 
buildings and a statue in Glasgow, Scotland, photographed at dusk. We hypothesized in 
Section 2 of [17] that such a lack of scene variety is problematic for NR metric research, because 
deployed systems will encounter heterogeneous subject matter. The response of Viqet-Sharpness 
to these datasets supports this theory. The DIQA photographs contain a variety of impairments, 
including blur, noise, and imperfect white balance. However, the three OCR algorithms seem to 
only be hindered by blur, so Viqet-Sharpness is a fortuitous metric for these datasets. 

The moderate subset contains BID, CCRIQ, ITS4S, ITS4S2, ITS4S3, ITS4S4, and LIVE-Wild. 
The scatter plots and fits (red line) indicate that these datasets perform similarly (e.g., the blue 
dots for the current dataset have a similar distribution as the green dots for all datasets 
combined). The moderate datasets implement unrepeated scene experiment designs that robustly 
sample the large diversity of possible scenes. The image datasets (BID, CCRIQ, ITS4S2, and 
LIVE-Wild) have similarly shaped scatter plots as video datasets (ITS4S, ITS4S3, and ITS4S4). 
In contrast to the unfavorable datasets, these video datasets contain short videos (4 seconds 
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duration) whose quality remains stable over time. For example, these datasets omit videos that 
are fairly static at the beginning and then pan quickly. 

Overall, practical CI seems less sensitive to differences among multiple datasets than the above 
discussion predicts. When we calculate practical CI on all datasets or only the moderate datasets, 
the results are very similar (1.26 vs 1.28). Viqet-Sharpness appears to behave poorly on the 
AGH-NTIA-Dolby dataset based on the scatter plot and ρ, however practical CI = 1.12, which is 
lower than most datasets. We expected practical CI to be higher for the ITS4S4 dataset, because 
it avoids blur where possible. Instead practical CI = 1.2, which is similar to the value calculated 
using all datasets. Viqet-Sharpness appears to be nearly worthless for the vqegHDcuts dataset 
based on the scatter plot and ρ, however the practical CI is 1.36, which is on the higher side but 
not worse than ITS4S and ITS4S3, which yield practical CI of 1.38 and 1.30 respectively. 

However, practical CI is sensitive to the favorable datasets, yielding relatively small values: 
practical CI = 0.70 for the favorable subset. None of the favorable datasets were used to train 
Viqet-Sharpness so, counter to expectations, the training data actually yields a more realistic 
practical CI than the test data. This probably has more to do with the importance of experiment 
design on NR metric training data than any characteristic of practical CI. Still, when estimating 
practical CI, it is important to obtain and use a sufficiently large number of datasets. 

Table 20 indicates that, overall, Viqet-Sharpness does not meet the standards of an ad-hoc test 
with a single person. This is also true for the moderate subset, the unfavorable subset, and 10 of 
15 datasets. For the favorable subset, Viqet-Sharpness is equivalent to a two person ad-hoc test, 
based on observed false ranking rates and the thresholds given in Section 7.4. The best result is 
for the DIQA Fine Reader dataset, where Viqet-Sharpness is equivalent to a 9 person subjective 
test. 

This overly optimistic analysis highlights the need for sufficient data. For Ideal CI and Practical 
CI to be reliable, they must be computed using a robust sampling of the scenes, impairments, and 
quality levels that are of interest to the metric’s users. This typically requires multiple subjective 
tests that were not used to train the metric. The same is true when estimating a metric’s accuracy. 
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Figure 15. These scatter plots depict the accuracy of Viqet-Sharpness NR metric. 

Table 19. Viqet-Sharpness Practical CI for Multiple Datasets 

Dataset Subset ρ Practical 
CI 

Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie 

Correct 
Tie 

DIQA Tesseract Favorable 0.90 0.44 61% 1% 14% 9% 15% 

DIQA Fine Reader  Favorable 0.84 0.80 44% 0% 15% 14% 27% 
DIQA Omni Favorable 0.78 0.80 43% 3% 13% 21% 20% 
CID2013 Favorable 0.74 0.70 42% 3% 11% 25% 18% 
CCRIQ Moderate 0.67 0.95 41% 4% 12% 27% 16% 
ITS4S2 Moderate 0.61 1.14 29% 3% 13% 29% 26% 
ITS4S3 Moderate 0.5 1.30 22% 4% 12% 37% 25% 
ITS4S4 Moderate 0.5 1.20 27% 5% 11% 37% 20% 
LIVE-Wild Moderate 0.49 1.14 24% 4% 11% 37% 24% 
BID Moderate 0.47 1.15 27% 6% 10% 38% 19% 
CCRIQ2 & VIME1 Favorable 0.46 1.00 20% 4% 12% 35% 29% 
ITS4S Moderate 0.3 1.38 16% 5% 10% 43% 26% 

KoNVid1k Unfavorable 0.22 1.76 13% 6% 10% 39% 32% 

AGH-NTIA-Dolby Unfavorable 0.13 1.12 13% 8% 8% 52% 19% 
vqegHDCuts Unfavorable 0.05 1.36 8% 7% 8% 50% 26% 
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Dataset Subset ρ Practical 
CI 

Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie 

Correct 
Tie 

Dataset  𝝆𝝆� Practical 
CI 

Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie 

Correct 
Tie 

All Datasets — 0.51 1.26 21% 5% 10% 39% 25% 

Favorable Subset Favorable 0.75 0.70 42% 3% 13% 21% 20% 

Moderate Subset Moderate 0.41 1.28 19% 5% 10% 41% 25% 

Unfavorable Subset Unfavorable 0.14 1.52 9% 6% 8% 48% 28% 

 
Table 20. Ad-Hoc Test Equivalence for Viqet-Sharpness 

Dataset Subset ρ Number 
of Subj. 

Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie 

Correct 
Tie 

DIQA Tesseract Favorable 0.90 6 67% 4% 29% 0% 0% 

DIQA Fine Reader  Favorable 0.84 9 54% 4% 44% 0% 0% 
DIQA Omni Favorable 0.78 2 58% 9% 33% 0% 0% 
CID2013 Favorable 0.74 1 59% 11% 30% 0% 0% 
CCRIQ Moderate 0.67 NA 58% 14% 28% 0% 0% 
ITS4S2 Moderate 0.61 1 48% 12% 40% 0% 0% 
ITS4S3 Moderate 0.5 NA 46% 17% 37% 0% 0% 
ITS4S4 Moderate 0.50 NA 50% 19% 31% 0% 0% 
LIVE-Wild Moderate 0.49 NA 46% 19% 35% 0% 0% 
BID Moderate 0.47 NA 51% 21% 29% 0% 0% 
CCRIQ2 & VIME1 Favorable 0.46 NA 41% 18% 40% 0% 0% 
ITS4S Moderate 0.30 NA 41% 22% 36% 0% 0% 

KoNVid1k Unfavorable 0.22 NA 36% 21% 42% 0% 0% 

AGH-NTIA-Dolby Unfavorable 0.13 NA 40% 33% 27% 0% 0% 
vqegHDCuts Unfavorable 0.05 NA 34% 31% 35% 0% 0% 

Dataset  𝝆𝝆� Number 
of Subj. 

Correct 
Ranking 

False 
Ranking 

False 
Distinction 

False  
Tie 

Correct 
Tie 

All Datasets — 0.51 NA 44% 21% 35% 0% 0% 

Favorable Subset Favorable 0.75 2 57 % 10% 34% 0% 0% 

Moderate Subset Moderate 0.41 NA 48% 17% 35% 0% 0% 

Unfavorable Subset Unfavorable 0.14 NA 33% 30% 36% 0% 0% 
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10. SUMMARY 

This report analyzes the conclusions reached by subjective tests and objective metrics. We assess 
the precision of 60 subjective tests, expressed as CIs. We defined the MOS CI (ΔSCI) as the 
difference in MOS values at which 95% of the pairs will be statistically different (according to 
the Student’s t-test using a 95% confidence level). When the ACR method is used in a well-
designed subjective test, 24 subjects will produce ΔSCI = 0.5, and 15 subjects will produce 
ΔSCI = 0.7. Unknown factors may produce larger values of ΔSCI. 

We used 90 lab-to-lab comparisons to assess the repeatability of subjective tests. We expressed 
repeatability as the likelihood that two well-designed tests will reach the same conclusions or 
different conclusions. Our analysis of subjective tests indicates that, when two labs conduct the 
same subjective test, there is a ≤ 1% chance that the labs will agree that the stimuli have 
significantly different quality but disagree on which stimulus has higher quality. We also defined 
a figure-of-merit, concur, that compares the results of two tests (subjective-to-subjective, or 
subjective-to-objective) and allows us to analyze the extent to which two subjective tests reach 
the same conclusion. 

Based on these analyses, we observe these same relationships from well-designed subjective 
tests that assess speech quality, image quality, and video quality. 

We also consider the relationships between objective metrics and subjective tests. We use a 
confusion matrix to classify the conclusions reached by subjective test and a metric. Of most 
concern are the errors that result when comparing the quality of two stimuli, A and B. The first 
type of error is false distinction, which means the metric rank orders the quality of A and B, but a 
well-designed subjective test cannot (i.e., A and B have statistically equivalent quality). The 
second type of error is false ranking, which means that the metric concludes A is better than B, 
but a well-designed subjective test concludes that B is better than A. 

We proposes a method for explaining the precision of an objective metric to naive users. The 
method calculates the following: 

• Ideal CI, calculated with strict criteria 

• Whether the metric is equivalent to a 24 person subjective test, when using ideal CI 

• Practical CI, calculated with less stringent criteria 

• Whether the metric is equivalent to a 15 person subjective test, when using practical CI 

• N, the number of subjects in an ad-hoc assessment or pilot test that is equivalent to the metric 

When using ideal CI or practical CI, metric values indicate a preference only when the 
difference is greater than the CI. For example, 

𝐀𝐀 > 𝐁𝐁 + 𝑝𝑝𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐𝑎𝑎𝑝𝑝 𝑀𝑀𝑀𝑀 

or 
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𝐁𝐁 > 𝐀𝐀 + 𝑝𝑝𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑟𝑟𝑐𝑐𝑎𝑎𝑝𝑝 𝑀𝑀𝑀𝑀 

Both ideal CI and practical CI yield false distinction and false ranking rates equivalent to a well-
designed test. We propose that the practical CI be used in most circumstances. 

The final option equates the metric to an ad-hoc study of N subjects. This comparison assumes 
that any difference in metric values indicates a preference. 

𝐀𝐀 > 𝐁𝐁 

The metric’s performance is then equated to an ad-hoc study of 12, 9, 6, 3, 2, or 1 subjects. The 
metric’s performance can also be worse than one person’s assessment. 
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APPENDIX A. SUBJECTIVE TEST CONFIDENCE INTERVAL MEASUREMENTS 

This appendix reports ΔSCI for the datasets in Table 1. The “subjects” column contains 
(condition) if this is a speech dataset where the media are analyzed per condition. ΔSCI is 
highlighted in bold to draw attention to differences within the dataset. For example, the method 
changes from ACR to a non-standard method, the subjects change from naive to experts, the 
media change from speech files to speech conditions, or data from multiple labs presented 
separately and pooled.   

Dataset Media Study  Subjects Method Scale ΔSCI 
401 
501 
701 

Speech Crowd 
227 (condition) 
115 (condition) 
144 (condition) 

ACR [1..5] 
0.3 
0.3 
0.4 

AGH/NTIA/Dolby Video Field 

71 
31 
22 
18 

ACR [1..5] 

0.3 
0.4 
0.5 
0.7 

CCRIQ Image Field 

26  
9 
8 
9 
27  
9 
9 
9 

ACR [1..5] 

0.6 
1.1 
1.2 
1.2 
0.6 
1.1 
1.1 
1.2 

CCRIQ2 Image Field 19 ACR [1..5] 0.8 

Hybrid HDTV Video Lab 

24 
24 
24 
24 
24 

ACR [1..5] 

0.5 
0.5 
0.5 
0.5 
0.6 

Hybrid VGA Video Lab 24 ACR [1..5] 
0.6 
0.5 
0.6 

Hybrid WVGA Video Lab 24 ACR [1..5] 0.6 
0.5 

ITS4S Video Field 27 
24 ACR [1..5] 0.5 

0.6 

ITS4S2 Image Field 16 ACR [1..5] 0.7 

ITS4S3 Video Field 

14 
17 
14 
15 
13 
19 

ACR [1..5] 

0.9 
0.9 
1.0 
0.9 
1.0 
0.7 

ITS4S4 Video Field 26 ACR [1..5] 0.7 
ITS 2010 Audiovisual Lab ≈26 ACR [1..5] 1.3 

ITS AV-Sync 2010 Audiovisual Lab 12 
16 ACR [1..5] 1.0 

1.3 
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Dataset Media Study  Subjects Method Scale ΔSCI 

ITU-T Rec. 
P.Sup23, EXP 1 Speech Lab 

24 
24 
24 

ACR [1..5] 
0.5 
0.5 
0.6 

ITU-T Rec. 
P.Sup23, EXP 2 Speech Lab 

48 
48 
48 

CCR [-3..3] 
0.8 
0.8 
0.8 

ITU-T Rec. 
P.Sup23, EXP 3 Speech Lab 

24 
24 
24 
24 

ACR [1..5] 

0.5 
0.5 
0.5 
0.6 

Private Speech 
Dataset #1 Speech Lab 

≈11 
≈22 
43 
344 to 440 (condition) 

ACR [1..5] 

0.9 
0.5 
0.4 
0.3 

Private Speech 
Dataset #2 Speech Lab 8 

512 (condition) ACR [1..5] 1.4 
0.3 

Private Speech 
Dataset #3 Speech Lab 

10 
8 
8 
8 
8 
8 
8 
8 

ACR [1..5] 

1.3 
1.1 
1.2 
1.2 
1.2 
1.2 
1.3 
1.0 

Private Video 
Dataset #1 Video Lab 

Crowd 
15 experts 
61 ACR [0..100] 11 

10 
Private Video 
Dataset #2 Video Lab 30 ACR [1..5] 0.5 

Public Safety #1 Video Lab 16 
16 

ACR 
Boolean 

[1..5] 
[0,1] 

0.6 
0.4 

Public Safety #2 Video Lab 19 
19 

ACR 
Boolean 

[1..5] 
[0,1] 

0.6 
0.4 

UPM-Acreo Video Lab 
20 
22 
21 

ACR 
CIETI(V) 
CIETI(AV) 

[1..5] 
0.6 
0.6 
0.6 

VIME1 Image Field 21 ACR [1..5] 0.8 

VQEG FRTV Phase 
I Video Lab 79 or 90 

DSCQS, SRC 
DSCQS, PVS 
DSCQS, DOS 

[0..100] 
[0..100] 
[-100..100] 

5.0 
6.0 
7.0 

VQEG FRTV Phase 
II, 625-line Video Lab 27 

DSCQS, SRC 
DSCQS, PVS 
DSCQS, DOS 

[0..100] 
[0..100] 
[-100..100] 

6.0 
8.0 
7.0 

VQEG FRTV Phase 
II, 525-line Video Lab 64 

DSCQS, SRC 
DSCQS, PVS 
DSCQS, DOS 

[0..100] 
[0..100] 
[-100..100] 

4.0 
5.0 
5.0 

VQEG HDTV Video Lab 

24 
24 
24 
24 

ACR [1..5] 

0.5 
0.5 
0.5 
0.5 
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Dataset Media Study  Subjects Method Scale ΔSCI 
24 
24 

0.5 
0.5 

VQEG HDTV and 
VQEG Hybrid, 
Extrapolation 

Video Lab 
15 
9 
6 

ACR [1..5] 
0.7 
1.1 
1.5 

VQEGMM2 Video 

— 
Lab 
Public 
Lab 
Lab 
Public 
Lab 
Public 
Lab 
Public 
Lab 

213 (all labs pooled) 
28 
9 
34 
25 
25 
24 
24 
14 
15 
15 

ACR [1..5] 

0.2 
0.6 
1.6 
0.5 
0.6 
0.6 
0.7 
0.6 
0.9 
0.9 
0.9 

VQEG RRNR-TV Video Lab 32 
31 ACR [1..5] 0.4 

0.5 

VQEG RRNR-TV Video Lab 32 
31 ACR-HR [1..5] 0.5 

0.6 
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APPENDIX B. LAB-TO-LAB CONCLUSION CLASSIFICATION DATA 

This Appendix reports incidence of conclusions reached when two or more labs conduct the 
same experiment, using the 5-level ACR method.  

Dataset Subset Stimuli Subjects Agree 
Ranking Agree Tie Unconfirmed Disagree 

AGH/NTIA/Dolby  230 31 22 76.30% 12.32% 11.36% 0.02% 
AGH/NTIA/Dolby  230 31 18 71.87%  12.57% 15.49% 0.08% 
AGH/NTIA/Dolby  230 22 18 70.42% 15.04% 14.48% 0.05% 
ITS4S Partial 212 27 24 60.54% 17.85% 21.34% 0.26% 
CCRIQ Red 171 18 17 54.56% 22.41% 22.16% 0.86% 
CCRIQ Red 171 18 18 50.09% 25.96% 23.41% 0.54% 
CCRIQ Red 171 17 18 48.48% 27.25% 24.06% 0.21% 
CCRIQ Blue 212 18 17 47.44% 23.10% 28.69% 0.77% 
CCRIQ Blue 212 18 18 49.34% 24.52% 25.86% 0.28% 
CCRIQ Blue 212 17 18 47.07% 28.97% 23.79% 0.17% 
Private Speech 
Dataset #3 A 288 10 8 50% 26% 24% 0.21% 

Private Speech 
Dataset #3 B 288 8 8 51% 26% 22% 0.23% 

Private Speech 
Dataset #3 C 288 8 8 52% 27% 20% 0.31% 

Private Speech 
Dataset #3 D 288 8 8 52% 26% 22% 0.30% 

VQEGMM2  60 28 9 53.22% 19.66% 27.06% 0.06% 
VQEGMM2  60 28 34 73.67% 11.86% 14.18% 0.28% 
VQEGMM2  60 28 25 71.30% 12.60% 15.99% 0.11% 
VQEGMM2  60 28 25 69.21% 14.35% 16.38% 0.06% 
VQEGMM2  60 28 24 70.23% 13.28% 16.38% 0.11% 
VQEGMM2  60 28 24 71.86% 13.95% 14.12% 0.06% 
VQEGMM2  60 28 14 66.38% 16.10% 17.34% 0.17% 
VQEGMM2  60 28 15 63.84% 15.99% 20.11% 0.06% 
VQEGMM2  60 28 15 65.25% 13.95% 20.56% 0.23% 
VQEGMM2  60 9 34 53.50% 14.97% 31.41% 0.11% 
VQEGMM2  60 9 25 52.88% 17.57% 29.49% 0.06% 
VQEGMM2  60 9 25 52.20% 20.79% 26.95% 0.06% 
VQEGMM2  60 9 24 51.64% 18.19% 30.00% 0.17% 
VQEGMM2  60 9 24 53.16% 18.76% 27.97% 0.11% 
VQEGMM2  60 9 14 51% 24% 25% 0.06% 
VQEGMM2  60 9 15 60% 25% 25% 0.06% 
VQEGMM2  60 9 15 51% 23% 27% 0.11% 
VQEGMM2  60 34 25 76% 12% 11% 0.00% 
VQEGMM2  60 34 25 72% 12% 15% 0.06% 
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Dataset Subset Stimuli Subjects Agree 
Ranking Agree Tie Unconfirmed Disagree 

VQEGMM2  60 34 24 76% 13% 11% 0.00% 
VQEGMM2  60 34 24 77% 14% 10% 0.00% 
VQEGMM2  60 34 14 69% 14% 17% 0.00% 
VQEGMM2  60 34 15 67% 14% 20% 0.11% 
VQEGMM2  60 34 15 69% 13% 18% 0.06% 
VQEGMM2  60 25 25 72% 15% 14% 0.06% 
VQEGMM2  60 25 24 71% 13% 16% 0.17% 
VQEGMM2  60 25 24 73% 13% 14% 0.17% 
VQEGMM2  60 25 14 67% 14% 19% 0.11% 
VQEGMM2  60 25 15 65% 15% 20% 0.00% 
VQEGMM2  60 25 15 67% 14% 18% 0.11% 
VQEGMM2  60 25 24 70% 15% 16% 0.06% 
VQEGMM2  60 25 24 71% 15% 14% 0.06% 
VQEGMM2  60 25 14 65% 17% 18% 0.06% 
VQEGMM2  60 25 15 65% 19% 16% 0.00% 
VQEGMM2  60 25 15 66% 16% 18% 0.06% 
VQEGMM2  60 24 24 74% 16% 10% 0.00% 
VQEGMM2  60 24 14 67% 16% 17% 0.00% 
VQEGMM2  60 24 15 65% 17% 18% 0.06% 
VQEGMM2  60 24 15 66% 14% 21% 0.00% 
VQEGMM2  60 24 14 67% 16% 17% 0.06% 
VQEGMM2  60 24 15 65% 17% 18% 0.00% 
VQEGMM2  60 24 15 67% 15% 17% 0.11% 
VQEGMM2  60 14 15 61% 20% 19% 0.06% 
VQEGMM2  60 14 15 63% 18% 19% 0.06% 
VQEGMM2  60 15 15 63% 21% 16% 0.06% 

VQEG FRTV 
Phase I 
(narrow range) 

Low 
Quality, 
525-line 

90 

18 
18 
18 
18 
18 
18 

18 
16 
18 
16 
18 
16 

60% 
60% 
57% 
65% 
59% 
59% 

18% 
17% 
22% 
17% 
20% 
19% 

22% 
23% 
21% 
19% 
21% 
22% 

0.20% 
0.10% 
0.00% 
0.22% 
0.02% 
0.02% 

VQEG FRTV 
Phase I 
(very narrow range) 

High 
Quality, 
525-line 

90 

18 
18 
18 
18 
18 
18 

16 
16 
16 
18 
18 
18 

46% 
49% 
46% 
48% 
45% 
48% 

25% 
23% 
26% 
22% 
25% 
23% 

29% 
28% 
27% 
29% 
30% 
28% 

0.17% 
0.12% 
0.02% 
0.87% 
0.77% 
0.50% 

VQEG FRTV 
Phase I 
(narrow range) 

Low 
Quality, 
625-line 

79 

18 
17 
17 
18 
18 
18 

17 
16 
18 
16 
18 
16 

37% 
52% 
56% 
37% 
37% 
56% 

28% 
26% 
23% 
29% 
24% 
25% 

33% 
21% 
21% 
33% 
38% 
19% 

1.82% 
0.88% 
0.00% 
0.13% 
0.91% 
0.10% 
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Dataset Subset Stimuli Subjects Agree 
Ranking Agree Tie Unconfirmed Disagree 

VQEG FRTV 
Phase I 
(very narrow range) 

High 
Quality, 
625-line 

90 

17 
18 
17 
18 
16 
18 

16 
17 
16 
16 
16 
16 

24% 
29% 
30% 
26% 
29% 
33% 

45% 
48% 
39% 
46% 
39% 
41% 

31% 
23% 
30% 
27% 
32% 
25% 

0.30% 
0.00% 
0.15% 
0.17% 
0.02% 
0.07% 

VQEG FRTV 
Phase II, 525-line 

PVS 
DOS 64 32 

32 
32 
32 

75% 
75% 

10% 
10% 

15% 
15% 

0.15% 
0.10% 

VQEG RRNR-TV 525-line 
625-line 168 16 

16 
16 
15 

61% 
63% 

14% 
17% 

24% 
19% 

0.67% 
0.14% 

RRNR-TV  
ACR-HR 

525-line 
625-line 168 16 

16 
16 
15 

59% 
61% 

16% 
21% 

24% 
18% 

0.95% 
0.48% 

VQEG Hybrid HD, 
5 tests  

Common 
set 24 24 24 68% 11% 20% 0.94% 
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