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TROPOSPHERIC SCATTER:
THEORY VS. PREDICTIVE MODELS

Roger Dalke1

Circa 1960, the National Bureau of Standards intensively studied over-the-horizon
radio propagation due to tropospheric (aka forward) scatter. The results of that
effort, published in the form of graphs and/or empirical mathematical functions
based on curve fitting, led to the development of important radio propagation mod-
els. Unfortunately, there is scant documentation describing exactly how the pub-
lished data is related to the underlying theoretical basis for scattering theory. In this
report, we describe the electromagnetic theory that results in the forward scatter
Common Volume Integral. This is followed by a description of analytical meth-
ods used to obtain solutions. The results are then compared to propagation model
predictions. In general, fairly good agreement between theory and models was
obtained for the Irregular Terrain Model and IF-73 air/ground propagation model.
Good agreement with the IF-77 Electromagnetic Wave Propagation Model was
obtained when frequency gain corrections are negligible. Otherwise, the IF-77 and
theoretical results differed significantly. The reason for this was not determined.

Keywords: tropospheric scatter, forward scatter, Irregular Terrain Model, IF-77 Electromag-
netic Wave Propagation Model

1 INTRODUCTION

It is well known that over the horizon microwave signals can be received at large distances due to
irregularities in the atmospheric index of refraction [1]. This phenomenon is called tropospheric
or forward scatter and was the subject of intense study by researchers at the National Bureau of
Standard’s Central Radio Propagation Laboratory (“the NBS group” [1]). The results of their
efforts, described in NBS Technical Notes 15 and 101 [2, 3], led to the development of important
radio propagation models [4, 5] that are commonly used to predict radio signal attenuation.

There are numerous publications describing early efforts to understand forward scatter (see e.g.,
[6, 7, 8]). In particular, [7, 8] provide a detailed description of methods used to calculate forward
scatter attenuation based on Booker-Gordon turbulence theory [9] along with the assumption that
scattering efficiency varies in proportion to the inverse height above the earth’s surface. Further
research resulted in a quite different formulation as noted by [1, p. 225]:

The NBS group has used the meteorologically observed exponential variation [em-
phasis added] of dε0/dh up to stratospheric heights to predict experimental data [e.g.,
attenuation] presented in figure 22 quite well out to 700 miles ...

1The author is with the Institute for Telecommunication Sciences, National Telecommunications and Information
Administration, U.S. Department of Commerce, Boulder, Colorado 80305.



The problem has only been solved completely by the NBS group, using numerical
techniques ... They considered broad-antenna patterns with the mixing-in-gradient
model and obtained good (absolute) agreement with experimental data.

NBS Technical Note 15 and an “unpublished work” are cited as a source for these comments. We
see then that NBS Technical Notes 15 and 101 and hence the propagation models [4, 5] are not
wholly based on the theory presented in [6, 7, 8].

The NBS Technical Notes provide detailed methods for predicting forward scatter attenuation
in the form of data and equations involving elementary functions; evidently, the equations are
based on curve fitting. There is scant information on how these data are related to fundamental
tropospheric scatter theory. In fact, in the forward to NBS Technical Note 15 [2], we find the
following statement:

Within a year it is hoped to submit for publication in the NBS Journal of Research,
Part D, a detailed explanation of the prediction methods of this Technical Note, greatly
simplified without loss of accuracy, and including a discussion of the theory.

We have been unable to locate such a document. Furthermore, the forward to NBS Technical Note
101 [3], published several years after Technical Note 15, states

further development of forward scatter predictions and a better understanding of the
refractive index structure of the atmosphere led to changes reported in an early un-
published [emphasis added] NBS report and in NBS Technical Note 15.

Then in [5] we find a section titled “Scatter Region” followed by four pages of cryptic equations
that are used to calculate attenuation due to tropospheric scatter. The only reference is to an
informal communication by Dr. George Hufford. This dearth of formal publications that describe
exactly the theoretical basis for the models is, unfortunately, what we often found in our quest to
understand the basis for the data and equations presented in [2, 3, 5].

Recently, there have been questions regarding the efficacy of these models when it comes to for-
ward scatter predictions. Evidently, the published record does not adequately describe the relation-
ship between propagation model predictions and electromagnetic theory. To bridge this knowledge
gap, the main purpose of this effort is to compare theoretical results and model predictions. To ac-
complish this task, the “somewhat difficult” forward scatter integrals were evaluated.

First, we describe in some detail the electromagnetic theory of forward scatter that culminates
in the so called Common Volume Integral. That is purportedly the basis for propagation model
forward scattering algorithms. Next, methods used to evaluate the integral are described in some
detail. Finally, calculated theoretical results are compared with those obtained via various propa-
gation model algorithms.
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2 ELECTROMAGNETIC THEORY

The mathematical details contained in this section are based on unpublished notes created by Dr.
George Hufford, where he states: “the description that follows is a standard one used in such
publications as Tech Note 101.”

We assume that the transmitter is at the point x1 and the receiver is over the horizon at point x2
(see Figure 1). The transmitted radio field u(x) satisfies the Helmholtz equation

∇
2u+ k2(1+2N)u = δ(x− x1) (1)

where k is the propagation constant and the refractivity, N = N(x), is a stochastic function of space
with mean N̄ = E {N}. The refractivity may also be a function of time and it is assumed that its
mean is a smooth function of space and independent of time.

Suppose that u =U + û where U depends on N̄ and û represents a perturbation that depends on the
stochastic refractivity deviation ε = N − N̄. We then have

∇
2U + k2(1+2N̄)U −δ(x− x1)+∇

2û+ k2(1+2N̄)û+2k2
εu = 0. (2)

Let U(x,x1) be a Green’s function that depends on the mean refractivity and also satisfies the
(homogeneous) boundary condition imposed by the obstructive earth; we then have

∇
2U + k2(1+2N̄)U = δ(x− x1) (3)

∇
2û+ k2(1+2N̄)û =−2k2

εu (4)

where
û(x) =−2k2

∫
U(x,x′)ε(x′)u(x′)dx′. (5)

Note that U can be large only if the points x and x1 are within sight of each other. An integral
equation for the radio field u(x) is easily obtained, viz.

u(x) =U(x,x1)−2k2
∫

U(x,x′)ε(x′)u(x′)dx′. (6)

Since u(x)=U(x,x1)+ û(x) and û represents ostensibly small deviations, the iteration-perturbation
method may be used to find an approximate solution to the integral equation. This involves sub-
stituting the unperturbed function U(x,x1) for u(x) under the integral sign, then this process is
repeated using that solution and so on. Only the first iteration is used; this is known as the Born
single scattering approximation. The radio field at the receiver is then

u(x2)≈U(x2,x1)−2k2
∫

U(x2,x)U(x,x1)ε(x)dx

= ud +us (7)

where ud is the diffraction field and us is the forward scatter field.
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The integral represents the sum of many elemental signals scattered by random refractivity devia-
tions. The deviations are zero-mean and considering the central limit theorem, us is a zero-mean
Gaussian random process. Thus, the average received power E

{
|us|2

}
is required to describe the

process. Also, with the addition of the diffracted field, a constant, the radio field distribution is
Nakagami-Rice.

Propagation models usually calculate the gain (or attenuation) relative to the free-space field based
on the great circle distance ℓ between terminals. For a point source, the free-space field is u f s =
−eikℓ/4πℓ, hence, the function of interest is vs, where

us =− eikℓ

4πℓ
vs. (8)

Based on the radio frequencies of interest and typical distances from the points x1 and x2 to the
commonly viewed scattering elements, ray theory is used to describe U within the scattering inte-
gral, viz.,

U(x,xi) =−gi(x)
eikψi(x)

4πri
(9)

where ri = |x− xi| and ψi(x) is the optical length of the rays coming from the transmitter and
going to the receiver. Note that the integral is over the commonly viewed elements, so that region
is called the common volume V .

The function gi(x) represents the field gain from the antenna at xi (in principle it should include
the relatively small diffracted field). The scattered field relative to free space is then

vs =
k2ℓ

2π

∫
g1(x)g2(x)

1
r1r2

eik(ψ1(x)+ψ2(x)−ℓ)dx. (10)

The quantity of interest is the mean power gain relative to free space, i.e., the variance

V 2 = E
{
|vs|2

}
=

k4ℓ2

4π2

∫∫
g1(x)g∗1(x

′)g2(x)g∗2(x
′)

· 1
r1r′1r2r′2

exp
[
ik(ψ1(x)−ψ1(x′)+ψ2(x)−ψ2(x′))

]
·R(x,x′)dxdx′ (11)

where R(x,x′) = E {ε(x)ε(x′)} is the refractivity-deviation autocorrelation function.

To make progress, various approximations and notational changes are introduced. The atmosphere
is not statistically homogeneous, so it is useful to describe the autocorrelation function as depend-
ing on the point x and a “deviation” from that point ρ = x′− x, whence, R becomes R(x,ρ). The
notion is that the refractivity deviations ε(x) and ε(x′) become rapidly independent as ρ increases
so that R goes rapidly to zero for even moderately large ρ. Since only small values of ρ are im-
portant, it is assumed that within the integral we can set gi(x′) = gi(x+ ρ) ≈ gi(x) and r′i ≈ ri.
Similarly, the phases are approximated as

ψi(x)−ψi(x′)≈ ∇ψi · (x′− x) = pi ·ρ (12)

4



where pi(x) = ∇ψi(x) are vectors tangent to the respective rays (see Figure 1). We then have

V 2 =
k4ℓ2

4π2

∫∫
|g1(x)|2|g2(x)|2 1

r2
1r2

2
eik(p1+p2)·ρR(x,ρ)dxdρ

=
k4ℓ2

4π2

∫
|g1(x)|2|g2(x)|2 1

r2
1r2

2
Φ(x,k(p1 + p2))dx (13)

where the integrand now includes the power spectral density

Φ(x,κ) =
∫

eiκ·ρR(x,ρ)dρ (14)

with κ = k(p1 + p2).

A realistic description of the function Φ (or R) is required for further development of the theory.
This depends on the behavior of the atmosphere at high altitudes and as noted by Dr. Hufford,
it is a meteorological question, where the physical answer, while continuing to improve, is still
somewhat in dispute. Continuing on, we will describe various approximations that lead to the
forward scatter attenuation functions found in [2, 3, 5].

To make the problem tractable, two important assumptions are applied that purportedly provide
answers considered to be close enough to the truth. For a particular point in the common vol-
ume, the power spectral density function describes the “spectrum” of dielectric irregularities (aka
“blobs”). The first assumption is that while the strength of the scattering due to the blobs varies in
space, the “shape of the spectrum” stays about the same, hence, the variables can be separated, i.e.,
Φ(x,κ) = S(x)Φ(κ) and also R(x,ρ) = S(x)R(ρ). The second assumption is that the turbulence is
isotropic so that R only depends on the length of ρ and not on the direction; this implies that Φ is
a function of the length of κ alone.

The function Φ(κ) is the spectrum arising from homogeneous isotropic turbulence. A useful math-
ematical description of such spectra is the von Karmen series

Φ(κ) =
σ2ℓ3

0

(1+κ2ℓ2
0)

ν+3/2 (15)

where σ2 determines the strength of the turbulence and ℓ0 is the scale length or average size of the
of the blobs. The inverse Fourier transform is the correlation function

R(ρ) = σ
2
(

ρ

2ℓ0

)ν √
π

Γ(ν+3/2)
Kν

(
ρ

ℓ0

)
(16)

where Kν is the modified Bessel function.

This general formulation describes the various turbulence theories that were considered by re-
searchers [1]. Setting ν = 1/2 yields the original Booker-Gordon theory with correlation func-
tion R(ρ) = (πσ2/2)e−ρ/ℓ0 . Obukhov and Kolmogoroff developed a turbulence model that says
ν = 1/3. Then there is the mixing-in-gradient model where ν = 1. That model considers an initial
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refractivity gradient and modifications due to turbulent convection over the entire spectrum. The
obvious question: which model gives results that are in good agreement with measured data? This
was answered by examining forward scatter radio-frequency dependence.

The frequency dependence for the various turbulence theories is easily estimated by considering
terms in V 2 that directly involve the propagation constant k, viz.

V 2
∝ k4

Φ(k . . .) ∝
k4

k2ν+3 = k1−2ν; (17)

The Booker-Gordon model predicts that gain is independent of frequency, k0. According to the
Obukhov-Kolmogoroff model, gain is proportional to k1/3, i.e., scattered power increases with
frequency. The mixing-in-gradient model yields power gain that is proportional to k−1. According
to [1], “this [mixing-in-gradient model] was found to be in good agreement with careful analysis of
the data from numerous broad-beam experiments when the role of height gain factors is carefully
included,” hence, that was determined to be the appropriate turbulence model.

A further simplification is obtained by assuming that κ is large. According to Dr. Hufford the
justification for this is that

the minimum scatter angle within the common volume is that at the cross-over where
the two horizon rays intersect. By the very nature of the problem this cannot be very
small ...

yielding

Φ(x,κ) =
S(x)
κ5 (18)

where the function S has been modified to include the constants described above. Evidently, based
on radio measurements [1, 2], it is assumed that scattered signal power is proportional to the square
of the mean gradient of the refractive index. Hence, scattering efficiency decreases exponentially
with height above the horizon ray cross-over point, i.e.,

S(x) = S0e−2γz (19)

where S0 is the scattering efficiency at the cross-over point, and z is the elevation above the cross-
over point.

The vectors pi have length equal to the index of refraction 1+ N̄; since 1 >> N̄, the length is
assumed equal to 1. We then have |p1 + p2|= 2sinθ/2, where θ is the external angle between the
vectors and it is also the angle between the ray coming from the transmitter and the ray going to
the receiver; aka the scattering angle.

What about the gain functions gi? It is assumed that gi(x) = 0 whenever x is below that terminal’s
horizon. Hence, the integrand is non-zero in the region above the intersection of the horizon rays,
i.e., the common volume. In that region, it is assumed that the incident field is dominated by a
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direct ray plus a ground reflected ray with reflection coefficient of −1 [7]. In terms of the effective
antenna heights hei and what are called elevation angles above the horizontal, ψi, the gains are

gi(x) = 1− ei2khei sinψi, |gi|2 = 4sin2 khei sinψi. (20)

The phrase used to describe the angles ψi is somewhat vague. In [7], they are called grazing angles.
There we find that Figure 36 and Equation 45 provide a detailed description of the gain functions;
the ψi are described as the angles between the horizon rays and the corresponding direct ray to a
volume element within the common volume. The gain functions are further described as “the usual
expressions for ground reflection lobery over a plane reflecting surface.” Referring to [3], the idea
is that as the effective antenna heights, measured in wavelengths, become smaller, the direct and
reflected wave energy tends to cancel at the lower part of the common volume, where scattering
efficiency is greatest. Since it is the lower portion of the scattering volume that is important, the
approximations associated with small grazing angles are perhaps reasonable. When khei is large,
there are many oscillations within small intervals of the grazing angles, so the sin2 terms can be
replaced by 1/2. For that case, the power is doubled on both the transmitter and receiver side.

With all of this, in principle, tropospheric scatter gain can be calculated via the following equation:

V 2 =
4ℓ2

π2k

∫
V

sin2(khe1 sinψ1)sin2(khe2 sinψ2)
1

r2
1r2

2

S0e−2γz

(2sinθ/2)5 dx. (21)

where S0 is the scattering efficiency at the cross-over point, and z is the elevation above that cross-
over point. The common volume and variables are, as noted by Dr. Hufford, “well defined and
easily pictured functions of the position vector x”. The empirical constants S0 and γ, depend on
surface refractivity, and the height above the surface of the common volume cross-over point.
Expressions that are used to calculate values for these empirical constants can be found in [3, 5].

In order to compare theoretical results with propagation model algorithms we need to evaluate
the Common Volume Integral (21). As it stands, the integral, is still too difficult for practical
calculations. The integrand is usually simplified via a host of geometric approximations. In what
follows, we describe the methods we used to obtain solutions.
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3 EVALUATION OF THE COMMON VOLUME INTEGRAL

We will use the coordinate systems and many of the geometric approximations defined in [7]
(Norton’s geometry shown in Figure 1) to improve tractability of the Common Volume Integral.
The use of these approximations is justified, to some extent, in [8] (second column page 1345).
Note that S0, defined above, is the scattering efficiency assuming that the coordinate system origin
is at the cross-over point (x = 0, z = h0 in Figure 1). For the coordinates defined by Figure 1, the
scattering efficiency term is then e2γh0S0. In addition, we set ρ1,2 = 2khe1,2, η = γθℓ/2, ρ1,2 =
ρ1,2θ, where he1,2 are effective antenna heights and γ is the logarithmic gradient of refractivity (see
also [5]).

r1 ≅ ℓ1–x
r2 ≅ℓ2 +x

α + β ≅ ℓ 𝑦𝑦2+𝑧𝑧2

r1r2

x1
x2

I1 I2

ℓ

dx

dz

z

(α + β)

dv=dxdzdy

αo

ψ1

ψ2

x ≡ x1 -x ≡ x2

r1

ℓ2

r2

ho

ℓ1

α

p1

p2

Figure 1. Geometry for the scatter integral

Applying Norton’s geometry on the left side (I1 in Figure 1) of the crossover point we obtain

V 2
L =

ℓ2S0e2γh0

π2k

ℓ1∫
0

∞∫
β0(ℓ2+x)

∞∫
−∞

4gtgr(ℓ1 − x)3(ℓ2 + x)3

ℓ5(y2 + z2)5/2 e−2γz dydzdx, (22)

where according to Norton’s geometrical approximation gt = sin2 [khe1ψ1] and gr = sin2 [khe2ψ2].

The integral over y is not difficult; we then have

V 2
L =

4
3

S0e2γh0

π2ℓ3k

ℓ1∫
0

∞∫
β0(ℓ2+x)

(4gtgr)(ℓ1 − x)3(ℓ2 + x)3e−2γz

z4 dzdx. (23)
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Applying Norton’s geometry to the product of the gain functions yields

4gtgr = 1− cosρ1ψ1 − cosρ2ψ2 +(cos(ρ1ψ1 +ρ2ψ2)+ cos(ρ1ψ1 −ρ2ψ2))/2, (24)

where ψ1 = z/(ℓ1−x)−α0 and ψ2 = z/(ℓ2+x)−β0. To obtain the volume integral on right hand
side, make the following changes: β0 → α0, ℓ2 → ℓ1, and ℓ1 → ℓ2 except for the gain functions
where ψ1 = z/(ℓ1 + x)−α0 and ψ2 = z/(ℓ2 − x)−β0.

With this, the left and right volume integrals explode into many integrals; the details are given in
Appendix A. Each of the integrals can be written in the following general form

ℓ∫
µℓ

(ℓ−w)3E4( f (w))dw =

ℓ∫
µℓ

(ℓ−w)3 f 3(w)Γ(−3, f (w))dw (25)

where
f (w) = κw+νw/(ℓ−w)+λ =−κ(ℓ−w)+νℓ/(ℓ−w)+κℓ−ν+λ; (26)

κ, ν, and λ are constants that depend on the integral under consideration.

Four of these integrals (I0 and one each for It,r) have “analytic” solutions. The rest are difficult and
in our view require numerical analysis.

3.1 Analytic Solutions

When ν = 0, there are relatively straightforward (although messy) analytic solutions. In this case,

I =

ℓ∫
µℓ

(ℓ−w)3 f 3(w)Γ(−3, f (w))dw =
1
κ4

κℓ+λ∫
κµℓ+λ

(κℓ+λ−w)3w3
Γ(−3,w)dw (27)

=
1
κ4

3

∑
n=0

(−1)n
(

3
n

)
(κℓ+λ)3−n

κℓ+λ∫
κµℓ+λ

w3+n
Γ(−3,w)dw. (28)

Applying partial integration, we see that∫
wn+3

Γ(−3,w)dw =
1

n+4
[
wn+4

Γ(−3,w)−Γ(n+1,w)
]
, (29)

and, setting an = 140(−1)n(3
n

)
/(n+4), we obtain

I =
1

140κ4

3

∑
n=0

an(κℓ+λ)3−n [wn+4
Γ(−3,w)−Γ(n+1,w)

] κℓ+λ∣∣∣∣
κµℓ+λ

. (30)

We then have
I=

Iu −Iℓ
140κ4 (31)
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where

Iu = (κℓ+λ)4E4(κℓ+λ)−
3

∑
n=0

an(κℓ+λ)3−n
Γ(n+1,κℓ+λ) (32)

Iℓ = (κℓ+λ)3(κµℓ+λ)4
Γ(−3,κµℓ+λ)

3

∑
n=0

an

[
κµℓ+λ

κℓ+λ

]n

−

3

∑
n=0

an(κℓ+λ)3−n
Γ(n+1,κµℓ+λ) (33)

Iℓ = (κℓ+λ)3(κµℓ+λ)E4(κµℓ+λ)
3

∑
n=0

an

[
κµℓ+λ

κℓ+λ

]n

−

3

∑
n=0

an(κℓ+λ)3−n
Γ(n+1,κµℓ+λ); (34)

note that a0 = 35, a1 =−84, a2 = 70, a3 =−20, so ∑
3
n=0 an = 1.

Ultimately, we are interested in parameter studies; hence, we find it useful to describe the foregoing
results as functions of the various parameters:

I(κ,λ,µ) =
Iu(κ,λ)−Iℓ(κ,λ,µ)

140κ4 . (35)

3.2 Numerical Solutions

When ν ̸= 0, the integrand is highly oscillatory, and in our view numerical analysis like that de-
scribed here must be used. For these integrals, we use the notation

I =

ℓ∫
µℓ

(ℓ−w)3E4( f (w))dw (36)

and define A =−κ, B = κℓ−ν+λ, and C = νℓ so that we can write

f (w) = A(ℓ−w)+B+C/(ℓ−w) = Aℓ(1−w/ℓ)+
C

ℓ(1−w/ℓ)
+B. (37)

Setting y = 1−w/ℓ we obtain

I = ℓ4
1−µ∫
0

y3E4 (g(y))dy, g(y) = Aℓy+
C
ℓy

+B. (38)

Noting that the generalized exponential integral can be written as a continued fraction, viz.

En(z) = e−z
(

1
z+

n
1+

1
z+

n+1
1+

2
z+

· · ·
)

(|argz|< π), (39)

we see that it can be cast in terms of the product of an oscillatory term e−i Imz and a non oscillatory-
term ei ImzEn(z) that can be well approximated by a polynomial.
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3.2.1 Polynomial Approximation

Referring to the previous equation, the function of interest is

F(y) = y3e
C
ℓy E4(g(y)) (40)

where

I

ℓ4 =

1−µ∫
0

F(y)e
−C
ℓy dy. (41)

The idea is to divide the integral into a sum of several integrals over equal subintervals. Lagrangian
3-point interpolation is applied to F(y) on each subinterval yielding a second degree polynomial
approximation. Each term of the polynomial is integrated against the wildly oscillating complex
exponential yielding ∫

yke
−C
ℓy dy = yk+1Ek+2

(
C
ℓy

)
k = 0,1,2. (42)

In what follows, we will use standard difference operator notation, viz.

∆Fk = Fk+1 −Fk

∆
2Fk = ∆(∆Fk) = Fk+2 −2Fk+1 +Fk.

3.2.2 Interpolation

There are M subintervals, each has a length 2h = 1−µ
M . Setting y j = jh and Fj = F(y j), the inter-

polation polynomial for the mth interval is

F(m)(y) =
p(p−1)

2
F2m−2 +(1− p2)F2m−1 +

p(p+1)
2

F2m, m = 1, . . . ,M (43)

where p = (y− y2m−1)/h.

It seems useful to manipulate this into a simple power series as follows:

F(m)(y) =
(y− y2m−1)

2

2h2 ∆
2F2m−2 +

y− y2m−1

2h
(F2m −F2m−2)+F2m−1 (44)

=
y2

2h2 ∆
2F2m−2 + y

(
F2m −F2m−2

2h
− y2m−1∆2F2m−2

h2

)
+

F2m−1 +
y2

2m−1

2h2 ∆
2F2m−2 −

y2m−1

2h
(F2m −F2m−2) ; (45)

then define coefficients:

c(2)m =
∆2F2m−2

2h2 (46)

c(1)m =
F2m −F2m−2

2h
−2y2m−1c(2)m (47)

c(0)m = F2m−1 − y2m−1

(
c(1)m + y2m−1c(2)m

)
, (48)
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yielding

F(m)(y) =

{
∑

2
k=0 c(k)m yk 2(m−1)≤ y/h ≤ 2m

0 else
(49)

3.3 The Numerical Integration Algorithm

The integral can then be approximated as

I

ℓ4 =

1−µ∫
0

M

∑
m=1

F(m)(y)eϖ/ydy =
M

∑
m=1

2mh∫
2(m−1)h

2

∑
k=0

c(k)m ykeϖ/ydy, (50)

and hence,

I

ℓ4 =
M

∑
m=1

2

∑
k=0

c(k)m

[
(2mh)k+1Ek+2

(
− ϖ

2mh

)
− (2(m−1)h)k+1Ek+2

(
− ϖ

2(m−1)h

)]
. (51)

Note that En(∞) = 0 so that the lower limits when m = 1 are zero. Also note that, except for the
coefficients, the upper limit of the mth term is the same as the lower limit of the (m+ 1)th term.
We then have

I

ℓ4 =
2

∑
k=0

[
M−1

∑
m=1

−∆c(k)m (2mh)k+1Ek+2

(
− ϖ

2mh

)
+ c(k)M (2Mh)k+1Ek+2

(
− ϖ

2Mh

)]
(52)

where ∆c(k)m = c(k)m+1 − c(k)m , ϖ =−C/ℓ, 2Mh = 1−µ, and h = 1−µ
2M .

Note that these results are actually functions of (Aℓ,B,C/ℓ), i.e., the dependence on ℓ is only via
2η = γθℓ; hence, parameter studies will not explicitly depend on ℓ.

3.4 A Formal Result

In this section we devise a formal expression for the whole mess, i.e., V 2. To this end, we will
concoct notation for the various parameters to obtain a somewhat compact expression for V 2.
Since each integral has a different set of parameters, we will sort this out by using superscripts and
subscripts to tie them to the various integrals.

For each It,r and It±r (see (A-13)-(A-16)), there are two integrals. Parameters belonging to the first
integral will be denoted with the superscript (1) and parameters belonging to the second integral
will be denoted with the superscript (2). The parameters µ and κ have two values

µ(1) = (1− s)/2, µ(2) = (1+ s)/2,

κ
(1) = γθ(1+ s), κ

(2) = γθ(1− s)

where s is the modulus of asymmetry (see [5] and Appendix A).
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As an example of this scheme, we can at this point, construct the formal expression for I0, viz.

I0 =
8ℓ4

140θ3

[
Iu(κ

(1),λ
(1)
0 )−Iℓ(κ

(1),µ(1),λ(1)
0 )

[κ(1)ℓ]4(1+ s)3
+

Iu(κ
(2),λ

(2)
0 )−Iℓ(κ

(2),µ(2),λ(2)
0 )

[κ(2)ℓ]4(1− s)3

]
(53)

where λ
( j)
0 = 0, and I0, Iu and Iℓ are defined by (A-13), (33), and (34).

The parameters ν and λ also depend on the particular term, i.e., It,r or It±r, so we will use subscripts
to keep track of that as necessary; then for ν,

ν
(1)
t =−iρ1(1+ s)/2, ν

(2)
t = 0, ν

(1)
r = 0, ν

(2)
r =−iρ2(1− s)/2,

ν
(1)
t+r =−iρ1(1+ s)/2, ν

(2)
t+r =−iρ2(1− s)/2,

ν
(1)
t−r =−iρ1(1+ s)/2, ν

(2)
t−r = iρ2(1− s)/2,

and for λ,

λ
(1)
t = 0, λ

(2)
t =−iρ1(1− s)/2, λ

(1)
r =−iρ2(1+ s)/2, λ

(2)
r = 0,

λ
(1)
t+r =−iρ2(1+ s)/2, λ

(2)
t+r =−iρ1(1− s)/2,

λ
(1)
t−r = iρ2(1+ s)/2, λ

(2)
t−r =−iρ1(1− s)/2.

If we do the same sort of thing for the parameters A, B, and C, we find

A(1) =−2η(1+ s)/ℓ, A(2) =−2η(1− s)/ℓ

B(1)
t = 2η(1+ s)

[
1+

iρ1

4η

]
, B(2)

t = n/a, B(1)
r = n/a, B(2)

r = 2η(1− s)
[

1+
iρ2

4η

]
,

B(1)
t+r = 2η(1+ s)

[
1+

i(ρ1 −ρ2)

4η

]
, B(2)

t+r = 2η(1− s)
[

1+
i(ρ2 −ρ1)

4η

]
,

B(1)
t−r = 2η(1+ s)

[
1+

i(ρ1 +ρ2)

4η

]
, B(2)

t−r = 2η(1− s)
[

1− i(ρ1 +ρ2)

4η

]
,

C(1) =− iρ1ℓ(1+ s)
2

, C(2) =−C∗(2) =− iρ2ℓ(1− s)
2

Then formally we can write

It =
8ℓ4

θ3 Re

{
e−iρ1

1−s
2

[
I
(

A(1),B(1)
t ,C(1),µ(1)

)
ℓ4(1+ s)3 +

Iu

(
κ(2),λ

(2)
t

)
−Iℓ

(
κ(2),µ(2),λ(2)

t

)
140[κ(2)ℓ]4(1− s)3

]}
(54)

Ir =
8ℓ4

θ3 Re

{
e−iρ2

1+s
2

[
Iu

(
κ(1),λ

(1)
r

)
−Iℓ

(
κ(1),µ(1),λ(1)

r

)
140[κ(1)ℓ]4(1+ s)3

+
I
(

A(2),B(2)
r ,C(2),µ(2)

)
ℓ4(1− s)3

]}
(55)

13



It+r =
8ℓ4

θ3 Re

{
e−i(ρ1

1−s
2 +ρ2

1+s
2 )

[
I
(

A(1),B(1)
t+r,C

(1),µ(1)
)

ℓ4(1+ s)3 +
I
(

A(2),B(2)
t+r,C

(2),µ(2)
)

ℓ4(1− s)3

]}
(56)

It−r =
8ℓ4

θ3 Re

{
e−i(ρ1

1−s
2 −ρ2

1+s
2 )

[
I
(

A(1),B(1)
t−r,C

(1),µ(1)
)

ℓ4(1+ s)3 +
I
(

A(2),B(2)
t−r,C

∗(2),µ(2)
)

ℓ4(1− s)3

]}
(57)

This combined with

V 2 =

[
4

3π2 S0

]
e2γh0

(
ℓ

θ3k

)
θ3

ℓ4 [I0 − It − Ir +(It+r + It−r)/2] (58)

is used to calculate transmission gain. The transmission attenuation (preferred by engineers) is the
reciprocal, in decibels i.e., −10logV 2.
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4 THEORY VS. PROPAGATION MODELS

In this section, we compare theoretical results obtained from the Common Volume Integral with
those obtained from the Irregular Terrain Model (ITM) and IF-77 Electromagentic Wave propaga-
tion model (IF-77) [4, 5]. For this, it is convenient to describe forward scatter attenuation in terms
of the frequency gain function H0 viz.

As =−10log
[

4
3π

S0e2γh0

]
+10log

(
θ3k
ℓ

)
−10log

(
θ3I0

ℓ4

)
+H0 (59)

where

H0 =−10log
[

1− It + Ir

I0
+

It+r + It−r

2I0

]
. (60)

It is assumed that if the antennas, measured in wavelengths, are sufficiently high, reflection of
energy by the ground doubles the power incident on scatterers and again doubles the power scat-
tered to the receiver. For that case H0 is negligible. As the frequency is reduced, effective antenna
heights in wavelengths become smaller, and ground-reflected energy tends to cancel direct-ray
energy at the lower part of the common volume where scattering efficiency is greatest. Then H0
provides an estimate of the corresponding increase in attenuation.

Calculating attenuation when H0 can be neglected is tedious but rather straightforward. That is
also true for the case of constant refractivity even when H0 cannot be neglected. Comparisons with
propagation models for those cases will be examined first. When the refractivity is not constant
numerical analysis of the Common Volume Integral is required. For those cases, we will compare
theoretical calculations of H0 with model predictions.

4.1 Theory vs. Models When Frequency Gain Is Negligible

As described above, frequency gain is negligible when khte and khre are large so that, due to wild
oscillations of the integrands, It,r and It±r are negligible; according to [7], this is the case when
ρ1,2 > 20. We start with (53) and write I0 =

ℓ4

θ3 [L+R], G = 2µ(1), H = 2µ(2), and ηs = 2(1− s2)η.
We then have

L =
1

H3

{
E4

(
ηs

G

)
− e−ηs/G G

ηs

[
1−4

G
ηs

+20
(

G
ηs

)2

−120
(

G
ηs

)3
]
− G

2
E4

(
ηs

2

) 3

∑
n=0

an

(
G
2

)n

−e
ηs
2

G
ηs

[
3

∑
n=0

an

(
G
2

)n

+(a1G+a2G2 +3a3G3/4)/ηs +(2a2G2 +3a3G3)/η
2
s +6a3G3/η

3
s

]}
,

(61)

R is obtained by replacing s with −s, i.e., interchanging G and H. The idea then is to obtain a
polynomial fit to the function

Y(η,s) =
(

θ3I0

ℓ4

)−1

. (62)
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First, consider the limiting cases, viz. constant refractivity (η → 0) and η → ∞. For the former, we
have (cf. Appendix A)

ℓ1∫
0

∞∫
β0(ℓ2+x)

(ℓ1 − x)3(ℓ2 + x)3

z4 dzdx =
ℓ4

1

12β3
0

ℓ2∫
0

∞∫
α0(ℓ1+x)

(ℓ2 − x)3(ℓ1 + x)3

z4 dzdx =
ℓ4

2

12α3
0

(63)

Noting that β0/ℓ1 = α0/ℓ2 = θ/ℓ we obtain

I0 =
ℓ4

θ3
1

12
. (64)

For large z

E4(z)∼
e−z

z

[
1− 4

z
+

20
z2 − 120

z3 + · · ·
]

(65)

where we find that the terms related to the upper limit of the integral are negligible and after some
tedious manipulations we find that I0 = 4ℓ4/(θ3η2

s ).

Considering the limiting cases we assume that the estimate has the form

Ŷ(η,s,a,b,c) = ((1− s2)η)2 +(as2 +bs+ c)η+12. (66)

For s = 0, minimizing squared differences (least squares) yields c = 8. Since Y(η,s) is symmetric
in s, b = 0. Then we set

∂

∂a

L∫
0

1∫
−1

[
Y(η,s)−Ŷ(η,s,a)

]2
dsdη = 0. (67)

The integration over s is easily performed via Gauss-Legendre quadrature and then we find that
a = 6.

Finally, when ρ1,2 are very large, the forward scatter attenuation can be described as

−20logV =−10log
[

4
3π2 S0e2γh0

]
+10log

[
((1− s2)η)2 +(6s2 +8)η+12

]
+ log(kθ

3/ℓ). (68)

We see that the IF-77 Electromagnetic Wave Propagation Model uses exactly this result to calculate
forward scatter attenuation ([5] Equation 220). We also see that the model’s “scattering efficiency
term” corresponds to −10log

[
4

3π2 S0

]
. We then have an explicit expression that describes the

scattering efficiency function in terms of surface refractivity, refractivity gradient, and volume
height. Based on our research, this is the only document we have located that provides a coherent
expression for the scattering efficiency function used by the propagation models. Attenuation
calculated using procedures described in Technical Note 101 [3] and ITM [4] are consistent with
these results.
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4.2 Frequency Gain for a Constant Refractive Index η = 0 and ρ1,2 < ∞

The integration, while doable, is tedious and details are given in the appendix. For this case, we
find that

H0 =−10log
[

Re
{

1+
3

1−ρ2
2/ρ2

1

[
ρ2

2

ρ2
1

e−iρ1E4(−iρ1)− e−iρ2E4(−iρ2)

]}]
; (69)

obviously there is trouble when ρ1 = ρ2 = ρ. Taking the limit we obtain

H0 =−10log
[

Re
{

1+3e−iρ
[

iρ
2

E3(−iρ)−
(

1+
iρ
2

)
E4(−iρ)

]}]
. (70)

To compare this with what is found in [3] requires some additional arithmetic. We will use (A-1)
to put this result in terms of the sine and cosine integrals and related auxiliary functions defined by
Equations III.50-51 [3]. Then for real ρ we find that

Re
{

e−iρE4(−iρ)
}
=

1
6
[
−ρ

2 +2−ρ
3 Re

{
ie−iρE1(−iρ)

}]
(71)

Re
{

ie−iρE1(−iρ)
}
=−

[
Ci(ρ)sinρ+

(
π

2
−Si(ρ)

)
cosρ

]
=− f (ρ) =−h(ρ)

ρ
(72)

and hence Re
{

e−iρE4(−iρ)
}
= [2−ρ(1−h(ρ))]/6. This is applied to (69) to obtain

h0 = 10H0/10 =
2(1−ρ2

2/ρ2
1)

ρ2
2(h(ρ1)−h(ρ2))

; (73)

that is Equation III.49 [3].

Obviously this does not work for ρ1 = ρ2. For this case, set ρ2 = ρ1 + ε and ρ1 = ρ, then take the
limit ε → 0 . We then have h(ρ2)≈ h(ρ1)+h′(ρ1)ε and to the first order in ε,

h0 =
4

ρ3h′(ρ)
. (74)

We then use h(ρ) = ρ f (ρ), h′(ρ) = f (ρ)+ρ f ′(ρ) and f ′(ρ) = g(ρ) where

g(ρ) = Ci(ρ)cosρ− [π/2−Si(ρ)]sinρ (75)

to obtain

h0 =
4

ρ3[ f (ρ)+ρg(ρ)]
=

4
ρ2[h(ρ)+ρ2g(ρ)]

(76)

a result that differs from Equation III.52 [3]. Note that g(ρ) as defined here and [3] is “−g(ρ)” as
defined by Abramowitz and Stegun [11] (and also NIST Digital Library of Mathematical Functions
https://dlmf.nist.gov).
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4.2.1 Now For Some Curve Fitting

To start, we look at the curves obtained from (73) by assuming ρ1 or ρ2 is very large, viz.

h0 =
2

ρ2
2[1−h(ρ2)]

ρ1 >> ρ2 (77)

h0 =
2

ρ2
1[1−h(ρ1)]

ρ2 >> ρ1. (78)

Evidently, the idea is to fit

ζ(ρ) =
2

1−h(ρ)

with a quadratic function that is a perfect square (i.e., the vertex is on the ρ-axis). This is rather
easy since for decreasing ρ, h(ρ)→ 0 and for large ρ h(ρ)∼ 1−2/ρ2 yielding ζ(ρ) = (ρ+

√
2)2.

This gives pretty good results for moderate values of ρ when compared to rational approximations
[11]. We then set h(ρ) = 1−2/(ρ+

√
2)2 and obtain

h(ρ1)−h(ρ2) = 2
(ρ1 +

√
2)2 − (ρ2 +

√
2)2

(ρ1 +
√

2)2(ρ2 +
√

2)2
= 2

(ρ1 −ρ2)(ρ1 +ρ2 +2
√

2)
(ρ1 +

√
2)2(ρ2 +

√
2)2

. (79)

Inserting this into (73) we find

h0 =
(ρ1 +

√
2)2(ρ2 +

√
2)2

ρ2
1ρ2

2

(
ρ1 +ρ2

ρ1 +ρ2 +2
√

2

)
(80)

or

H0(ρ1,ρ2,0) = 10log

(1+

√
2

ρ1

)2(
1+

√
2

ρ2

)2
ρ1 +ρ2

ρ1 +ρ2 +2
√

2

 ; (81)

this is exactly what is found in the propagation model algorithms when η = 0 [4, 5].

Next, we will compare the theoretical and model frequency gain functions. Before continuing, it
should be noted that when it comes to common volume asymmetry, ITM is quite limited. Evi-
dently, referring to [4] and Figure 9.1 found in [3], ITM is limited to asymmetry factors no smaller
than 3/4 and no larger than 5/4.

4.3 Theory vs. Models When Frequency Gain Is Not Negligible

Having established that the propagation models and theory are consistent when H0 is negligible, we
only need to compare theoretical calculations of H0 with those generated by propagation models.
The size of H0 depends on the parameters ρ1,2, ηs, and the asymmetry factor [4]

s0 =
1− s
1+ s

(82)

where s is the IF-77 modulus of asymmetry [5].
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The magnitude of the asymmetry factor plays a significant role in the determination of H0. Evi-
dently, the ITM algorithm is limited to scatter volumes that are close to being symmetric (s0 = 1).
This is evidenced by the fact that the algorithm [4] uses Figure 9.1 of [3]. This leads us to consider
the CCIR method for calculating H0 that is described in [10]. That procedure was used by the
1973 air/ground propagation model (IF-73 [12]) that “evolved into” the IF-77 propagation model.
CCIR data covers a wide range of parameters including highly asymmetric scattering volumes.
For nearly symmetric scenarios, the ITM and CCIR methods are essentially the same; otherwise,
ITM and CCIR methods appear to yield quite different results.

Our view is that ITM should be restricted to nearly symmetric forward scatter scenarios where there
is agreement with CCIR. Hence, in what follows we need only compare the theoretical solution
with the CCIR method and H0 calculated via the IF-77 algorithm.

Since H0 is a function of several parameters, a detailed comparison over the entire range of pa-
rameter values would require a significant effort. Our view is that if there is reasonable agreement
between theory and the models over a subset of parameter values that include, for example, highly
asymmetric volumes, it is reasonable to assume that the model algorithms are consistent with
theory. Exact agreement is not expected since numerical evaluation of the volume integrals is
somewhat tricky. The numerical methods used to obtain the CCIR data are unknown and that
result was subjected to some sort of empirical curve fitting scheme.

Our view is that what is shown in the following figures reveals, for the most part, that theoretically
generated data and CCIR data are fairly consistent, particularly considering that the CCIR data
includes empirical curve fitting.
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Figure 2. ηs = 1, asymmetry factor=1, ρ2 = 1
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Figure 3. ηs = 3, asymmetry factor=1, ρ2 = 1
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Figure 4. ηs = 5, asymmetry factor=1, ρ2 = 1
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Figure 5. ηs = 1, asymmetry factor=1/4, ρ2 = 1
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Figure 6. ηs = 3, asymmetry factor=1/4, ρ2 = 1
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Figure 7. ηs = 5, asymmetry factor=1/4, ρ2 = 1
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Figure 8. ηs = 1, asymmetry factor=1/10, ρ2 = 1
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Figure 9. ηs = 3, asymmetry factor=1/10, ρ2 = 1
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Figure 10. ηs = 5, asymmetry factor=1/10, ρ2 = 1
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5 CONCLUSIONS

A detailed theoretical development of a forward scatter model that culminates in the Common
Volume Integral is described. This is followed by a description of methods used to evaluate the
multitude of integrals that are generated. Calculations based on analytic and numerical solutions
are compared with forward scatter algorithms used by ITS’s propagation models (ITM, IF-73, and
IF-77). Our conclusion is that the ITM and IF-73 algorithms are fairly consistent with the Common
Volume Integral. IF-77 is consistent with theory if frequency gain is negligible. Otherwise there
are significant differences between H0 obtained from the IF-77 algorithm and the IF-73 algorithm.
This seems odd since according to [5], the IF-73 algorithm “evolved into” the IF-77 algorithm. We
do not know the reason for this difference.
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Appendix A The Many Integrals of V 2

In this appendix, we show all of the integrals required to calculate tropospheric scatter gain. The
incomplete gamma function and generalized exponential integral play an important role in what
follows. Some useful relations are

En(z) = zn−1
Γ(1−n,z) = zn−1

∞∫
z

e−t

tn dt =
(−z)n−1

(n−1)!

[
E1(z)+ e−z

n−2

∑
k=0

k!
(−z)k+1

]
(A-1)

Γ(n+1,z) = n!e−z
n

∑
k=0

zk

k!
, n ≥ 0 (A-2)

Γ(0,z) = E1(z). (A-3)

The required integrals are:

I0 =

ℓ1∫
0

∞∫
β0(ℓ2+x)

(ℓ1 − x)3(ℓ2 + x)3e−2γz

z4 dzdx+

ℓ2∫
0

∞∫
α0(ℓ1+x)

(ℓ2 − x)3(ℓ1 + x)3e−2γz

z4 dzdx, (A-4)

It = Re

e−iρ1α0

ℓ1∫
0

∞∫
β0(ℓ2+x)

(ℓ1 − x)3(ℓ2 + x)3e−2γz+iρ1z/(ℓ1−x)

z4 dzdx+

e−iρ1α0

ℓ2∫
0

∞∫
α0(ℓ1+x)

(ℓ2 − x)3(ℓ1 + x)3e−2γz+iρ1z/(ℓ1+x)

z4 dzdx

 , (A-5)

Ir = Re

e−iρ2β0

ℓ1∫
0

∞∫
β0(ℓ2+x)

(ℓ1 − x)3(ℓ2 + x)3e−2γz+iρ2z/(ℓ2+x)

z4 dzdx+

e−iρ2β0

ℓ2∫
0

∞∫
α0(ℓ1+x)

(ℓ2 − x)3(ℓ1 + x)3e−2γz+iρ2z/(ℓ2−x)

z4 dzdx

 , and (A-6)

It±r = Re

e−i(ρ1α0±ρ2β0)

ℓ1∫
0

∞∫
β0(ℓ2+x)

(ℓ1 − x)3(ℓ2 + x)3e−2γz+iz[ρ1/(ℓ1−x)±ρ2/(ℓ2+x)]

z4 dzdx+

e−i(ρ1α0±ρ2β0)

ℓ2∫
0

∞∫
α0(ℓ1+x)

(ℓ2 − x)3(ℓ1 + x)3e−2γz+iz[ρ1/(ℓ1+x)±ρ2/(ℓ2−x)]

z4 dzdx

 ; (A-7)
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the tropospheric scatter gain is then

V 2 =

[
4

3π2 S0

]
︸ ︷︷ ︸

10−Se/10

e2γh0

(
ℓ

θ3k

)
θ3

ℓ4 [I0 − It − Ir +(It+r + It−r)/2] (A-8)

where Se is the scattering efficiency term found in [5].

We can make this a bit more compact by changing variables and writing the integral over z in terms
of the generalized exponential integral E4(z):

I0 =
1
β3

0

ℓ∫
ℓ2

(ℓ−w)3E4 (2γβ0w) dw+
1

α3
0

ℓ∫
ℓ1

(ℓ−w)3E4 (2γα0w) dw, (A-9)

It = Re

e−iρ1α0

 1
β3

0

ℓ∫
ℓ2

(ℓ−w)3E4

(
β0w

[
2γ− iρ1

ℓ−w

])
dw+

1
α3

0

ℓ∫
ℓ1

(ℓ−w)3E4

(
α0w

[
2γ− iρ1

w

])
dw

 , (A-10)

Ir = Re

e−iρ2β0

 1
β3

0

ℓ∫
ℓ2

(ℓ−w)3E4

(
β0w

[
2γ− iρ2

w

])
dw+

1
α3

0

ℓ∫
ℓ1

(ℓ−w)3E4

(
α0w

[
2γ− iρ2

ℓ−w

])
dw

 , and (A-11)

It±r = Re

e−i(ρ1α0±ρ2β0)

 1
β3

0

ℓ∫
ℓ2

(ℓ−w)3E4

(
β0w

[
2γ− i

(
ρ1

ℓ−w
± ρ2

w

)])
dw+

1
α3

0

ℓ∫
ℓ1

(ℓ−w)3E4

(
α0w

[
2γ− i

(
ρ1

w
± ρ2

ℓ−w

)])
dw

 . (A-12)

Modulus of Asymmetry

Following [5] we will describe the integrals in terms of the modulus of asymmetry s = (ℓ1−ℓ2)/ℓ.
Evidently this mechanism allows us to replace α0 and β0 with θ and ℓ1,2 with ℓ using the following
relations:

ℓ1 = ℓ(1+ s)/2, ℓ2 = ℓ(1− s)/2, α0 = θ(1− s)/2, β0 = θ(1+ s)/2.
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We then have

I0 =
8
θ3

 1
(1+ s)3

ℓ∫
ℓ(1−s)/2

(ℓ−w)3E4

(
2γθw

1+ s
2

)
dw+

1
(1− s)3

ℓ∫
ℓ(1+s)/2

(ℓ−w)3E4

(
2γθw

1− s
2

)
dw,

 (A-13)

It =
8
θ3 Re

e−iρ1
1−s

2

 1
(1+ s)3

ℓ∫
ℓ(1−s)/2

(ℓ−w)3E4

(
θw(1+ s)

2

[
2γ− iρ1

ℓ−w

])
dw+

1
(1− s)3

ℓ∫
ℓ(1+s)/2

(ℓ−w)3E4

(
θw(1− s)

2

[
2γ− iρ1

w

])
dw


 , (A-14)

Ir =
8
θ3 Re

e−iρ2
1+s

2

 1
(1+ s)3

ℓ∫
ℓ(1−s)/2

(ℓ−w)3E4

(
θw(1+ s)

2

[
2γ− iρ2

w

])
dw+

1
(1− s)3

ℓ∫
ℓ(1+s)/2

(ℓ−w)3E4

(
θw(1− s)

2

[
2γ− iρ2

ℓ−w

])
dw


 , and (A-15)

It±r =
8
θ3 Re

e−i(ρ1
1−s

2 ±ρ2
1+s

2 )

 1
(1+ s)3

ℓ∫
ℓ(1−s)/2

(ℓ−w)3

E4

(
θw(1+ s)

2

[
2γ− i

(
ρ1

ℓ−w
± ρ2

w

)])
dw+

1
(1− s)3

ℓ∫
ℓ(1+s)/2

(ℓ−w)3E4

(
θw(1− s)

2

[
2γ− i

(
ρ1

w
± ρ2

ℓ−w

)])
dw


 . (A-16)
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Appendix B Constant Refractivity Frequency Gain

For this case we set η = 0, s = 0, A = 0, and f (w) = B+C/(ℓ−w). Referring to Appendix A, the
required integrals are

J(B,C,µ) =
ℓ∫

µℓ

(ℓ−w)3 f 3(w)Γ(−3, f (w))dw (A-17)

K(ρ,µ) = E4

(
−iρ

2

) ℓ∫
µℓ

(ℓ−w)3dw =
ℓ4(1−µ)4

4
E4

(
−iρ

2

)
. (A-18)

Noting that

d
dw

Γ(−3, f (w)) =− f ′(w)e− f (w)

[ f (w)]4
(A-19)∫

(ℓ−w)3 f 3(w)dw =− [(ℓ−w) f (w)]4

4B
(A-20)

partial integration yields

J(B,C,µ) =−
[
[(ℓ−w) f (w)]4

4B
Γ(−3, f (w))+

Ce−B

4B

∫
(ℓ−w)2e−C/(ℓ−w)dw

]ℓ
µℓ

(A-21)

=−(ℓ−w)3

4B

[
(B(ℓ−w)+C)E4

(
B+

C
ℓ−w

)
−Ce−BE4

(
C

ℓ−w

)]ℓ
µℓ

(A-22)

=
ℓ4(1−µ)3

4B

[
(B(1−µ)+C/ℓ)E4

(
B+

C/ℓ

1−µ

)
−C/ℓe−BE4

(
C/ℓ

1−µ

)]
. (A-23)

For constant refractivity we set µ(1) = µ(2) = µ = 1/2,

B(1)
t =

iρ1

2
, B(2)

t = n/a, B(1)
r = n/a, B(2)

r =
iρ2

2
,

B(1)
t+r =

i(ρ1 −ρ2)

2
, B(2)

t+r =
i(ρ2 −ρ1)

2
,

B(1)
t−r =

i(ρ1 +ρ2)

2
, B(2)

t−r =− i(ρ1 +ρ2)

2
,

C(1) =− iρ1ℓ

2
, C(2) =−C∗(2) =− iρ2ℓ

2
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yielding

It =
8
θ3 Re

{
e
−iρ1

2

[
J
(

B(1)
t ,C(1),µ

)
+K (ρ2,µ)

]}
(A-24)

Ir =
8
θ3 Re

{
e
−iρ2

2

[
K (ρ1,µ)+ J

(
B(2)

r ,C(2),µ
)]}

(A-25)

It+r =
8
θ3 Re

{
e−i

(
ρ1+ρ2

2

)[
J
(

B(1)
t+r,C

(1),µ
)
+ J
(

B(2)
t+r,C

(2),µ
)]}

(A-26)

It−r =
8
θ3 Re

{
e−i

(
ρ1−ρ2

2

)[
J
(

B(1)
t−r,C

(1),µ
)
+ J
(

B(2)
t−r,C

∗(2),µ
)]}

. (A-27)

After some tedious arithmetic we find

It =
ℓ4

4θ3 Re

{
e−iρ1E4(−iρ1)

}
(A-28)

Ir =
ℓ4

4θ3 Re

{
e−iρ2E4(−iρ2)

}
(A-29)

It+r =
ℓ4

4θ3(ρ1 −ρ2)
Re

{
ρ1e−iρ1E4(−iρ1)−ρ2e−iρ2E4(−iρ2)

}
(A-30)

It−r =
ℓ4

4θ3(ρ1 +ρ2)
Re

{
ρ1e−iρ1E4(−iρ1)+ iρ2eiρ2E4(iρ2)

}
. (A-31)

and

1
2
(It+r + It−r) =

ℓ4

4θ3(1−ρ2
2/ρ2

1)
Re

{
e−iρ1E4(−iρ1)−

ρ2
2

ρ2
1

e−iρ2E4(−iρ2)

}
. (A-32)

The frequency gain function is

H0 =−10log
[

1− It − Ir +(It+r + It−r)/2
I0

]
. (A-33)

Previously we found that I0 = ℓ4/(12θ3) and then

H0 =−10log

[
Re

{
1+

3
1−ρ2

2/ρ2
1

(
ρ2

2

ρ2
1

e−iρ1E4(−iρ1)− e−iρ2E4(−iρ2)

)}]
. (A-34)
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