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A Tutorial Review of Elements of Weak Signal Detection
in Non-Gaussian EMI Environments

David Middleton* and A. D. Spaulding**

New models of electromagnetic interference (EMI) have been developed
by Middleton [1 ~l ,48,49J over the last decade (1974-1983) , which have pro­
vided canonical, analytically tractable, and experimentally well estab-
lished quantitative descriptions of nearly all EMI environments. These
models are (1) physically derived; (2) are canonical in the sense that
they are invariant of the nature and waveform of the source and details
of propagation, as far as their formal ana-Iytical structure is concerned;
(3) are highly non-Gaussian; and (4) are analytically and computationally
manageable. Their principal quantitative and most widely applied form
is embodied in the first-order probability distributions of the (instan­
taneous) amplitude, and envelope, of the received waveform following
the linear front-end stages of a typical receiver. Three basic EMI
models are distinguished: Class A, B, and C~ respectively involving
sets of three, six and eight, physically derived parameters, which are
measurable from observed EMI amplitude (or envelope) data. These three
basic classes are defined in terms of receiver bandwidth vis-~-vis that
of the EMI.

When receivers conventionally optimized for Gauss noise (i.e.,
matched-filter systems) are used in these highly non-Gaussian EMI
environments, receiver performance can be ~Jreatly degraded [0(20-40 dB),
typicallyJ, vis-~-vis that of receivers optimized to the actual EMI
in force (e.g., Class A, B, or C noise) [2,13,14,21J. Specific examples
of this behavior are provided. The physical bases and practical
implications of the EMI models themselves and their impact on the
reception process also are discussed.

The principal aim of this Report is to present a Tutorial Review
of the main features of the work to date «1985) on these models and
their current and potential applications, particularly for weak-signal
detection. Accordingly, this Report represents an updated and
expanded version of an earlier tutorial review ([40J, 1980). Various
analytical details are reserved to an Appendix, and the full technical
analysis and results are specifically cited in the extensive list of
references, which themselves are briefly appraised from the viewpoint
of the reader1s further interest.

Key Words: Class A, B, C noise; electromagnetic interference environments (EMI);
optimum and suboptimum detectors; optimum signal detection;
performance comparison

*Contractor, Institute for Telecommunication Sciences, National Telecommunications
and Information Administration, U. S. Department of Commerce, at 127 E~ 91st St.,
New York, NY 10128.

**The author is with the Institute for Telecommunication Sciences, National
Telecommunications and Information Administration, U. S. Department of Commerce,
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1. INTRODUCTION
In the last decade a variety of statistical-physical models of electromagnetic

interference (EMI) have been developed [1-11,48,49], models that provide a canonical,

analytically tractable, and experimentally well~established quantitative description
of most EMI environments encountered in practice. Because of their impact both on
measurement programs of real-world EMI situations and on the evaluation and predic­
tion of receiver performance, it is appropriate at this stage to review the salient
features of these models, with particular emphasis on their physical foundations
and practical implications.

Accordingly, the present effort is an updated and expanded version of an
earlier review [40J. It aims concisely to describe and explain the new EMI models,
and their impact on receiver pArformance. This includes specifically the potentially
significant improvements over conventional (matched-filtet) techniques that are
optimal for the usually postulated Gaussian noise environments. The present tutorial
etfort also includes suggestions for applications of these models and performance
results, concepts, and metho'ds, as well as important problems of implementation. In
keeping with the tutorial character of this Report, it does not involve any new
research efforts. Rathe~~ it is intended" to provide a useful~ and moderately
complete guide, at this stage, to the conc~pts,methods,.results, and applications
associated with these new EMI models, their experimental verification, and the
performance of selected telecommunication receivers in such EMI environments. In
these respects, we have borrowed freely from current technical reports and papers,
emphasizing fundamental ideas and methods~ as distinct from a detailed exposition
of analytical procedures. The necessary mathematical apparatus, however, is fully
described in the appro~riate references and is partially summarized here in the
Appendix .

Consequently, this report is organized in the following way: Part I - i1Non­
Gaussian EMI Models," cons ists of five sections, devoted respectively to the noise

models, the measurement of model parameters, and a short review of the salient model
features, their scope in application,etc., including the characterization of non­
Gaussian EMI fields. Then, Part II-"Threshold Receiver Performance,1I contains five
sections, concerned with optimum and suboptimum detection algorithms, performance,
and the conditions for which the often large improvements in performance over the

conventional matched-filter receivers may be expected. Simulation results for
threshold detection in both Class A and Class B noise are presented, and the effects
of spatial processing are included. Section 11 (of Part II) completes the principal
body of the report with a short overview of the material described in the preceding
sections. An extensive list of 73 pertinent references is included in Section 12.
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PART I. NON-GAUSSIAN EMI MODELS
Here, in Part I, we shall consider the salient features of the recently devel­

oped EMI models referred to above, including the definition and measurement of.
their basic parameters, with empi,rical examples from various r·eal-world interference
environments.

2. GENERAL DEFINITIONS AND REMARKS

Class C: TI~fR « 1):

ignorable transients are produced in the (linear)
RF/IF stages of the receiver; an essentially
steady-state (possibly overlapping) set of signal
waves is produced; (2.1)

Here ~fN is the effective bandwidth of the incoming noise and ~fR is the effective
bandwidth of the (linear) RF/IF stages of the receiver.

Class B: TI~fR « 1): essentially all transients are generated in the
(linear) RF/IFstages of the receiver; i.e., over-
lapping "impulse" r'esponses; (2.2)
an (additive) mixture of Class A and B is generated
primarily lIimpulsive" if Class B dominates, etc. (2.3)

We distinguish three canonical EMI models, basically in terms of their temporal

coherence structure vis-~-vis that of the receiver's -response upon which they
impact. Thus, we can classify this interference in the following three broad cate­
gories: A, B, and C (which is the sum of a Class A and Class B component). Speci­
fically, Class A interference produces negligible transients in the typical receiver;
i.e., is "coherent" as opposed to "impulsive," or Ilincoherent" interference (Class B),
which is characterized by significant "transients" or "ringing" of the receiver
(pre-detection/pre-processing) stages.

These effects may be more explicitly defined in terms of receiver (pre-detec­
tion/pre-processing) bandwidth (~fR) vis-~-vis the duration TI of the typical inter­
fering input waves. The necessary and sufficient condition for each class may be
generally stated

Class A: TI~fR » 1:

Thus, physically in Class A cases, (each) interfering signal is "on ll long enough so
that the initial and final trans'ient buildup and decay are ignorable vis-~-vis

the 1I 0n il period of the typical signal, while the reverse is the case for Class B.
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The condition (2.1) significantly broadens the applicability ;of Class A models,

heretofore, by removing the earlier condition ~fN « ~fR' as well a~ properly
restricting Class B cases to those of "impulsive" noise transients,>generated by the
receiver. (Thus the earlier Class B condition ~fR « ~fN is necessary, but is not

sufficient unless~fN ~ '1-1 also.) The spectral relationship of the EMI interfer­
ence and the front-end stages of the typical receiver,upon which the· definition of
the various interferenCe classes is made, is shown in Figure 2.1.

Of course, strictly speaking, \Vernust always have a "build..;u~H 3.nd transient
decay Deriod generated ~y the front-end sta~es of the receiver, when the incoming
signal first appears, and next,terminates. For Class A interference these
transient periods are negligible vis-~-vis the incoming emission's duration, so
that typical Class A input signals are effectively undistorted by the receiver.
On the other hand, for a Class B interference, the transient decays are dominant,
in that the receiver rings for a period effectively longer than the input signal

duration. For general waveforms entering the receiver"where'l >TI~fR' the effect
of the (front-end stages of the) receiver is noticeably to modify the original
input waveforms. Thus, ClassB (and Class C) "signals" are always transmitted with
distortions, while Class A waveforms are passed essentially undistorted.

Itis important to note that it is not necessary (although it is sufficient)
that the bandwidth (~fN) of the Class A interference obey the previously stated
condition: 6fN < 6fR. In fact, one can have 6fN > ~fR for Class A disturbances,
subject tQ (2.1) where now TI > 6fN- l Thus spectrally bro~~ interference also
can be Class A, as long as (2.1) is obeyed. An example of ,this is a coherent train

of pulsed radar signals, when~ for each pulse duration, 1"0 < TO (= pulse repetition

rate (P.R.R.) < TI , with TIt.fR 1, for which, however, 6fR < lhO(~~fN)' On the
other hand, an incoherent pulse'train would be an example of Class .B interference

here, provided (TI = TO) < TR(~6fR-l); i.e., each (incoherent). pulse in the train
is sufficiently brief to appe.arllimpulsive" to the receiver. In the former instance
above, the transient effects in the receiver are. ignorable, and the typical inter­
feringwave appears as a filtered pulse train, wher~as in the latter case, the

"transients·1I are now the interference.
A critical feature of these Class A and B (and C) models is that they are

canonical; their analytic form remains invariant of the particular physical source

mechanisms; such diverse mechanisms as fluorescent lights, power line signals,
automobile ignition noise, atmospheric noise, ore-crushing machinery, etc., are

4
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Class A: ~fN < ~fR (or matched) and/or

Class B: ~fN > ~fR

Class C: Class A + Class B
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Figure 2.1. Schema of the EM interference and desired signal environment vis-a-vis a typical narrow-band
receiver. The statistical properties of -the EM! are obtained at ®. Performance of the
particular receiver is assessed at ~.



readily accommodated without restriction (cf. Figures 3.1 to 3.9 below, in

Section 3). In fact, the only l~mitations on the statistical~physical foundations
of our models are that they

(1) represent independent (or independent sets of) radiation lIeventsll;

(2) that any number of sources can be em'itting at any given instant; i.e.,
the available number of potential emitters is (mathematically) infinite;

and (3) that 'the output of the (linear) front-end stages of the receiver be
narrow band (cf. Figure 2.1). (Extensions to the broadband (Class A noise)
cases have recently been made [60, Sec. 7.4J.)

The result is that the basic statistics are fundamentally Pofssonian [1,6-11J (in
particular, see Sec. 2 of [49J).

Most EM interference maybe canonically represented by these models, invariant
of waveform and the details of the propagation law of typical emitters, as far as
formal analytical structure is concerned [1,2,7J.

Of course, a particular interference field and communication system will have

their specific numerical param.eter values, which it is one task' ofameasurement
program to obtain [6,12J. A second critical feature of these models is that they
are analytically tractable, as well as computationally manageable. This is espe­

cially important when we go beyond the measurement program to apply the analysis to
the prediction and evaluation of system performance, including optimum as~wellas

suboptimum reception [14,17J. See Sections 7 to 10 following, and the Appendix.
Exceptions to the generality of our EMI models arise in two principal ways:

1. For the class 01 situations where the interference is completely deterministic
and known at the receiver: These cases, of course, must be handled by the
classical method of direct analysis and/or empirical study. However, in
almost all IIreal-worldll environments, the interference is at best only
statistic~lly related to'the observer (receiver), at least for emission times,
number of sources acting at any given instant, waveform structureS, source
locations, etc., so that a statistical treatment is necessary and inevitable.

2. For the other class of situations, where condition (1) above does not hold:
This may occur when the total number of possible emitters is ~easonablysmall

(say, 0(3,4) or Tess}. Then, although the various emission times, and the
actual number of sources active at any given instant, are random,the small

maximum number of sources possible precludes Poissonian statistics, unless the
emission times of each source are uniformly and, independently distributed (so
that each source produces a Poisson distribution of emissions vis-~-vis our
typical receiver), cf. Sec& 2 of [49J.
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Practically, it appears that the~~$sumption that the number of possible (independent)
emitters can be indefinitely large is sufficient to insure the desired basic Poisson
statistics. This is well borne out by the ample lempirical data obtained by various
researchers [cf. Refs. 23-28, for exampleJ, of which Figures 3.1 to Figure 3.8 are
typical. The final condition [(3) aboveJ, that the output of the linear front-end
stages of the receiver be narrow-band (at @, Fi9ure 2.1), although not critical
for the development of an analytically tractable theory, cf. Sec. 7.4--which is one
of the major achievements of recent studies [1-10,47,49J--is nevertheless almost
always satisfied in practice. By "narrow-band" is meant, as usual, that "envelopell
and II phase ll of the signal output (at point ® here) are slowly varying vis-~-vis

the central or IIcarrierll frequency component(s) (cos wot, sin wot) of the signal.
(For the broad-band cases, see Sec. 7.4 of I, [60J.)

The above three categories (Classes A, B, and C) for interference, as the
latter impacts on a typical (narrow-band) receiver, e.g., as (the linear, front-end
of) that receiver responds to the EM environment, cf. Figure 2.1, provide a useful
and meaningful way of distinguishing the different effects that these different
categories have on reception. This categorization is important because receiver
response is statistically different for each Class. As will be seen presently,
these differences appear most generally and explicitly (as far as first-order sta­
tistics are concerned) in the experimentally derived (cf. Figure 3.1 to Figure 3.8),
and theoretically determined exceedance probabilities (POlS). These are often
called APDls (a posteriori probability distributions), such as Pl(X > Xo)' or

Pl(E > Eo)' These are the respective probabilities that the instantaneous amplitude
(X), or instantaneous envelope (E) observed at the receiver's IF output exceed some

threshold Xo' or Eo' as these latter are allowed to assume values in the respective
ranges '(_00,00), or (0,00). The conditions "spectrally broader than," and "spec trally

narrower than," cf. (2.1), (2.2), and Figure 2.1, are to be interpreted as "suffi­
ciently broader or narrower,1I etc., where in any case, care is taken to refer to

the definitions of Class A, B, etc., in terms of the residual transients vs. the
"on "-time of the input emission that appears at the output of the IF stage of the
receiver in question. [For a quantitative discussion, see Sec. 7, Ref. 7.J

It is instructive to extend the schmema of classification further, in order
to distinguish between man-made and natural interference, and between "intelligent ll

and "non intelligent ll emissions. Accordingly, we define

7



(i) IIIntelligent" noise* or interference as man-made and intended to
convey a message or information of some sort;

whereas

(i i ) II Noni ntell i gent" noi se or interference may be attri butabl e to
natural phenomena; e.g., atmospheric noise or receiver noise, for
example, or it may be man-~ade, but conveying no intended commu­
nication, such as automobile ignitions, or radiation from
power lines, etc.

The importance of distinguishing man-made from natural noise or interference lies
in the fact that the former is potentially controllable, sometimes to the point of
elimination, whereas the latter cannot be eliminated at the source, and is usually
not subject to control; one can seek only to investigate its effects on the commu-

nication process. Moreover, the distinction between lIintelligent ll and II non intelli­
gent" is always significant with regard to information transfer; the taxonomy of
the former can have greatly different implications and consequences from that of
the latter.

We can readily tabulate these different varieties of interference in a concise
way, as suggested in Table 2.1. We have included a further refinement through the
term "compatible." By definition, compatible interference here is one that is
appropriately matched spectrally to the receiver band, L1fR, in the sense of being
equivalent to Class A interference vis-~-vis the receiver and occupying a spectral
region in ~fR' and such as to produce ignorable transients in the ARI stages.
"Incompatible" may mean that ~fN > ~fR (Class A-C), or that only.a portion of
the incident emission is spectrally available to the receiver; Class A again, e.g.,
1 « TrL1fR, but now the interference is not wholly in the receiver band ~fR.

Class C in Table 2.1 reminds· us that combinations of Class A and B noise can occur,
as noted, cf. Figure 2.1.

However, before we go on to\ consider these new EMr models in a more quantita­
tive fashion (Sec. 3 et seq.), it is appropriate to comment briefly on earlier
attempt at EMI model-building. For the most part, earlier efforts at modeling
man-made and natural interference (principally atmospheric noise) have produced a
wide variety of analytical results, often with the virtue of mathematical simplicity,
but severely limited in usefulness by lack of generality and physical insight, and

* We remark again [cf. Middleton, [15J, Sec. 1.3.5J that by definition, "noise"
or "interference" is any undesired "signal" at or in the receiver, regardless
of origin.

8



Table 2.1. Interference Categories and Classes

TYPE IIINTELLIGENT II CLASS IINONINTELLIGENT" CLASS

1) Compatible A 1) Automobile ignition B

Man~made 2) Incompatible A,B,C 2) Other EM emissions: power A,B,C
(Communication) lines, electric tools,

etc.

[3 ) Extra-terrestrial A,B,C]
(Communication)

1) Atmospheric B

Natural 2) Extra-terrestrial [A],
solar, galactic, B,C
cosmic radiation,
E~tc .

9



a concomitant dependence on local, empirical data and circumstances, [12J. Somewhat

less restricted, but still lacking detailed physical structure and limited to the

Class B situation, are the quasi-empirical models of Hall [32J.
Important exceptions to the above are the work of Furutsu and Ishida [29J on

obtaining the "APD's(and associated probability densities [pdf's]) of atmospheric

noise under rather broad conditions, and the more recent studies of Giordano [30J,
and Giordano and Haber [31J, similarly directed to at~ospheric noise. These recent

investigations, however, are (necessarily) constrained to Class B types of inter­
ference and generally do not attempt a canonical formulation, which is a key feature

of the current efforts [1,4-11,49,50J. Recent work of Pevnitskii, Pal020k et ale

[42J,[43], regarding man-made interference, and the new book of Remizov [66J, con­

cerning natural radio noise primarily, also are particularly to be noted.

Middleton's canonical formulation thus allows one to apply the new models

formally by Class (A, B, etc.) to all types of ('EM) interference (provided the

conditions (2.1) hold), unrestricted in general structure by the particular physical

mechanism involved. Th~se latter mechanisms, of course, determine the generic

properties of the model parameters. They must be specifically introduced into

model building if the ad hoc and arbitrary empiricism of much of the earlier work

is to be avoided. [For a more/detailed review of earlier work vis-a-vis this newer

approach, see Cha pter 2 of Spau'l ding and Mi ddl eton [13, 14]; and references therei n;

see [59J, Sec. 3, a150. J

3. BASIC MODEL PARAMETERS

The model statistics of principal interest and use are i) the various

(first-order) moments, ii)the probability density functions (pdf's), and iii) the

exceedance probabilities (or APD's) [1-11,49J. These quantities are defined

respectively by the following relations:

i) first-order moments (of instantaneous amplitude, X, or envelope, E):
00 00

(Xm
>== !xmw1 (XIA,B, or C)dX; <Em> == f Emw1(EjA,B, or C)dE, (3.1)

_00 0

where X(=X(t)) and E(=E(t)), respectively, are the indicated instantaneous amplitude

and envelope of the output of the front-end stages of the typical receiver, at @
Figure 2.1. Here wl ( IA,B, or C) denotes the probability density function, or pdf,

(of X or E) for Class A, B, or Cinterference. These (mth ) moments, <Xm) , (Em)

are first-order, i .. e .. , t obtained a first-order pdf, w1 ' for any instant

10



(t). [For a discussion of first- and higher-order pdfls and the associated random
processes, see Secs. 1.3, 1.4, Ref. 15.J

Physically, the lower degree moments (m=1,2) have their usual significances,

(x) = mean ·values (=0), while (E) = mean value (>0) here. Similarly, we have
(x2) (= <E2) /2 > 0) represent the mean intensity of the interference, aga.in as
measured at ®' Figure 2.1.

11) The probability density function (pdfls) of (X and E): these, as noted
above, are wl(XIA,B, or C), wl(EIA,B, or C), for XiS and Els at some time~. In
more detail, we can write

Wl = wl(X,tIA,B, or C), etc., (3.2)

where we include (t) explicitly, to indicate the dependence on time; different pdfls
are often obtained for different times t. Thus, in practical applications itis
important to note the time period in which data (X,E) are collected, to construct
empirical pdf·s (and APO·s--(iii) below, and Sec. 4). This is because different
EMI environments occur at different times of day (usually), and at different times
of the week, etc., particularly in urban situations, for example, when a noticeable
component of the EMI is automobile ignition noise [cf. Figure 3.6J. Similarly,
atmospheric noise [cf. Figure 3.7J exhibits diurnal characteristics.

iii) The exceedance probabilities (or APDls): These are defined as the

probabilities that (here X exceeds a level Xo' E exceeds Eo):
00 .

Pl(X~Xo) :: f wl(x,tIA,B, or C) dX = 1 - Dl (X2.Xo) ,
Xo

(3.3a)

00

f wl(E,t!A,B, or C) dE = 1 - Dl (E2.Eo) ,
Eo

(3.3b)

where X ,E are some threshold values of X, E, respectively, and 01. is the familiaro 0
cumulative probability, or distribution (of Xo,Eo). [The P1 also are often referred
to inth~ literature as a posteriori probability distributions, or APDls.] Examples
of experimental and theoretical APDls are shown in Figure 3.1 through Figure 3.9.

11



Finally, it is convenient to use normalized amplitudes (x orz) and envelopes

(€), in place of X,E. These normalized quantities a~e defined by

(3.4)

where <x2
) = ~2+0~. <E2) = 2(~2+a~) are E;!xpressed in terms of the respective

m~an intensities of the non-Gaussian and Gaussian components of the incoming noise,

as seen at (V. Figure 2.1 above. (A more detailed definition of these and the

other fundamental parameters of our interference models is presented below, in

Section 3.1.)

With the above in mind, we can proceed to a more detailed description of the

new EMI models.

3.1 The Basic Model Parameters of First Order Statistics

Class A interference is characterized -(in the first-order approximations used)

by three global parameters ~A = {AA.rA'~2A}' and Class B by a six-fold set,

JJ6B = {AB,rB'~2B;a.bla,NI}, similarly; [1,7,8J. For Class C interference

there are eight global parameters, JJ 8C = {AA,AB;rAB;~2A'~2BIa.,bla.,NIC}. These

parameters are briefly described below, in subsections A, B, and C. In any case,

we emphasize that these parameters are not ad hoc, but are physically derived from

the model, involving source di~tributions, radiation properties and geometries, and

front-end receiver structure. As has been noted above, and in the discussion of

Figure 3.1 through Figure 3.9 below, the analytical model is in excellent agreement

with the empirical data, as well as being canonical, cf. Section 2 above.

Class A cases, however, range from the simplest forms, namely, the strictly

canonical cases involving -f3A only, to the approximately canonical forms, which

may involve more parameters~ finally to the quasi-canonical models, which require

at least one additional parameter. (The reasons for this stem from the nature of

the source distributions, and are discussed in technical detail in Sectinns V

and VII of [49J, as well as in [48].)

Let us consider first the strictly and approximately canonical Class A models

that require only a single approximating pdf.

12



A. Glass A parameters,~.~
The Class A interference (in the first-order) is governed principally by three

global parameters, JY3A == (AA,rA,0.~A)' These are (cf. [1]):

AA = the "overlapll or "uns tructure" Index,which is defined as the
average number of radiation "events" per second times the mean
duration of a typical source emission (cf. [7J, Part 2,

Equations (2.16,2.18), etc.). The smaller AA' the more
II structured" (in time) is the interference. Conversely,. the

larger AA the more Gaussian and less structured is the noise.
When AA + 00, the noise is Gaussian.

"_ 2fA = 0G/ Q2A = the Gaussian factor = ratio of average intensity of
the Gaussian component of the interference to that of the
non-Gaussian component.

0,2A = the mean intensity of the non-Gaussian (or lIimpulsive ll )*
noise component of the interference.

(3.5a)

(3.5b)

(3.5c)

These parameters, ~3A' are all measurable, either at the input to the receiver or
at the output of the initial linear front-end sta.ges, before nonlinear processing,
c.f. Figure 2.1. Figure 3.1 through Figure 3. 9 show typical Class A (and Class B)
experimental data, along with the theoretical curves. (For a treatment of the
approximately and quasi-canonical Class A cases, see [48J~ and Sections V and VII

of [49J.) We turn next to:

B. C'l ass B Pa rameters , {B-':"
Unlike Class A interference, we require for Class B noise, ultimately, a pair-

of approximating APDls, and pdf's, which are suitably joined at some appropriate

threshold value eB [lOJ. These approximations are Pl - I , P'-II' joined at eB,
cf. Equation 4.2.

In addition,we require now a basic global set of six parameters

~6B = {AB,rS,0,2B;a,bla,NI}' described below.

*The term lIimpulsive" for the noise is too restrictive; as already noted, these
models are canonical in the waveform, which can be cw trains, structured pulses,
etc., as well as "impulses" (which for the most part, are Class B, anyway).
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The parameter subset, .-fJ3B == {AB,fB'~2B}' of ,J!6B' is defined precisely as for
the Class A cases, cf. (3.5). The additional parameters {a,bla,N I} required for

first-order approximations, are:

= 2 ~ 1.1 Isurface = 3 ~ 1.1 I
volume

(3.6a)

== spatial density propagation parameter. Here ll,y are, respectively,
the power-law exponents associated with the range dependence
of the spatial density distribution of the (possibly)
emitting sources and their propagation law.

= r(l - a/2)

2a/ 2 (1 + a/2)
(3.6b)

A

(BOB = typical envelope after front-end stages of

receiver, cf. Figure 2.1).

A

= a "structure" factor, which appears in the Index, A
a

(see Appendix A.2).

NI = a scaling parameter on the normalizedenvelopee, cf.(3.4),

which is required to assist the joining process for the two
approximations.

(3.6c)

In effect, %3B ::: {AB,fB'~2B} are basically "structure" parameters, which govern
the overall form of theAPD and pdf, while the subset (3.6) represent essentially
"sca l e" parameters, which primarily set the level and scale of the distribution
(the n2B is both a structure and scale parameter). Figure 3.3 ~hrough Figure 3.8

show ~pical experimental APDls and the analytic approximations Pl-B1,II' all
exhibiting the characteristically excellent agreement between theory ~nd experiment.

In place of the more complete Class B model involving six parameters, a 'useful
approximation maybe expressed in terms of three different global parameters
A A <A a"Aa , a, ,and~. Here Aa = f(a, BoB/' f B, AB), while ~ is a suitable normalization

factor. The specific pdf1s and APD1s here are summarized in Appendix A.5.
Finally, we mention the Class C cases.
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C. Class C Parameter, ~C:
As noted elsewhera [lOJ,[llJ, Class C interference can be represented approx­

imatel}' for fi rst-order stati st1cs, as a Cl ass B form. In parti cul ar, just 1ike
the Class B cases, two approximating APDls (or pdfls) are again required in the
general case. Specifically, [lOJ,[llJ, in regard to the parameters, we now replace
the Class B parameters by the set

(3.7)

cf. 56B above, where now AAB = AA+ AB; r AB = 0~AB/r22AB' r22AB = r22A + r22B ;

bla = Eq. (3.5b), with Nr -* Nr-c' and a~ -* a~B = {2r2AB (1 + rAB)}-l. (When there

is no Class B noise, AB -* 0, 0~B -* 0, r22B -* 0; with no Class A component, we have

aAB -* a, A~ -* 0, 0~ -* 0, r22A -* 0.) The results above apply here, with the indicated

substitutions, as do the various Class B procedures for parameter estimation, as
discussed in Appendix A.3. (1\ more precise Class C, based on only four parameters,
is developed in [llJ, cf. Eq. 2.20.)

3.2 EMI Scenarios

The various sets of statistical-physical parameters ~A' ~B (or ~B)' ~C'
etc., which appear in the canonical noise models are all measurable, or inferable
from direct measurement,as we shall note in Section 4, fo·llowing. These sets of
statistical parameters, and their component elements, also are the elements of what
we have called the EMI scenario, which, conversely, allows us to calculate a priori
these measurable parameters, in many instances. Thus, the EMI scenario embodies

all the relevant knowledge regarding how a typical interfering source radiates and
where it is located. Also, it provides an explicit structure for the resulting,
typi ca1 waveform as seen fo 11 owi,ng the (1 i nea r) front-end stages of the receiver.

The (first-order) EMIscenario is specifically defined by:
(i) the propagation law (),-Y); cf. (3.6a)

(ii) the distribution law of sources 0S(X,~) in the source domain; e.g.,
osis A-llwl (~ ), cf. (3. 6a ) ;

(iii) the statistics of the waveform parameters (~= fading scale; E = epoch;

beam-patterns; envetope, ~o; etc.);
(iv) the average emission characteristics of the sources, as embodied in the

overlap indices, AA,AB;
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(v) the level of the Gaussian component; and

(vi) the pertinent statistics of any other emission parameters.

For example, Sl2A,2B' cf. (3.5c), is given by Sl2 ::: A(Bo
2
)/2. Thus, given the

typical envelop"e structure, we have

where

Go(CP,t) = I(1,RT(CP)lb UO(t,~I)

(3.8)

(3.9)

embodies the transmit-receiving beam patterns, aRT' Uo = normalized basic inter­

ference waveform in the linear receiver output (before "processingll) and b = appro­

priate dimensional parameter. We can determine Sl2' based on 0
S

(A,CP), etc. For

details of scenario construction, see, for example, Sections 3.1," 3.2 of [59J, and

Section V, ~, pp 90-93, of [49J.

3.3 Comparisons with Experiment

In this subsection we include a variety of comparisons of our new theo~etical

models with experiment, for both Class A and Class B interference (Figure 3.1

through Figure 3.9). (For analytical details, see Appendix A.l ,2, and [1,2].)

Four significant features are at once evident:

(1) The agreement between theory and experiment is excellent; f.e., the

approximating forms are effective, analytical relations for predicting the desired

first~order statistics.

(2) The canonical nature of our models is demonstrated: the form of the

results [here APD's: Pl(e> eo)] is invariant of the specific source mechanism,

whether ignition noise, atmospherics,fluorescent light, etc., man-made or
natural, within the distinct Class A or B types.

(3) Class A and Class B interference are observably and quantitatively

different noise types (vis~a-vis the narrow-band receiver used).

(4) The governing, physically structured parameters of these POlS and pdf's,

which are likewise also canonical, can be obtained from approximate experimental

data (usually expressed as an APO). (The procedure is discussed in Section 4 below.)

The importance of the canonical character of these models cannot be over­

stressed: with such models we avoid the vary limited and nonpredictive quality of

all ad hoc models, whose structure must be verified and whose parameters provide
little or no physical insight into the underlying process itself. Second, because

these models are derived from physical principles [1,4,49J, their parameters are
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physically defined, are consequently canonical, and are quantifiable in specific
instances from empirical data. Their structure, however, is ihdependent of any
particul'ar measurement.

Figures 3.1 and 3.2 show APD's, e.g., P1(e> eo)A vs. the normalized envelope
thresho1d~o' for Class A interference, respectively, from ore-crushing machinery in
a mine (data from Adams, Bensema, and Kanda [23J), and from a powerline (from
E. C. Bolton [25J). Observe the characteristic very steep rise following the
Rayleigh region (constant slope), followed in turn by the expected bending over of
the APD for the rarer "eventsll in each case. [Similar examples of Class A inter­
ference, but from man-made intelligent sources, a'lso have been observed (e.g.,
Figure 3.9).J

Figure 3.3 through Figure 3.5 show APD's of Class B interference, respectively,
for (i), primarily urban automotive ignition noise (Spaulding and Esp~land, [28J);
(ii) atmospheric noise (Espeland and Spaulding [26J); (iii), fluorescent lights, in
a mine shope office (Adams et ale [23J}. Observe the more gradual departure from
the straight-line Rayleigh region, and the continuing rise, with constantly increas-

ing slope in the figures (which is equivalent to n -+ 0' for exp(-a2~~), as ~ -+ 00).

In these particular examples, the inevitable "bend-over" points, ~B' lie outside the
range of data taken, e.g., for P1- B < 10-6, so thaLwe are able to obtain all the
global parameters, except for AB, cf. [10J. This is not the case, however, for the

*Class B examples of Figure 3.6 through Figure 3.8, e.g., respectively for (i)
ignition noise from vehicles moving on a freeway (Shepherd [27J); (ii) atmospheric

*Note that r~ ~ cr~/Q2B' where cr~ is the independent Gaussian component, which is

different from the total Gauss component ~cr~ = cr~ + b2aAB. Thus, in Figure 3.6 and
Figure 3.8 we must calculate Q2B from the data curve and then obtain cr~ from r~. On

the othe; hand, for Figure 3.7 Q2B occurs at 0 dB, by normalization. Since

P1 = 0.36 determines the total Gauss component (~cr~ for Class B, cr~ for Class A

2 • ( -2) 2noise), from the data of Figure 3.7 we get (~crG = -17 dB = 2 • 10 and ••• crG

= r~Q2B = 10 10910 (8 • 10-3) ~ -21 dB, which gives in turn b2aAB ~ 0.012 (in

units of Q2B)'
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Figure 3.1. Comparison of measured envelopeqistribution, P1 (e\~'o)A' with
Class A model. Interference from ore-crushing
machinery [Data from Adams et aT,! Ref. 23].
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noise (Espeland and Spaulding [26J); and (iii) machinery noise in a coal mine

(Bensema etal. [24J). Here the bend-over of theAPD~s is exhibited, along with the
inflexion points, eB. In these cases we can obtain numerical estimates of all the

six global parameters characteristic of each example of interference (see footnote
on page 17), man-made or natural, by the methods briefly cited below in Section 4,
and in more technical detail in [2,10J.

Figures 3.1-3.9 are typical of Class A and Class B interference, man-made and
natural. They are not intended to be exhaustive. Extensive additional APD data
(mostly Class B) are available. [We have not included Class C APD data, although
these appear in the references, because we limit our analysis and comparisons here
to essentially II pure li Class A and Class B interfe~rence environment, some (analytical)
conditions for which are examined in [7J. Also, the analysis of the Class C cases
is not yet entirely complete.J Again, a striking feature of the present approach
is its ability to handle an unlimited variety of nois~ sources, as long as the
dominating Class is identified.

Finally, it is instructive to consolidate and compare some of the principal
features of our EMI models. A concise comparison of some of the salient properties
of Class A and Class B interference is accordingly presented in Table 3.1.

4. PARAMETER MEASUREMENTS FOR THE EMI MODELS
We present here only a summary treatment of the important problems of measuring

the defining parameters of the various EMI models. There are three principal
problems involved in obtaining the desired parameters: (1) to determine what Class
the noise data corresponds to, viz. Class A, B, or C; (2) to obtain analytic pro­
cedures for specifying, or otherwise deducing, th1e parameters, in terms of the
acquired data; and (3) to account, in actual practice, for the fact that the desired
parameters must be obtained from finite data samples, and as such they are estimates,
which are both statistical and consequently inexact.

For the first problem (1), empirical construction of an APD is probably the
quickest and most reliable procedure for distinguishing between Class A an~ the
other Classes; if the APD exhibits the sharp rise characteristic of Class A EMI
inputs, cf. Figures 3.1,3.2 above, then it is Class A. Otherwise, it is a Class B
or Class C type. One procedure~ here is to assume it to be Class B, and estimate
the parameters (86B ) according to the methods outlined below. If the resulting

analytical APD is a "good-fit ll (in the sense of (4.5) below), then we accept that our
empirical data belong to a Class B ensemble; if not, then Class C is the governing
model.
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Table 3.1. Class A vs. Class BInt~rference

CLASS A CLASS B

1. New models and results "Classical" (30' yrs. old), but new
approach; n~w"results

2. 3 global parameters: IIstrictly
canonical" model

JP3A = {AA,rA'~2A}

[3 or more parameters: approx.
canonical modelJ

4 global parameters: (:quasi-canon­
i cal ") rna del,; [49J

3. All moments<€(3) , 0.2 (3 exist

4. Insensitive to source distribution
in space and propagation law for
strictly canonical model; progres­
sively sensitive, as one approaches
quasi-canonical cases

5. Waveform in IF output: IIgapsll in
time [Pl (e= 0) > OJ

6. No gaps in time if Gaussian
background

{
X Gauss P.O. ras AA -+ 00

eRayleigh p.o1 and/or 0
2 -+ 00

7. No Hall models· exist [7,32J.

28

6 global parameters:

~B = {AB,r~<'~2B;a,bla,NI}
68 empirical parameter of approximation

All moments <[(3), 0 .2 (3 exist

(3 parameters in practical approximation
Section A.5&) (No moments exist.)

Sensitive to source distribution and
propagation l~w (a); quasi-canoni£al
forms

Waveform inA IF output: no "gaps " in
time [P,( t = 0) = OJ

No gaps in time (a~~ 0)

fx Gauss P.O. t as Aa,A(3~2-+ 00

~~ Rayleigh P.oj and/or 6G -+ 00

Hall models for special values of
a [7J.



Having thus determined that the data pelong to the appropriate Class, we then

proceed to a detailed evaluation, along the lines outlined below.

4.1 A Summary of Procedures for Parameter Evaluation

As we have just noted above, once the Class of interference has been established,

a key problem in the practical application of these general interference models is

the determination of the basic parameter sets, ~A' -fls' etc. (and ~c). Here,

we must distinguish between the infinite (or ideal) ensemble of data and the finite,

limited-sample data sets available to us in practice.

First let us postulate the idealized condition of the infinite ensemble popula­

tion. [In Section 4.3 we shall comment briefly on the effects of finite data

ensembles.] We summarize here a number of procedures for evaluating the parameters

of the models, from the data ensemble:

A. Procedures for Obtaining~A:
The simplest, and often surprisingly accurate [0(10 perc~nt, or less error)]

procedure in the Class A cases is to use the following empirical observations

derived from the APD and based on both computation and experiment. These are

AA ;, Pl (= la-b), at the point where the sharp rise in ~ versus Pl
occurs (cf. Figure 4.1) for AA = 0(0.5 or less);

and for the Gauss factor fA:

fA • the abscissa (eo) value, at the point where Pl departs

from its straight line (i.e., Rayleigh) behavior; for

fA'::' 0(1/2).

(4 . 1a )

(4.1b)

/2> · /2>This result, coupled with \E xpt = 2Q2A (1 + fA)' where \E .. xpt is obtained

directly' from the experimental data set {E}, then gives us directly

(4.1c)

for the estimated intensity of the non-Gaussian component. For example, for the

Class A noise of Figure 4.1, we find that using the above procedure yields
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AA ; 0.31, fA = -32.7 (dB),versusAA = 0.35, fA = 5 • 10-4 = -33.0 (dB), of the

original, more-refined parameter search determined by computer [1,7J (see also the
discussion in [lOJ, Section 3.1).

B. Procedures for Obtaining ~B

Similar approaches (except for explicit analytic forms like those ·of Appendix A)

are available for Class B interference, but, of course, the procedures are neces­

sarily more elaborate, since six basic global parameters'~B' cf. Section 3.1-B,

are now involved.

An empirical procedure like (4.1) above is also available for Class B noise,

but is more elaborate and somewhat less accurate than for the Class A cases. A

detailed discussion of the empirical procedure is given in the Appendix and [8,10J.

A more exact procedure, using the empirical one for initiating the domain of a

computer search, employs the following set of six relations for tf6B , relating

analytical and (ideal) experimental APDls:

lim e -+ 0: P p. - (p )01-1 - 1-11 - . li-xpt

<E~) = 2~2B(1 + f B) = <E~) i-xpt

(4.2)

The Pl-l,Pl-II are respectively the two approximating forms of the APD, Pl , needed
adequately to describe the true P1 of Appendix A-2. Here, the IIbend-over ll point CB,

cf. Figure 4.1 plays a critical role. Other related procedures along these lines

also are available [9,10J.
For the more usual and practical 3-parameter Class B models described in the

Appendix (A-5), one uses the procedures given in [10J to get a and A ; n is deter-. . a
mined from the measured energy in the noise process, as noted in A-5.

4.2 Parameter Evaluation via the EMI Scenario

When the elements of the EMI scenario are known (cf. Section 3.2)~ it is then

possible to calculate a priori, as opposed to inferring from measurement, the

model (global) parameters. Usually, in practice, we employ a combination of

empirical and analytical methods, i.e., measurement and EMI scenario.
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4.3 Some Practical Observations on Parameter Estimation in Finite Data Samples

In the analysis reviewed above, we have assumed (for the most part) that we have

been dealing with idealized, infinite data populations so that the analytic and

empirical statistics (moments, APDls, etc.) are equal (probability l)e The conse­

quence of this 'is that the various parameter estimates are precise (probability l)e

Practically, however, we are always limited to the empirical situation of

finite data samples. This limitation, in turn, ensures that the estimates are never

precise. In fact, they are themselves random variables, with their various statis­

tics. Thus,_ we may employ the sample moments

(k > 1) (4.3)

for the empirical estimates of the moments (:2k). Similarly, although the APD's

and pdfls of the Appendix are analytic forms, it is always their experimental values,

and parameters with which we deal, and which are consequently approximate, and

random (over the ensemble).

Because of the finite sample sizes (n < 00), and their basic statistical

background, we must first establish the independence and homogeneity of the data

samples [18J, the former in order to apply the usual and convenient statistical

methods of analyzing the data [19,20J, and the latter, to ensure (in some reasonable,

statistical fashion) that the data are generated bya common statistical mechanism;

i.e., belong to the same parent population. This process we call validation of the

data [18], which consists essentially of the following proc.edures in sequence.

(i) Test the sample data' (En) for statistical independence

Q8}; e~g, of the Ej vis-~-vis the Ek(jfk), [j,k En}.

(ii) Test the sample data for homogeneity; i.e., whether or not

the {En} belong to the same statistical population.

One such test for (i )is the II runs 'test ll [18J and for (ii), nonparametric tests,

like the Koll?iogoroff-Smirnov [18J, are particularly useful because of their

small-sample, as well as large-sample capabilities.

Having validated the data as a first step in estimating the accuracy of the

model parameter estimates, we next apply a combination of classical theory of

sample statistics and II goodness-of-fit" tests [18-20J to the various scale and

structure parameters, including the various moments and distributions of the

sample moments (4.3), as well. In principle, this approach includes interval esti­
mates, optimum estimators, etc., and associated average-risk measures [15J.
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There are, however,twomajor technical difficulties in attempting a direct
application of standard sampling and risk theory. These are: (i) the nonindependent
character of the direct ~nvelope) data (E ), which are the most convenient in, --n
practice, and (ii), the analytic complexity of the estimators themselves, which are
for the most part highly implicit functions of the sample data (cf. Appendix A-4).
Accordingly, an indirect approach is required [lOJ.

IIGoodness-of-Fit ll Approach: Since we know the (approximate) analytic
form of the APDls, Pl -A B' we use a IIgoodness-of-fit ll procedure,, .

whereby we test how closely these analytic APDls fit the experimental
APD data, when the experimental parameter estimates are used in the
analytic forms [18J.

This approach is appropriately natural here, for the aforementioned reasons.
Again, Kolmogoroff-Smirnov tests [18J, are particularly useful, especially for the
small-sample conditions attending the data acquired at small probabilities; i.e.,
the "rare-events," when Pl is 0(10-4 or less), typically, cf. Figure 4.1

Finally, we remark that the models are robus!. Small changes in parameter
values produce correspondingly small changes in the basic APD (or pdf). Robustness
(or its lack) is a measure of parameter inaccuracies and their effects on the
statistics. This feature is most easily studied computationally, by varying
the parameter values. Various examples of this are shown in [7,8J.

In addition to the question of robustness of the model is that of model
stability. Does the underlying probabilistic mechanism remain invariant during the
data-acquisition period (and during any period for which we may wish to employ the
model)? This is a particularly pertinent question when long data acquisition
periods are required, as they are often, for example, to obtain sufficient data to
establish the "tails ll or "rare-eventll probability portions of the APD (and pdf).
The "stability" problem is essentially the same problem of validating the data and
involves appropriate tests of homogeneity.

At this point we emphasize that the data are basically (stationary) ensemble
data, and as such apply at any instant. They also are ·independent of the time
duration of the observation period, as long as the underlying statistical mechanism
itself is stable. This means,also, that these models, with their associated param­
eters, are entirely appropriate for short, as well as long, observation times, as
long as stability applies for the interval in question.
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5. NON-GAUSSIAN EMI FIELDS
In many cases the physical size of a typical receiver1s aperture (antenna) is

only a small fraction of a wavelength, so that the received field is essentially
uniform over the aperture. Beam-forming is, of course, still possible~ and is
often used to ach'ieve directionality, when needed. Howeve-r, there also are
situations where the receiving aperture is large compared to the wavelength, and
then, in addition to directionality, it is also possible.to obtain additional gain
tn reception by taking advantage of the nonuniformityofthe interference field,
when the field of the desired signal is comparatively uniform over the receiving
array. Thisadvanta'geis accomplished by placing the array sensor elements in the
noise field so that interelement correlations are small o(or, ideally, zero).-

One way to do this is to employ "sparse sampling"; i.e., placing the array ele­
ments sufficiently far apart compared to the correlation distance of the noise
field. In many cases this may be uneconomical, because of the large arrays required,
particularly when the wavelength is large, so that one is forced to examine the
noise field in more detail, i.e., establish (at least its spatial correlation func­
tion and then separate sensor elements by distances equal to that producing the
(first) zeros of the correlation function.

In order to accomplish the above, then we need to (i) construct a representa­
tionof the noise field; (ii.) obtain its covariance, at least, and examine it for
"zeros." This analysis has been carried out in [60J. For example, the covariance
of these (Poisson) interference fields is shown to be

where

(5.2a)

10 = random unit vector, normal to wavefront of a typical
incoming noise source,

with C2 = scaling constant; R = distance of typical source to receiver;
A 0
Ko- in = narrow-band covariance of atypical source emission. Here Rl ,R2 are two
(spatial) points in the noise field. The quantity Ma is a fading covariance, viz.:
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(5.2b)

while Di(wOT) incorporates the effects of doppler spread, for each of the interfering
signals, and is given by

(5.2c)

The quantity principally governing the r~ndom spatial character of the noise field
is given by the directional spread factor

(5.2d)

which takes into account the random wavefront orientation of individual noise

sources, as seen at .8.1'.8.2. Since

A A A Aia = i x cos <Po cos 8
0

+ i y sin <Po cos 80 + i z sin 80 , (5.3)

(8
0

,<P
O

) here are random angles. For example, in some situations 8
0

and <Po may be
uniformly distributed, e.g.,

w (e rh) - 1 • 1 · -'IT/2 < e < 'IT/21 0 ''+'0 - TI TI' - 0-

so that then, in the vertical direction,

while in the horizontal direction,

o < <P < 'IT ,
- 0-

(5.4)

(5.5a)

(5.5b)Ell = J~(kollR/2) ·
hor

(The simplicity, or complexity, of E, will naturally depend on wavefront (angle)

distribution and how the points (Rl'~) of observation are chosen.)
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Continuing our example, clearly, now,if the condftions leading tO I (5.5a,b)

hold, we see that to obtain more reasonable spatial independence of the noise field

samples .(i.e., field sampled at indistinct spatial po·ints), we should select, for a
vertical array in the field,

kol'.R = Z, [= , st zero of Jo = 2. 4048l~

or

vert
= Z, .. .

(5.6a)

while for a horizontal array, cf. (5.5b),

=-- =
IT 2L1~'1 = O.765A

vert 0
(5.6b)

here. Of course, spacings between nonadjacent pairs of sensors will not be uncorre­

lated~ but they will be comparatively weakly correlated.

Finally, we remark again that, in a general"way, the increased processing gains

achievable by spatial sampling depends on the extent of the (spatial) nonuniformity

of the noise field vis-a-vis th.atof the desired signal field. For a concise

account of spatial sampling~nd its effect ()nweak-signal·detection of desired

signals in EMI environments, see [62].

6. SUMM·ARY REMARKS ONTHEEMIMODELS:

PROPERTIES AND APPLICATIONS

Let us now briefly comments on A, the principal properties of these new EMI

models; and B, on the areas of major application. Remembering the basic definitions

of Class A, B, and C noise, we beg;nwith

A. The principal key properties: These are
(1) The Class A, B (and C) models are in a general way canonical, varying from

II strictly canonical II to II quas i-canonical." They have analytic forms inde­

pendent of the particular noise mechanisms involved (Section 3)e
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(2) The mod~l parameters_o,;are similarly canonical. They are not ad hoc,
but are-physically constructed and derived.

(3) These models are analytically tractable and their parameters are (at least)
indirectly determinable.

(4) The models are robust.
(5) The models also are typically in excellent accord with experiment,

whatever the s9urce, cf. Figures 3.1~3.9.

(6) These models apply to nearly all types-of interference, provided only
that the i ndivi dua1 sources rad'i ate i nde1pendently, that the number
of potentially emitting sources be large, and that the received
interference following the (linear) front-end stages of the
receiver is narrow-band (this condition can.be removed [60J). Sta­
tistically, such models are compound Poisson processes.

(7) The (first-order) model statistics are canonical in the emitted waveforms:
lIimpulsive ll or II sp ikey" waveforms, long cw train, other, structured
waveforms--all are handled similarly. (The term "impulsive interference"
[13,14J, accordingly, should not. be limited to very-short-duration
waveforms, but should include all types of emissions:, subject only to
the broad conditions above.)

It is also important in many applications to distinguish between "intelligent"
and "non intelligent" interference, as well as that of man-made and 'natural noise
or' interference [cf. Table2.1J. Such distinctions often enable us to identify,
eliminate, and/or reduce unwanted noise sources. At the least, one very important
aim of any evaluation of the EMI environment is to identify its specific and
-general quantitative character~ This brings us to a brief taxonomy of practical
applications of-these- EMI models~ We list
f:.. Evaluation ofEr~I Environments [12]:

(i) Spectrum occupancy;
(ii) Interf~rence characteristics of urban and other environments

(APD1s, other 1st-order statistics)e
B. Spectrum Management [33-38]:

(i) Land-mobile tel'ecommunications;
(ii) Electromagnetic compatibi-lity evaluations (civilian and military);

(iii) Other telecommunication services [12J.
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C. Performance Measures i n Er~I Envi ronments [7 ,13, 14]:
(i) Detection - optimum and suboptimum [cf.Part II belowJ;
(ii) Extraction optimum and suboptimum estimation of desired signal

parameters [72J.
To all of the above these "canonical" EMI models appear essential for realistic
quantitative treatment of the above classes ·of problems, which are particularly
important, since the "rea l world" is a world primarily characterized by
non-Gaussian interference and emissions.



PART II: THRESHOLD RECEIVER PERFORMANCE
With the establishment of effective analytic~ canonical models of essentially

the main classes of interference~ which are in turn independent of the particular
physical mechanisms generating the noise, we can proceed next to evaluate typical
reception situations.

Thus, signal detection, as is well-known, is a form of test of statistical
hypotheses, where the desired signal (and noise) is designated the alternative
hypothesis (H l ), and the state "no ise alone ll is termed the null hypothesis (H).

. 0
For optimal processing and performance, we use, of course, the well known standard
techniques of Statistical Communication Theory (SCT, [15,16J). These designate the
(generalized) likelihood ratio J\.n(~..IS) as the Q2timum processor in detection, and

whose pdf's under the null (Ho) and alternative (Hl )· hypotheses yield the associated

error probabilities~ or equivalently, the detection and false alarm probabilities
as the application may require.

However, these error probabilities are particularly difficult to acquire
explicitly, particularly for non-Gaussian noise, like the canonical Class A, B (and
C) interference currently described here, and previously [l-llJ. Accordingly, a
variety of ingenious analytical and numerical proced~res must be employed, in order
to evaluate receiver performance and to make needed comparisons between optimum
~nd suboptimum processors. This has been done in [13,14,21J, mainly for Class A
interference situations, but including, more recently, some Class B noise examples
[21,59J. Some typical detection examples are discussed below and are illustrated
in Figures 8.1-8.4~ For details, see especially [14,59J.

We consider first the usual EMI cases where the received noise field (cf.
Section 5) is uniform over the receiving aperture, so that only temporal processing

is in effect.

7. THRESHOLD DETECTION ALGORITHMS: RECEIVER STRUCTURE
In the critical limiting cases of threshold reception [16,17,59J,

(S + 0, n(= N)+ 00), it is possible to obtain canonical expressions for optimum
detector processing, independent of the particular noise statistics and type of

decision.
We shall confine our analytical illustrations here to the basic "on-off" detec-

tion situation for the most part, referring the reader to [14J (and Figure 8.1) for
other telecommunications applications. Some typical algorithms (e.g., "structures"),
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are given below in terms of a test statistic g(x), org{x)*, respectively, for sub­
optimum and threshold optimum detection. These test statistics, g, g*, embody the
functional, i.e., data processing structure of the receivers in question. We con­
sider first, for independent noise data sampling:

7.1 "On-Off ll Coherent Threshold Detection
Coherent reception means that the signal epoch is known at the receiver [cf.,

[15], Section 19.4.3J. Thus, we have

(1) LOBO: (= 1I1 oca ll y optimum Bayes detector,1I cf. [17J)

A ~2> * Ng(.?S)* = B(N, '.( }coh + ~ g(xj )*
J

where

2(x.) =-dd log wl (x·IHo) ,
J x. J

J

is usually a highly nonlinear operation on the {x j }.

(2) Correlation Detection

The decision rule, e.g., reception process, is

< log K: decide Ho: II no signal"1I

9(x) * ,g (x)
> log K: decide H,: II signal present ll

-
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A*
The quantity BN-coh is a "bi.as," which depends on sample size (N) and on the input
signal-to-noise ratio, <s2). These biases are required to insure strong consistency
as N -+ 00, (;2> -+ 0, i.e., the proper vanishing of the error probabilities for

indefinitely large statistical samples. More important, these biases are needed to
insure that the algorithm remains (threshold) optimum for the very large samples
(N » 1) required in weak-signal detection, i.e., retain their asymptotically

optimum (AO) character, as N + 00 (see the remarks in Section 7.3 ff.) The threshold
is K (= K/~ = Kqjp), where K is a cost ratio, p + q = 1, 0 ~ p, q ~l; (p,q) are
a priori probabilities of the Ho,l states, in the usual way.

Here we have postulated the simplest case of independent sampling, with
x = {x,} the (normalized) sampled data set on the observation interval (O,T). Thus,
- J
N is equivalent to the conventional t'ime-bandwidth product, or "processing gain"
for the case of Gaussian noise backgrounds. The normalization of the data and
desired signal is with respect to the total mean noise intensi~ (n2 + cr~); e.g.,

~ =~(n2 + cr~)1/2 , ~ =~(n2 + cr~)1/2 , where x is the instantaneous amplitude

da ta (3.4).

Figure 7.1 shows the structure of the optimum and suboptimum receivers (7.1),

(7.2). We note, incidentally, that the (cross) correlation detector, g(x), (7.2),
is, of course, optimum in Gaussian noise, and as we observe in Figures 8.1-8.3 (see

also Section 9 ff.) can be very suboptimum (vis-~-vis g*) in non-Gaussian inter­

ference.
Similarly, for incoherent reception, where now signal epoch is unknown, we have:

7.2 "On-Off" Incoherent Threshold Detection

1. LOBO

A <2 N < j>g(x)* = B*(N, s >),·nc· + I [Q,(X.)Q,(X.) + Q,~8 .• ] s.s. ,
ij , J "J "

with ~i = d~. ~(xi) ,
1

2. Correlation Detection:

A (2 N~ ;>g(x) = B(N, s >)i nc + 'i. x ·x · s · s ·{j 1 , J
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N

L ( )

"* .Bcoh : bias

Comparison Decision

? log K : H1, signal
present

< 10gK:Ho' no signal

Figure 'l.1a. LOBO locally optimum threshold receiver, Eq. (7.1), for lion-off"
coherent signal detection in a general EMI environment.

1\ * .Bcoh : bias

X.
J

I
I

9 (Xj )

N

L ( )

Comparison Decision

::: log K : H" signa I
present

< log K :HO, no signal

Figure 7.1b. (Cross-) correlation detectors, Eq. (7.2), for "on-off" coherent
signal reception in a general EMI environment.
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again where B*, Bare IIbiases,1I which depend on sample size (N) and the input

signal-to-noise ratio, ~2>. Once more the decision rule is given by (7.3). In

addition, it can be shown that a proper choice of bias for (7.4b) is

A*
where B(coh,inc) is determined by~he methods of Q7,Section V], and more generally,
as noted in Section 7.3. The auto-correlation detector, (7.4b), can similarly be

very suboptimum 0(30 dB, or more) vis-a-vis g(x)*, (J.4a), as Figures 8.1 and 8.2

indicate, even though this correlation detector is optimum in Gaussian noise.

The structures of the above incoherent receivers, (7.4a,b), respectively, for

optimum (threshold) and suboptimum detection, are considerably more complex than

those for coherent reception, as can be seen from Figure 7.2.

7.3 Role of the Bias

In Sections 7.1 and 7.2 we have noted the presence of an appropriate bias term,
A

B*, in both the coherent and incoherent threshold algorithms. This bias term is

critical to effective threshold receiver performance, both to retain optimality as

sample size N becomes very large (asymptotic optimality) and to maintain the LOB

character of the algorithm under these circumstances.
A

The proper bias, B*, is found, technically, by taking the average over the

{x.} with respect to the null hypothesis (H :noise alone), of the next orderJ . .. .. 0

non-vanishing term in the expansions of the likelihood ratio, AN(~1e). about e = O~

(Here e ~ input signal-to-noise ratio.) Thus, for threshold optimal algorithms,

g*, we have

and

(7.6)

(7.7)

in the coherent cases. For incoherent reception, we get

(7.8)

(this last for suitably symmetric distributions)& For independent noise samples

(which can usually be achieved by sampling at suitable (time) intervals) f, ,f2 are

43



g(xt
......,

l\ *
SineBias,

I(
j

or

/}. ( )2~ h (tj - t i , tj)LH
I

I h(tj - t j , tj )~t

or

i (Xj )
. I

I I
: ,----, I

L.J Constant LJ
I I
L J

I
Non~ Linear Functional~ Matched Fi Iters· ~ Zero Memory

II Matched to Interference" II Matched to Signal II I 1st/2nd Degree

I I Non- Linearity

I
x·J

f~
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functions of wl (XjIHo) only. In any case. given AN (and log AN) one can accord-

ingly determine the appropriate bias, by the procedures indicated above. In other

words, with the proper bias, our algorithm, g*, retains its optimum structure and

performance as the data sample (N -+ (0) becomes indefinitely large. The corollary

of this is that g* has only a fixed number of terms here, whereas, without the

correct bias, more and more terms in the expansion (7.6) would be needed to give

the same performance, as N becomes larger.

It can further be shown [59,61J that the bias in these optimum threshold cases

is equivalent to

B* - - 1
"2 varHo

(7 .9)

* *A sufficient condition for asymptotic optimality (AO) of 9N (or N~ 00) is that 9N
itself be asymptotically Gaussian, with means i 05~/2 (respectively under Ho and Hl ),

and with variance 05~' cf. Appendix 3,[59]. This means, here, ~hat the error

probabilities determined from the operations of· the algorithm gN,vanish for nonzero

(but small) input signals, as N -+ 00.

This, in turn, leads to a definition of "smallness" of the (normalized) input

signal (power), (e2), where still (e2) > O. Thus, the associated threshold signal

condition is established by requiring that if 0r~ (= varH gN) = 0;/+ FN(e) is such

that 0iN2 ~0;N2, or IFNI « 00N
2, then IFN(e) I « 00~ seis an uRRer limit on the

small values e can have, providing a least upper bound on the "weak" input signals

for which (7.9) is effectively valid. We shall see practical examples of this in

Section 9 following, in our discussion of robustness of the threshold detection

algorithms. The point is, practically, that if the input signal is too large, the

"threshold" optimum algorithm gN is no longer optimum. It may, in fact, be quite

suboptimum and exhibit rather pathological behavior, unless suitable modification of

the algorithm is made at these larger signals. An example of highly suboptimum

performance when the bias is incorrect (or omitted) is noted in Section IV of [61J.
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7.4 Adaptive and Matched Filtering

In Figure 7.3 we give a general schematic o~optimum coherent or incoherent

threshold detection in a changing, generally non-~aussian EMI environment, in par­

ticular, to show where the "adaptive" portions of'the reception process appear.

For the threshold signals specifically considered here, the optimum detector is the

appropriate LOBO, of which examples are given explicitly in Sections 7.1 and 7.2.

[For general input signal levels, the optimum nonlinear processor analogous to the

~(x.), ~I (x.) combinations above (cf. Figure 7.1)' is, of course,the generalized, ,
1ikel ihood~atio f\.(~-'S) noted above, '(at the beginning of Part II), which, however,

is not usually a simple matter to. diagram or implement in practice.]

The central feature to observe here from equations' (7.1) and (7.4), and in

Figure 7.3, and generally, is that the LOBO g*, i~~luding the process of parameter

estimation, is a nonlinear adaptive filter. [This is true even in Gauss interfer­

ence, where g* reduces to g + gopt in Gauss, and where the parameter to be esti­

mated is P1G = a~, the mean intensity of the noise.] The processor g* is adaptive

because it must determine wl(xlIHo)' and various functionals of wl . For Class A

and B noise this means specifically estimating the. parameter sets J73A • fJ3B , or

-f6B . [Note again that since Class A,B noise essentially describe (almost) all

real-world interference, and detection is always a fundamental reception process,

this situation emphasizes, again, the role and importance of these canonical inter­

ference models.]

Operations more complex than (7.1,7.4) are required for more complex observa­

tion conditions, but the essential task for the processor remains to estimate the

appropriate parameter set from the received data. In addition, since these inter­

ference models are robust (cf. Section 4 above), we may expect the processing

algorithms (7.1,7.4) likewise to be robust: (numerical) changes in parameter esti­

mates yield comparable changes in the various probabilities of decision.

First, the adaptive portion of the receiver (cf. Figure 7.3) identifies the

noise class and then carries out the calculation of the needed parameter (estimates)

for the particular interference class in which reception is taking place. These

parameters are accordingly supplied to the detection processor (or algorithm),

which operates as follows. We see from Figures 7.1 or 7.3 that, for _coherent

reception (cf. Section 7.1 ) the optimum (threshold) detector processor, or LOBO,

in non-Gaussian interference performs two successive operations:
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1. It first "ma tches" the receiver to the noise, in that it adapts [i .e.,

determines the class of interference and then estimates the noise parameters

(~A' -liB' ~B' etc.)J to generate a non-Gaussian functional (~(xi)' etc.) of
the input data.

2.. Next, the optimum processor then "ma tches" the signal to this new input

~(x.), etc., to form an appropriate correlation detector for the non-Gaussian,
functional ~(x.). These matched filters are always linear, and realizable,
(i .e., causal), cf. Figures 7 .l~_ - 7.3.

For incoherent detection, there is an additional, third operation" which

follows the "ma tching" process (Figure 7.2). This is usually a non-linear operation

plus summation, where the nonlinearity may be a memoryless quadratic process, or a

multiplication (e.g., a second-order, or finite-order, zero-memory nonlinearity).

More complicated nonlinearities can arise in the cases of partially coherent recep­

tion, etc. [14,59J.

It is essential to observe that Step 1, above, is not an attempt to

"Gaussianize" the noise background. Rather, it is the key step by which the entire

(here first-order) pdf of the real-world noise as it comes, is acknowledged, and
employed, in the detection processing. Step 2 then incorporates the a priori

signal characterstics, known at the receiver, in the classical "ma tching" sense

[22J. but now with respect to the nonlinearly processed data ~(xi)' etc.

If the interference is Gaussian, the first operation 1) is simply linear

in the data (7.2,7.4) and we are left with the appropriate conventional matched

filter [22,59,61J, which is basically a second-moment processor, since (zero-mean)

Gauss noise is completely specified by its correlation function. It is the strong

non-Gaussian "tails" of the pdf and APD (Figures 3.1-3.9) that are critical in

degrading receiver performance vis-a-vis that in Gauss noise, and that the nonlinear

adaptive processor of Step 1 above takes into account optimally (for threshold

signals).

7.5 Extensions: Composite and Binary Detection

The composite detector algorithm is formed from the usual threshold expan­

sion of the likelihood ratio by including both the coherent terms O(e) and the

incoherent terms 0(8 2
), again with suitable bias. Thus (cf. Section 6.5 of [59J),

we have for the LOBO here, specifically,
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g~-comp = g~-coh + g~-inc - log 1.I ,

or, explicitly,

(7 . lOa)

·gN-comp
Al N

= log 11 + B*N + -2 \' [ -22. (8 0" 8 .. +-comp ~ · 1 V· 1J
lJ

( Q, • Q,. + Q, I. O. .) ~. e.) ]
1 J 1 lJ ~ol J

(7 •1Ob)

where the composite bias is

A A A

B - B + B* 'N-comp - N-coh N-inc

The variance of g* (underH ) is similarly found to beN-comp . o·

(7 . 1Oc)

(7.11)

It is 05~-comp that i~ now ~sed to obtain performance measures, e.g., error proba­
bilities, etc., in the usual way.

This composite LOBO (J.10a,b), also is an asymptotically optimum (threshold)
algorithm, as required of its individual LOBO components. The_practical i~pQrtance

of the composite det~ctor is that it allows us to treat those (coherent) cases where
8 > 0, and include additional relevant information, contained in the "incoherent"
term (0(8 2 )). Thus, improvement in performance over the purely coherent c~ses is
possible, and can sometimes be sizeable 0(3-6 dB). The same is true for suboptimum

'composite detectors.,cons.tructed analogously to (7.10a,b). Ag.ain, in each case,.
the role of the proper bias is critical.

. So far, we have considered only "on-off" detection situations. In many tele­
communication applications "binary" signals are used, so that the,receiver's decision

problem is specified by
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Here, optimum threshold algorithms are formed, as before, now from the expansion of

log A(~2) = log A(~) - log A(~)

where A(~) = A(~)(~IS1)' etc. Thus, we have

(21)* _ (2)* (1)*
g N - g N - g N ,etc.,

(7.13)

(7 .14 )

and g(2~)* = varH g(2~)*, etc., with analogous expression for suboptimum detectors.

The use of binaryOsignals allows us to achieve IIsymmetricll channel operation,
A

usually, which simplifies the problem of the proper bias; e.g., BN-(12)= 0,

usually, and increases the useful signal energy transmitted, with a consequent
improvement in performance, as well as potentionally increasing the information
rate for the same bandwidth.

8. OPTIMUM AND SUBOPTIMUM PERFORMANCE
Applying the general approaches of [14,17J, we c~n obtain upper (i.e., conserva­

tive) bounds on detector performance for all signal levels, "but this procedure must

ultimately be done numerically.
In the limiting threshold situations, however, direct analytic approximations

are possible, since the test statistic g, and (LDBD)g*, are asymptotically normally
distributed [17J (by the Central Limit Theorem). ~1oreover, with the proper bias
[cf., Section 7.3J, g* remains asymptotically optimum (AD) as N -+ 00, as required
for very small input signals~ For these cases we accordingly find, for the
"on-off ll types of signal reception, where false alarm probabilities (PF = cx.oq) are

preset, that the probability of correct signal detection is (when ;0 ~ ;1) (8.2),

Po = PPO = p(l - S)

~ %{l + e[ - e- l(l (8.1a)
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where h = g, or g* (7.1,7.4), for example. In particular, we have

(8.2a)
(h = g,g*) ,

and here, for the assumed independent sampling,

(8.2b)

In addition, since signal and noise are postulated to be additive, in the above, we

have w1(xjIHl) = wl(xj - sjIHo)' The quantity e is the familiar error function:

e(x) = __2__ f~ exp (-t2)dt .
vTI

(8.3)

On the other hand, for many common communication applications, where the channel
weightings are usually equal, e.g., K = 1, II = p/q= 1, e.g., K = 1, so that we have
the Ideal Observer situation in which 0,0 and S alf\e jointly adjusted, we find that
the probability of error, Pe, is in these threshold cases,

pe ~ ~ {l - e [<h>"1 - <h) 0 J}. .
2°0 12"

In particular, it can be shown [59J that

<h>l - <h> = 0(*)2 = var g(*) ='var h ,o 0 Ho . Ho

so that, in more familiar form we have for (8.1) and (8.4)

" *p(*) ~ £. {l + e [ _0__ - e-1 (1 - 2a
o

)] }
D 2 n
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(*)Pe = 1/2
[

(*)

1 _ 8 . °0 _.. ]

2/2"
(8.6b)

Various canonical performance curves

of [61J in on ? [ J~

('k) (*)
r · and Pe are given in Figures 1 and 2

8 1 Examp1es and Compa ri sons
We shall confine our explicit examples here to coherent cases, both optimum and

suboptimum. (Various examples of the performance of' incoherent detectors are dis­
cussed and evaluated in [13,16,59,61J.) There is no loss in qualitative generality
in so doing, since the relative differences between the optimum and suboptimum

receivers remain essentially invariant of whether reception is coherent or incoherent,

for most cases (cf. Fi~ure 8.1).
Accordingly, for the 1I 0n-off ll coherent cases (7.1,7.2), we obtain explicitly

Optimum Detection:

(g*>l (g*)0)/6: IZ;' ~<s2> NL(2)/2 - V ¢*/2

( <g >1 - <9>0)/60 IZ;' ~<s2 >NL(2) /2 • ~~xQ,(x) >/L(2)

(8.7a)

(8.7b)

- (1¢*7T) (/¢clo )

which defines ¢* == <s2)NL(2) and ¢clo == <-xQ,(X~ /L(2) = 1/~(2), respectively,

where,
00

<xQ,(x» - ! x ~x log wl(xlHo)dx = -1
_00

00

L(2) _ !Q,(X)2Wl (X IHo
)dX

_00

(8.8 )

The quantity ¢* is defined as th~ average output signal-to-notse ratio, or (S/N)~n

times the equivalent time-bandwidth product (or threshold processing gain) for the
optimum detector (7.1), and the particular noise statistics involved. An extension
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of this concept to include specific minimum detectable signals and processing gains~

on a systematic basis, for both optimum and suboptimum threshold detectors is given
in [59,61,67J.

The functional ~clo is the degradation measure of the suboptimum (other than in

Gauss) cross-correlation detector (7.2).- (For the particular parameters of
Figures 8.1 and 8.2, we find that ~clo ~ -30 dB, as can be seen from these figures.)

In general, 0 <\ ~clo .::. 1, and ~c 10 is unity only when the interference reduces to
Gaussian noise.

FigUre 8.1 is based on [14J, while Figure 8.2 is calculated from (7.la), and
Figure 8.3 is taken from Spaulding [21J; Figures 8.1 and 8.2 are for. (both strictly
and quasi-canonical) Class A noise, whereas Figure 8.3 represents detection in
Cla~s B interference. In all instances, we observe the very considerable degrada­
tion, 0(30 dB), of the conventional correlation detector vis-a-vis the corresponding
optimum processor. Furthermore, as the interference becomes more non-Gaussian (i.e.,
smaller A~ r l

), we may expect even larger degradation of conventional processing,
and consequently increased gains using the required uptimum algorithms.

8.2 Practical Conditions for Significant Improvement
Over Conventional Receivers

To appreciate fully why such optimum (threshold} detection algorithms as
g*, (7.1), (7.4), etc. are so effective (cf. Figures 8.1-8.3) vis-a-vis the con­
ventional optimum processors, e.g., "ma tched filters ll or correlation detectors,
of the earlier, more classical treatments (and most current engineering practice!),
we must note the following.

In order for there to be significant improvement in the LOBO detection perfor­
mance over conventional matched filter (or correlator) systems, which are optimal
in Gauss noise, i.e., to justify the computational complexities of the former,
adaptive nonlinear receivers, the following four conditions must be fulfilled.

The interference must be moderately to stronglj non-Gaussian; e.g.,

1. A(A,B) < 0(1,2 or less): i.e., a small overlap index, for "structured" noise:
2. f(A,B) < 0(1/2 or less): small Gaussian factor;

3. ~2A,B >( S2) there must be a detection (or reception) problem, e.g.,

the desired signal is II wea kll vis-a-vi~ the noise, at
the receiver input;
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and

4. N» 1: the time-bandwidth product {e.g., number of independent noise data

samples) should bereasonablylarge, e.g., 0(20,30 or more). Thus,

equivalently, the 'longer the obser-vation time (under stable conditions),

the smaller the input signal that can be detected.

It isg;e.nerally found that the condi tionsl-4 are obeyed for real-world interference

processes so that the large predicted performance gains vis-a-vis conventional

process'i ngmaybe expected.

The largei'mprovements over conventional detectors, optimized against Gauss

noise, show how seriously Hmis·matched " such detectors canb'e in th·e highly

non-Gaussian EMI environments inwhichwecustoma.rily operate. However, .simple

suboptimum detectors , such as thoseemp1oyi ngl irni ters, can offer cons i derable

improvement against this non-Gaussian noise and can be "close" to the optimum

detector. Thus, the optimum detector characteristic may be well approximated (in

performance) by comparativ:ely simplenonl inearities:, wbichare then the ec.ono.mical

ones to use. An extended treatment of suboptimum vs. optimum detectors ;s ·given

in .[59].; se;e also Secti.on9 ff.

9. ROBUSTNESS AND SIMULATI:ONRESULTSFOR CLASS A AND CLASS B NOISE

The performance r,esul ts .abovear'e the resul ts expected for the desired signal

level sufficiently small (but >0) and for N, the number of inde~p·endent samples ~ ..

("Sufficientlysmall" is preci.sely defined in Middleton and Spaulding [59J.) In
actual cases, the LOBO derived detectors will probably be used in situations where

the signal level is larger than "sufficiently small ll and/or N is not pa'~ticular]y

large. In this section, then, we present performance r·esults ofactu.al LOBD

detectors (simulated) to display their a·ctual performance, in ord,er to compare with

the theoreti,cal limiting performance.

In order to construct an LOBD, we need to determine the ap·propriatemodel

para'meters (el assAor B) ~and we al so need to know to what degree of a:ccuracywe

need, to do this estimation. That is, the robustnt~ss of a given detector is required

knowledge. Here,wewill also demonstrate that the LOBD can be quite robust.

9.1 Robustness

Consider binary CPSK. Our problem is to decide optimally between the two

hypotheses:
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o < t < T

(9. 1 )

o < t < T

In (9.1), X(t) is our received waveform in detection time T and this waveform
contains either the completely known signal Sl(t) plus the noise Z(t) or the
completely know~equi-probable, signal S2(t) plus Z(t). The LOBO receiver for this
case (9.1) is shown in Figure 9.1, where Sli and S2i are samples of the signals'

Sl(t) and S2(t), and ~(Xi) is the standard LOBO nonlinearity, i.e.,

S1i -S2i

Yi N
H1

X· ?(Xj) 2 d < 0I
~

i=1 H2

(9.2)

Figure 9.1. LOBO for binary symmetric purely coherent signals.

For binary symmetric signals,

(9.3)

the standard LOBO analysis gives the performance (probability of error, Pe) esti­

mate as

(9.4)
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where S is the signal power (9.2) and L(2) is the "performance improvement factor"
(improvement over the linear receiver) given, as before, by

L(2) = f
oo [w, (z)J2

wl(z) dz.
-00

(9.5)

In order for (9.4) to be valid~ we must have SL(2) «1. [Note that if the noise
process has been normalized so that the noise power = 1, then S is also the
signal-to-noise ratio.] Also note that (9.4) is the result (now precise) that is
obtained for the linear receiver in Gaussian noise (L(2) = l)~ This is the conse­
quence of using the Central Limit Theorem argument in the LOBO analysis, which
requires S to be II sma llll and N large.

Suppose now that we have a LOBO detector based on the assumption that our
A .

interference is wl(zl, and the actual interference is wl(z). We can carry out the
LOBO analysis using wl where appropriate to determine the effects of IImismatching ll

the interference, or- we can use this to determine the sensitivity of the LOBO
performance to changing interference (robustness)~ This approach also gives results
that can be easily used to evaluate the small signal performance of any ad hoc non­
linearity. The result is that L(2) is replaced by a parameter Leff , for "L effec-

2tive,1I where, Leff = L
l
/L-2 ,

l[;~;::]
I

Ll = wl (z) dz , and

L2 = j[~l (Z)] 2 wl(z) dz .
_00 wl(z)

(9.6)

(9.7)-

If ;,(Z) = w,(z), then L, = L2 = L(2) = Leff .

We can quickly compute the performance of any arbitrary nonlinearity,i(x),
used in the detector of Figure 9.1. For example, for the hard-limiter j ~(x) =1,

if x > 0 and ~(x) = -1, if x < O. We can solve the resulting expression

(9.8)
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to obtain the corresponding wl(z}, to compute Le.
ff

via (9.6) and (9.7) above. For

the hard-limiter case, we obtain

where w1 is the actual interference 'pdf. (For a different, and much more involved

derivation of this result, see [68], section 4.2 .. ) Performance is given by (9.4),

so that the degradation caused by using the hard~limiter is simply the di,ffe>re,n.ce

between L(2) for our actual interference (LOBO performance factor) and L
eff

for the

hard-limiter (or similarly, for any other n6nlinearity}.

Figures 9.2 and 9.3 give results for the hard-limiter perforrnance compared to

the LOBD performance. The degradation obtained by usi,ng a hard 1 i'm,fte.r i.n place of

the LOBO nonlinearity is, as noted above, g.iven by the difference between Leff (9.9)

and L(2) (9.5). The hard-l imiter is the simpl est nonparametric. detector and, as

Figure 9.2 shows" is very robust in Class B noi,se and also· g,ives performance that is

Ilcl:os e u to that obtained by the LOBD. Figure 9.4 shows robustness results for the:

Class A LOBO, where the "actual interference ll is given by A = l.0 and r l = 10-4 ,
""- ""-

and the LOBD nonl,inearity use.d is given by various A and r· I ., On Flg,ure 9.4,., d,egra-

daUon is given by L(2) (in dB) - L
eff

(in dB), using (9.6) and (9.7). Note that,

for thi.s example at least, the C.lass A LOBD i's quite robust, and we· do not need to

estimate the parameter values closely in o,rder to o.btain near opti.mum results.

All these above results are limiting results (S I'small'''' and N~' 00), and next

we will investigate, via co,mpute.r simulation, the IItr'uth lt of these. re.sults wne,n the

detectors are used in actual possible ope:rational s.ituatforns.

9 r 2 Simulation Results

I'he receiver of Figure 9.l for the sig,nal g,iven by (9.3) ha.s be·en implem'ented

on a large scale computer. Monte Carlo sim'ulation results for the li,nea.r re,ce·tver,

the bandpass 1i'miter receiver,and the LOBD (bandpass) rece,iver are· g.fven in this

section., By IIbandpass ll we mean that the nonlinearity acts on t.he rece·;ved complex

(magnitude and phase) sampl e of the recei ved waveform. For eX,ampl e, the bandpass

li.mi,ter nonlinear;:ty is X.flx.l, where X. is the c.o.mplex waveform sampl'e1 1 ." 1

(Figure 9.1).
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1

(z)

The Class Bmodel is given by

2 00

= e-z IQ E (;~ )m Am r (rna2+ 1)1 F
1
(_~a

vTIm=o

and

1 2
'2 ; .~ ), _00 < Z < 00, (9.10)

t
n=]

() ~,~ < 00.

For actual implementatfon of the requiredrlonlin,eari,ty t(x) (9,..2), or forg:en­

eration of random samples from the interference process, the models (9.10) and (9.11)

aremu,c h too complex, and much simpler ,app'rox imatemodel sml.lstbeused. Sometime

ago Hall [32J deve] oped an ad-hoc mathematical 1y simple model forat,mospher'icnoise

(Class B), and Middl:eton [lJhas shown that his Class B model red:uc~s,appro.xi-

mately, for special parameter values, to expressions of the Hall type. The Hal'l

. model has two parameters, 8 and y, and; sgi v.en by

and

Wl (z) =
( 8 '1 2 2,·8/2

f 2 )R[z + y ]

(9.12)

8-1
= y

(€~ + y2) ( 8-1 )12
(9.13)

The closest match betw'een the 'Mi·ddletonmodel (9.1 0) and the Hall model (9.12) are

for the Middleton parameters a = 1, A = 1,and Q = 4 x 10-4, with the corresponding
ex.

J1'f" -2 ( )Ha 11 parameters e =2and y=vt:. x ]O. For both the Middl eton model ,ex. = 1,..and '

the Hall model (8 = 2), the se·condmoment dO'esnot exist, so the normalizing para-m­

eters "~andy are set to match measured data. For 8= 4, however, the first three

moments exist. For the Hall mo.del, the required nonlinearity, t(x), is simply given

by( Fi gure 9.1),
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ex.
1

Yi = 2 2·
x. + y

1

(9.14)

In actual systems, the various nonlinearities operate on the magnitude of the
complex received waveform sample; that i.s, the phasor sum of the signal vector and
the noise vector. For the noise (Hall), random samples from the envelope pdf are
efficiently obtained from

(
e=i ) 1/2

E = y U - 1 ( 9. 15)

where U is uniformly distributed on [O,lJ; and the noise phase angl'e' is uniformly
distributed on [0,2nJ. Figure 9.5 shows the two examples of Class B noise (Hall)
for which we will present simulation results. The case e = 2 results can be com-

A

pared against the theoretical results for the Mid~leton model, a = 1 and A
a

= 1. The

first simulation results are given in Figure 9.6 for the Hall model (8 = 2) normal­

ized to represent Middleton1s model. First note the interesting results for the

linear receiver. Identical results were obtained for N = 1,10', a-nd 100. This is,
of course, not physically meaningful and is the result of using a model for which
the moments do not exist. This "infinite power" problem does not exist whenever a
nonlinearity is employed, as with the other results of Figure 9.6. For a linear
receiver, for N = 10, say, detection is based on a "no'ise sample ll that is the sum
of the ten noise samples from the basic underlying distribution.

Except for Gaussian noise, the distribution of the "sum sample" is different
from the distribution of each individual sample, and ·approaches Gauss via the
Central Limit Theorem. This makes it difficult to analytically determine the per­

formance of linear systems in non-Gaussian noise for time bandwidth products other

than 1. On Figure 9.6, the performance of a linear receiver for N = 100 is esti­
mated. This is based on the parameter L(2) (37 dB) and the simulation results for

N = 100 for the LOBO receiver. The linear receiver simulation results for N = 1
match the analytical results (which for N = 1 are ,shown by the dashed curve)~ The
next point to note is that for N = 1, the same results are obtained for the various
nonlinearities as for the linear receiver demonstrating the known result that non­
linearities give improvement only for "large ll N (37 dB, here for N = 100). The

results for Hall, e = 4 (Figure 9.7) also show this. For N = 10 (Figure 9.6) note
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is normalized to therms envelope level (8 = 4) and to the
rms of measured data (8 = 2).

<.1\
e
~

UJ 0

"co
"0.....,.

0
~

66



o LINEAR ,ECEIVER

o LOCALLY OPTIMUM
NONLINEAriTY

x BANDPASS LIMITER

x

0\
~~0,

x
~

o

-. ~.... .y ....... 0........ HALL NOISE, (J = 2
4w~ . .........0

" '" ............. 0 ./N=1,10,100, etc., LINEAR RECEIVER, "X "'"-'e <=
~ 0",. 0 ---0 /N=1, LOCALLY OPTIMUM

" --- ....... c:f.- NONLINEARIT'(,
\ . X ...--. BANDPASS LIMITER.

\
° LINEAR RECEIVER "- ETC

X \ (ESTIr~ATED)____, "-0...... ·
\ N=lOO ~ ........ 0° ....... ,
\
\
\"'-N=100,
o
\
lx

1

10-1

10-5

10-2

10-4

10-3

a:
o
a:
a:
w
LL
o
>
!::
-'-In
«m
o
a:
a..

Q)

'-J



1 . 'i iii Iii • i :J

10-1

252015105o-5
10-6 . I • , , , I I I I , , •

-35 -30 -25 -20 -15 -10

SNR,dB

Figure 9.7. Simulation results with Hall noise, e = 4, CPSK and constant signal.



the important result that the bandpass limiter outperforms the "optimum ll LOBO

detector for large enough'signal level. This also has been indicated analytically

[63J. For N = 100, the simulation results match the analytical results (9.4) and

(9.9). Note the limiting result that the bandpass limiter is only approximately
1.5 dB inferior to the LOBO nonlinearity.

Figure 9.7 shows simulation results for the Hall model, e = 4. First note

that as before, use of non lineari ties for N = 1 gives no improvement over the linear

receiver, but, of coUrse, does give improvement for N = 10 and 100. For N = 100, the
improvement is only 6 dB as predicted by L(2). Note that the LOBD nonlinearity

here also is only slightly superior to the bandpass limiter. For e = 4, the

moments (first three) exist' (i .e., finite energy) and we obtain IInormalllresults

for the linear receiver for N = 1,10,100. On Figure 9.7, a SNR of approximately
-20 dB is required for Pe of 10-3 (N = 100), whereas from Figure 9.6, a. SNR of
approximately -53 dB is required for Pe of 10-3 This dffference was indicated by

the two L(2) values. Figure 9.5 shows that both distributions (a = 2 and e = 4)

IIl oo kll highly non-Gaussian. This shows that we cannot arbitrarily say, by inspec­

tion, that a noise process that is "tremendously" non-Gaussian can result in
"tremendous ll improvement over the corresponding Gaussian or linear receiver situation.

The Middleton model fO'rClass A narrowband "impulsive ll noise is,

-A
00 Am 2 2

L -z /20
wl (z) e A A e m=

m=O m!~ 27T0;

where

2 m/AA + fA
0 = 1 + f Im A

and, for the envelope,

(9.16)

(9.17)

00

L
m=O

(9.18)

The Class A model has two parameters: AA and f'. AA is termed the overlap index,
and as AA becomes large (~10), the noise approaches Gaussian (still narrowband)
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and r l ;s the ratio of the energy in the Gaussian-portion of the noise to the energy

in the non-Gaussian component. This model· also is too complex mathematically for

implementation of the nonlinearity R,{x) or for generating random samples for com..;

puter simulation. The following approximation, based- on the characteristic function

for the Class A model ,however, can be used. Without going into detail, it turns

out that the Class AAPD can be closely approximated by

1 I -tli A -ilO~Ip[S'>e. ] :::. A e 0 0 + A e 0
It 0 1 + A

where O~ = fl Al + fl)

and

(9.19)

20', =
A

Extensive use has been made of the particular Middleton Class A example,

fA =0.5 x 10-3 , AA = 0.35. To match this with (9.19), the appropriate parameters
-3 A

are fA =0.5 x. 10 and A= 0.40. Using (9.19), we obtain random samples for the

pdf of the Cl.assA envelope from:

and

where,

(

2 2 )1/2
• 2 [A A". -EB/o, ] " .

~ =-00 ~n . (' +A)(' - U) - A e ,0:5. U:5. U1

e::: (-o~ ~n [' ~ A (' _ U)])' 12 , U, < U < 1

1 I
_[2 /02

A _E
2IiIUl = - --~ e B 0 + A e B 1

1 +A
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The parameter EB must be determined "experimentally.1I For our Class A case above

(fA =0.5 x 10-3, AA =0.35) (A = 0.4), EB = 0.1. Figure 9.8 shows the APD for our
Middleton Class A example and the correspondingAPO(9.19)along with points gener­
ated via 10,000 random;samples using (9.20).

The above gives the Class A approximation for" the envelope. We also need the
corresponding result for the pdf of the instantaneous amplitude in order to imple­

ment the LOBD nonlinearity, t(x). Since the phase angle is uniformly distributed,
this pdf can be obtained from

00

Wl(x) = f p(e)d~ ,
x 7f~e2 2- x

where p(8') is the pdf of the (no rma1i zed ) envelopee e The result is

( 9•21 )

Wl(x) =~~
+ A g... 2-na

o

2 2 2 2
-x /a A -x /ale 0+ ---e

~7f01
(9.22)

The result (9.22) now is used to implement the LOBO nonlinearity~ Figure 9.9 shows
the LOBO nonlinearities for the two Hall model (Class B) cases and also for the
Class B example, both the approximation (9.22) and the Middleton model (ge18).
Also, numerical integration, using (9.5) gives L(2) = 34 dB ~r both the Middleton

model (9.16) and the approximation (9.22). Note that the Class A nonlinearity looks

much like a hole puncher with the "punching" level fixed at about- 24 dB

(i.e., for this IIhole puncher,1I Yi = 0 for Ixil > -24 dB).
Figure 9.10 gives Class A simulation results. First, for the linear receiver,

we obtain "normal ll results for N = 1,10,100, with the N = 1 results matching
analytical results (indicated by the solid curve). Next, consider the N = 10
results for the LOBO and bandpass limiter nonlinearities. Figure 9.3 indicates that
in the limit the limiter should be 3 dB inferior to the LOBO and on Figure 9.10,
N = 10, things start out this way, but the limiter becomes much more inferior as

SNR increases. Also, the N = 10 results are approximately 34 dB better than the
linear receiver results as predicted by L(2), but as the SNR increases past

approximately -27 dB, the LOBD performance degrades very rapidly and becomes inferior

to even the linear receiver.
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The results for N = 100 behave more as theory predicts, with the limiter being

approximately 3 dB inferior to the LOBO, but, again, performance again degrades

rapidly as the SNR increases past -27 dB. Results also are given for an adaptive
hole puncher (i.e., a nonlinearity identical to the LOBO nonlinearity for

IX i I > -24 dB, but Yi :::: 0 for IX i I > -24 dB), for N = 10. Per.formance is essentially
the same as the LOBO for SNR < -27 dB, but also degrades rapidly for higher SNR as

one would expect. This dramatically illustrates that the "sma ll enough" signal

requirement that gives the LOBO must be met, at least for some cases, before any
kind of II good" performance can be expected.

10. REMARks ON THRESHOLD RECEIVER PERFORMANCE
IN NON-UNIFORM FIELDS

We have already remarked in Section 5 above on the possibility of increasing

the effective performance of threshold detectors by appropriate location of the

array sensors in the EMI field. Improvement by independent spatial sampling, as
well as the usual time sampling, is achieved, provided that the signal field remains

coherent across the array, and provided that the noise from each sensor is (spatially)

independent'. This limiting situation can be described analytically [60,62J, but is

only approximated in practice, because of the non-spatially Itwhite" (in wave number

space) nature of real noise fields. However, it is possible to replace the ideal J
total independent sensors with a number, J1(2.J), which represents the effective

number of independent sensors, and then proceed to apply our earlier results (for J)

by replacing J by J 1
, as indicated.

Accordingly, let us briefly illustrate these remarks with (1), a specific

coherent, optimum threshold detection algorithm, g~-coh; and (2), the structure

factor, here a*J h2, cf. (8.6a,b), by which performance is measured. We haveo -co

A

g~oh = (B~-coh + logll) - aolZ
M
I:
m=l

N
I:
n=l

(10. 1)

where m=l , .... ,M denote the spatial sampling points (sensors), n=l , .... ,N, the
time samples t (= n~t), i = av.coh. signal amplitude; ~wd = doppler spread param-n 0

eter; and Q,m,n = Q,(xm,n) is just wl (xm,nlHo) again, where xm,n is the nth time
sample of the input at the mth sensor. Here J = MN. (With no doppler spread, or

very 1ittl e spread, l'.wd ~ 0, and the exponential term is. essentially unity; for
details, see Section 8 of [60J).
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2
The associated statistic a~~)

mance measures, is found to be [60J

(~ varH g3), used in (8.6a,b) to obtain perfor­
o

a* 2 = 2a 2 (1 - n) J L(2) Hl (N~t~wd)'o-coh 0
J = MN (10.2)

where 1 - n = a .~~ (-.2.1) is a fading ratio, and H1(x) = lTIe(x)/2x. With no fading,

-2 2ao = ao ' and no doppler spread, i.e., Hl(o) = 1, we get

a* 2 = 2 2 J L(2)
o-coh ao (10.3)

which shows in this case that the processing gain n~oh and minimum detectable signal,

*2a · h' areo-mln-co

n* = J L(2)
coh ( 2)* 2 -2 .. 2

ao min-coh = ao = a 0 = ao)· (10.4)

The former represents now the s~ace-time bandwidth product, MNL(2), which is to be

compared with ep*/2 in (8.7),(8.8). There the processing gain in NL(2); (M =
effectively, as the EM! field is assumed uniform). Here the processing gain is
M • NL(2), for these independent spatial samples, as well.

Thus, if we can sample the noise independently in space, we can increase our

processing gains, or, equivalently~lower the minimum detectable signals, of our

reception process (for the same performance). For M= 10, this means a 10 dB gain

over the cases where the EMIfield is uniform over the receiving array. Accordingly,

it can be worthwhile to investigate the EMI field structur~, to see to what extent

it is possible to sample "independently"; cf., Section 5 earlier.

A full development of the combined spatial-temporal sampling models, in the

threshold. detection, for classes of realistic field models, is given in [60,73J.
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11 e CONCLUDING REMARKS
From the discussion above, we can make the following general remarks with

regard to the implications of these interference models for measurement and system

design and performance determination~

1. These canonical models provide a needed, general apparatus for real-world EMI
measurements andEMI assessment. Their canonical nature gives them global

application, invariant of the particular source mechanism. They have been,

and are, experimentally verified, tractable, and defined by measurable
physical parameters.

2. Because of the canonical character of these general noise models, and their

experimental establishment in real interference environments, we are now

able to pursue systematically the development of (th~eshold) optimum
reception systems, and determine their structures (algorithms) and

performance, as well as to compare them with current suboptimal
systems [14, 59,60J.

3. In addition, from a practical standpoint, in various applications large

improvement over conventional processing can be expected. This is shown

typi ca 11 y by the compari son between the performance of conventi ona1

receivers optimized for the usual Gaussian noise assumptions, and receivers

that truly adapt to the actual highly non-Gaussian EMI environment in which

they must operate.

4. When reception in non-uniform EMI fields (over the receiving array) takes
place,spatial processing, .as well as temporal processing, can lead to addi­
tional improvements in performance. The canonical nature of the optimum

threshold algorithms does not change, but adaptive beam forming naturally

appears in the structure of these a1gori thms.. Performance measures rema in

unchanged in form, but the detailed nature of var g* is modified to account

for the spatial character of both the desired signal and the EMI environment.

We emphasize once more that it is this development of verified, tractable, canonical
noise models that makes possible a general treatment of the real, non-Gaussian,

interference world. We can now exploit the classical methods of Statistical

Communication Theory for both measurement and signal processing.
The genera1 approach, revi ewed tutori all y herE~, ·may be descri bed as II parametri c

adapive" as distinct from other important approaches [69,70J, which are "distribution

free" or nonparametric. The former requires specific statistical-physical model

building, with a consequent greater sensitivity to environment changes than the

latter.
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Finally, we must point out that our models, and the. signal processing conse­

quent upon them, are not confined to (EM) telecommunications alone. They are

canonically applicable to other spectral domains, and other physical media and

propagat ion mechani sms (e. g., underwateracoust i cs [60J), where i nformat i on transfer

in space-time is the aim, whether it be for the purposes of, remote sensing or

human communications.
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APPENDIX. NOISE MODEL STATISTICS AND PARAMETERS

In this Appendix, we summarize various statistical results: analytical forms

for the APD's (and pdf's) of Class A and B interference, moments, etc., which have

been derived in detail earlier (cf. [1,6-11J). These constitute the theoretical

descriptions of the new EMI models, which in turn are needed in the telecommunica-

tions applications outlined in Part II· They are sufficiently detailed to provide

entree to those concerned with their foundations and derivations in the references

just cited.

A.l CLASS A STATISTICS

A brief summary of the principal first-order envelope statistics is given next.

A comprehensive discussion, with the details of the derivation, is given in [1,7J

(and for the statistics of the instantaneous amplitude in [6,8J. The principal

statistics we shall need here are the exceedance probability (or APD), the probability

density function (pdf) and various (even) moments. These are:

(A.l )

(A. 2)

for the APD and pdf, respectively, for the normalized envelope ~ and envelope

threshold e , whereo

(A.3)

The pdf of the (normal ized) instantaneous amEl itude x (~X/IQ2A(1 + rA)), whicb is

often employed in signal reception analyses, is
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00

wl(x)A ~ exp(-AA) I
m=O

Here, also, we have

(A.4)

with

(A.5)

The various even-order moments of E are obtained most readily from the (exact)

characteristic function (c. f.) (cf. [7 ,9J), which gives

+ 6, etc. (A.6)

(The unnormalized moments <E~k>, k ~ 0, follow directly from E
A

= CAa
A

-
l
.)

A.2 A PROCEDURE FOR OBTAINING ,lJ3A

An approach based on the first three even moments <E~k>, k = 1,2,3, yields

the explicit results ([lOJ, Sec. 3.2)
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(A.7 )

e2k == <E~k>,

where, of course, each parameter of ~A exceeds zero.

Finally, an exact (for infinite ensembles) procedure for obtaining ~A (and

all higher degree, first-order parameters) requires (cf. [lOJ),

(i ) 2nd moment:.

(ii) APD at limitingly small thresholds:

[P1 ? J. t = (P1!? )
€~+O l-XP~+O analytic

o 0

(iii) slope of APD as S'2~:---'-------:; 0-

(A.8a)

(A.8b)

which provides the necessary three relations for the set ~3A' (See [8,10J for
details and further discussion.)

87



A.3. CLASS A STATISTICS-EXTENSIONS

The results summarized above in Section A.l are for the "strictly canonical II

Class A models, which are distinguished physically from other types of Class A

model by requiring, in general, that the interfering sources be equidistant from

the receiver. (See Section IV of [49] for the detailed analysis.)

Other types, or extensions of the earlier canonical Class A models of

Section A.l, are:

(1) the approximately canonical Class A models, where some distributions are

such that few, if any, comparatively small "correction terms" are needed in the

canonical results of Section A.l. The anatomy of these lIapproximatell cases is

fully described, with typical examples~ in Section V of [49]. The principal

effect of the approximations is slightly to modify the shape of the pdf and APD

vis-a-vis the strictly canonical forms. How this may be calculated also is described

in Section V, [49].

(2) When the distribution of interfering sources, a (:\), is such that there
s -

may be a considerable source density near the receiver (unlike the strictly canonical

cases, where the sources are equidistant from th~ receiver), we have what we have

called the general, quasi-canonical Class A model. Analytically~ it is distinguished

from the others by a significant II correctionterm," modifying the exponential forms

displayed in (A.l),(A.2), etc., which noticeably shifts the magnitude and location

of the large-amplitude portion of the pdf, cf. Figures 6 and 7 [49J, as well as

modifying the resultant APD, cf. Figure 8, [49J; (see also [46]).

A.4. CLASS B STATISTICS

Unlike Class A interference, an adequate (first-order) description of Class B

noise ultimately requires a pair of approximating characteristic functions, with
their corresponding APD's and pdf's [Ref. 1 y Section 2.3; 2.611, Section 3, etc.],

which are suitably joined at some appropriate value (here, EB, of the envelope),

cf. [Ref. 10, Section 2.3J. In addition, as we have already noted, we require now a

basic set of six global parameters, ~B = {AB,fB,S12A,a,bh::t,NI}, also described above.

The two APD 1 s (and pdf's) needed here, which are joined at € = S'B' are
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with €o:: €/Ifi

to :: eoNr/2GB; G~ :: (~ =~ + f B)/4(1 +fB) (A.9)

where a~ = {2D2B (1 + fB)}-l, cf. (A.5), the normalizing factor; e.g.,

(c;,§') = (Eo,E)aB, cf. (A.3), and lFl is a confluent hypergeometric function [2].

The second APD is given by

(A.10)

with

(A.ll)

The associated pdf's for the two regions (e ~ eB) are

(A.l 2)

and

(A.13)

89



(The corresponding pdf's for the instantaneous amplitudes are [8]:'

00 (_ , ) nA"'n
'" ~ , a 1 + na 1 + na 1 A2. A A Aw, (X)B_I =:; L r() F ( 2 . ;-2;-x); (-xS. .::. x .::. xS)

"n=O nl 2 , 1
(A. l4a)

00

w (x) ~ ( \'1 B-1I - exp -AB) L
m=O

m. 2· A2
ABexp(-x 140mB )

"'2 1/2 (x < -xB; x > xB)
(4TIomB )

(A.14b)

The (even) moments ofeare given (exactly) l:>y (A.6), with A+B, e.g., AA ++AB,

etc.

A.5. CLASS B MODELS: SINGLE-FORM, THREE-PARAMETER MODELS
The general 'approximation outl ined in Section A.3 for Class B cases gives an

adequate (first-order) description of the desired APDand pdf here, with proper

behavior at the "tails" (i.e., "rare-event" portions) of the distribution, in that

the resultant second-moments ~2 (or ~) are finite, as required physically. However,

these two-distribution analytic model fits can be cumbersome, so that it is usually

desirable in applications to use a modified, three-parameter version of (A.7) and

(A.10), which can be suitably adjusted to give good approximation to empirical

observations over the effective range of distribution values.

Accordingly, it has been shown [59,63,69J that the APD and pdf of the normalized

input envelope, e, can be represented in the aforementioned three-parameter Class B

model s, by
? ?

P1(e>~)B ~ e-~/r2 {l - ;~ nIl (-~( Anr(l + ~a}lF1(l - ~a;a; ~;/r2)}

and

(A.16)
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A similar relation holds for the (normalized) instantaneous ampl itude, x, viz.:

-i /0. 00 ( )m
~ e \ -1 Amr(ma + 1) F (_ ma ..1/ 2 . x2/Q) (_ 00 < x< (0)

L m!a·.·· 2 1 1 2""
'TTIQ m=O

(A.17)

These models have the three parameters a, A , and Q. The parameters a, A area a
explicitly described in Section 3.1, ~,and (A.7a) above, and depend on the physical
processes involved in the EM! scenario in question~ The parameter Q, however, is a
(dimensionless) normalization parameter, which is used here to normalize the
process (~or z values) to the measured energy in the process. [We cannot normalize

to the computed energy, since for (A.14) and (A.15) the second moment does not exist
(nor does any other).] This unbounded second-moment and unbounded moment behavior .in

general is a typical problem with such models of broadband, lIimpulsive ll noise.

Using (A.13) - (A.15) in conjunction with measured data, as well as for analytic

calculations, requires a suitable truncation of the pdf, at some large level
) (or zl), which in turn establishes 0., cf. [67J. .
~o a
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