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ABSTRACT 

 

This paper examines color from multiple perspectives. A 

theory is proposed that the current color spaces are poorly 

designed for video quality and video coding purposes. The 

implication is that objective video quality metrics could be 

improved by the development of a field-specific color 

edge detection algorithm or color distance measurement. 

A prototype subjective database is provided that could be 

used to train such an algorithm.  

 

1. INTRODUCTION 

 

The most widely known objective video quality metric is 

peak signal to noise ratio (PSNR). While many formulae 

exist, PSNR is traditionally calculated on the luma plane 

of the YCbCr color space. This characteristic is not 

unique—many objective video quality metrics depend 

primarily or entirely upon the luma plane. 

The Video Quality Experts Group (VQEG) validation 

reports provide high quality analyses of objective video 

quality metrics on subjective video quality databases. 

Within these analyses, the Pearson correlation between the 

best objective metric and subjective data rarely exceeds 

0.9. This indicates a missing factor, an element that is 

obvious to subjects yet missed by the metrics.  

I believe the missing element is color, and the culprit a 

flawed representation of the human visual system. My 

supposition is that improved formulae for calculating very 

large color distances would increase the performance of 

all objective video quality metrics. 

This paper explores color perception as the missing 

element in objective video quality metrics.  We will 

explore challenges in the development of a perceptual 

color space. Information about the visual system is 

gathered from multiple fields, including linguistics and 

art. A subjective dataset is presented that estimates color 

distances. This dataset is made available to encourage the 

development of a perceptual color edge detector.  

 

2. RGB AND YCBCR 

 

Let us begin with a simple demonstration of the problem. 

Computers use the RGB color space, while video codecs 

use the YCbCr color space. The consequences are in some 

sense trivial, because the transformation requires a simple 

matrix computation. Given RGB pixels from [0..1], we 

obtain YCbCr values in the range [0..255] as follows [1]: 
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where both color spaces describe perfect cubes.  

The RGB color space represents a wide range of colors 

by mixing red (R), green (G) and blue (B) light. Fig. 1 

shows the red, green and blue axes, each calculated with a 

neutral value for the other two planes (128 assuming RGB 

pixels from [0..255]). These axes are not perceptually 

uniform. 

 

 

 
Figure 1. The red (top), green (middle) and blue 

(bottom) axes of the RGB color space with the other 

planes set to a neutral value.  

 

YCbCr claims to be a perceptual color space, meaning 

perceptually uniform. There are obvious empirical 

problems with this claim. Broadcast video formats 

routinely subsample Cb and Cr by two horizontally 

(4:2:2), and this is known to have a negligible impact on 

quality. Many non-broadcast video applications 

subsample by two both horizontally and vertically (4:2:0), 

and this is known to have a very small quality impact. By 

contrast, subsampling Y (the luma plane) by four is the 

difference between standard definition television and 

HDTV—a dramatic difference indeed. 

Objective video metrics provide additional empirical 

evidence. For example, Stephen Wolf and I trained the 



video quality metric with variable frame delay 

(VQM_VFD) on 11,255 subjectively rated video clips. 

This metric uses the luma plane only.  

To better understand YCbCr’s claim of perceptual 

uniformity, let us visually examine the color space. Fig. 2 

shows the Y, Cb and Cr axes, each calculated with a 

neutral value for the other two planes (i.e., Y = 128, Cb = 

Cr = 0). The luma axis seems to have a reasonable claim 

of perceptual uniformity. The usefulness of this luma 

plane is also evident in the MPEG committee having 

chosen the luma plane as a core structural element for all 

modern video codecs.  

Distances along the Cb and Cr axes do not appear to be 

perceptually uniform. Only the middle of each axis shows 

color gradations. Shades of green appear at one end of 

both axes. While the Euclidean distance between Cb = 

±128 and Cr = ±128 is large, the perceptual distance can 

be larger (e.g., purple to mint green) or smaller (e.g., mint 

green to yellow green). This perceptual non-uniformity is 

demonstrated further by Fig. 3, which shows the range of 

Cb and Cr values for Y = 16, 128 and 240. Notice that 

gray is barely visible, purple spans a narrow range, and 

magenta (hot pink) spans a large range.  

 

 

 

Figure 2. The Y (top), Cb (middle) and Cr (bottom) 

axes of the YCbCr color space, with other planes set to 

a neutral value.  

  

Figure 3. (Cb,Cr) planes of the YCbCr color space for 

Y = 16 (left), 128 (middle) and 240 (right) are not 

perceptually uniform.  

 

There are other color spaces available with perhaps 

greater claim to perceptual uniformity. Alas, all are flawed 

[2]. Rather than delving into the strengths and weaknesses 

of each, let us explore the challenges involved in 

developing a perceptually uniform color space.  

 

3. COLOR IS NOT EUCLIDEAN 

 

Human perception of color describes a space that is not 

Euclidean [2]. This non-uniformity is reflected in the 

ellipses used within papers to describe uniform threshold 

color differences within International Commission on 

Illumination (CIE) color spaces [3].  There are 

irregularities, which can be seen by paging online through 

the Atlas of the Munsell Color System from 1913 [4]. The 

Munsell color space has three dimensions with luma as 

one axis, saturation increasing as the distance from the 

central axis increases, and hue configured radially around 

the luma axis. Unlike the perfect cube of RGB or YCbCr, 

Munsell spans an irregular blob. 

Judd [5] identifies two problems with creating an ideal 

color space. First, twice as many hue differences as 

saturation differences can be accommodated in Euclidean 

space. For example, the color distance circumference of 

the Munsell color space appears to be 720˚ instead of 

360˚. Second, surrounding colors impact color perception. 

The tendency is to shift the perceived color toward the 

surrounding color’s complementary color.  

Consequently, Euclidean distance is a poor choice of 

statistic—as can be seen by the failures within objective 

video quality metrics, where Euclidean geometry is 

typically assumed. Another consequence is the multitude 

of color spaces found in literature, each flawed and to 

some degree arbitrary [2]. These color spaces were 

typically designed to meet the needs of one particular 

community, such as artists or manufacturers (e.g., to 

specify dye lot tolerances). Often, distances along one 

dimension cannot be meaningfully compared to distances 

along another dimension.  

Kuehni [3] identifies subjective datasets that 

characterize human perception of color differences and a 

variety of formulae to estimate color differences with 

some degree of accuracy. The problem from a video 

quality standpoint is that these models and the related 

research focus on small color differences (e.g., just 

noticeable differences, color matching, and color 

ordering). Within the color theory community, a “large” 

color difference is still nonetheless quite small from a 

video perspective—for example, spanning 5% to 20% of 

the distance between black and white.  

 

4. COLOR IN THOUGHT AND LANGUAGE 

 

Research summarized and simplified in Color Categories 

in Thought and Language [6] describes the work of 

linguists, visual psychologists, and anthropologists to 

understand human perception of color. This section 

provides a brief overview that is intended to bridge the 

gap between color differences that can be noticed and 

color differences that are judged important.
1
  

                                                 
1
 This section draws primarily upon articles by Bill 

Wooten, David Miller, Greville Corbett, Ian Davies, 

Kimberly Jameson, Roy D’Andrade and Robert Boynton. 



International studies of color terms across dozens of 

languages indicate two hypotheses: 

 There is a limited set of basic color terms. 

 There is a constrained order in which these colors 

appear in languages.  

Put another way, if a language has N basic color terms, we 

can predict what those colors will mean (e.g., as defined 

by a focal point and a set of color chips). Fig. 4 shows the 

initial proposal for basic color term entry into language. 

These eleven basic color terms were theorized to have a 

neurological basis.  

A language with two color terms will contain two 

composite colors:   

 White/warm: a composite of white, yellow & red 

 Black/cool: a composite of black, blue, & green 

The foci are not necessarily at black and white, as would 

be presumed from Fig. 4.  

 

𝑊ℎ𝑖𝑡𝑒
&

𝐵𝑙𝑎𝑐𝑘
→ 𝑅𝑒𝑑 → ⟨

𝐺𝑟𝑒𝑒𝑛

𝑌𝑒𝑙𝑙𝑜𝑤
⟩ → 𝐵𝑙𝑢𝑒 → 𝐵𝑟𝑜𝑤𝑛 → ⟨

𝑃𝑢𝑟𝑝𝑙𝑒
𝑃𝑖𝑛𝑘

𝑂𝑟𝑎𝑛𝑔𝑒
𝐺𝑟𝑎𝑦

⟩ 

Figure 4. Initial theory for the order that colors enter 

language. Where colors are listed vertically in 

brackets, the colors might enter a language in any 

order (e.g., green then yellow; or yellow then green).  

 

Later refinements indicate two processes at work. The 

first process divides composite color categories into the 

six primary basics: black, white, red, yellow, green and 

blue. The white/warm composite always splits first, 

yielding white and red/yellow. The black/cool composite 

might either split into (black and green/blue) or (green and 

blue/black). The second process derives secondary basics 

from fuzzy intersections of the primary basics (e.g., 

orange is a mix of red and yellow). The five secondary 

basics are gray, brown, purple, pink, and orange. Gray 

enters language at a greater variety of points, making it 

somewhat of a wild card.  

There is some evidence that new color terms enter 

language based on maximizing the added value of the new 

term—that is, the new color term’s focus is maximally 

distant from existing color terms. Highly saturated regions 

of the color space are more perceptually important and 

thus enter language earlier (e.g., red, yellow), while less 

distinctive areas enter later (e.g., blue, green).   

The four primary hues (red, yellow, green and blue) 

are elemental, in that they cannot be perceptually 

subdivided into more basic hues. This leads naturally to an 

understanding of hues as two opposing pair processes 

(red/green and blue/yellow) with an assumption of a four-

basic-hues model. This model is widely assumed in much 

of color vision literature (i.e., a three dimensional space 

with axes black/white, red/green and blue/yellow).  

From a psychological standpoint, the perceptual 

distance between red and blue is too large. A five-basic-

hues model is more balanced (red, green, yellow, blue, 

purple). The Munsell color space uses this five-basic-hues 

model, which puts red in opposition to blue-green. A 

study of opponent colors supports the five-basic-hues 

model over the four-basic-hues model. 

A different way of understanding the basic color 

terms is through a linked map. Naming tests of color chips 

can be used to identify areas where color chips are equally 

likely to be assigned to one of two different color terms 

(e.g., green and yellow). As an example, a linked map of 

red, green, brown and gray shows bridges between 

red/brown, brown/green, green/gray and brown/gray. Note 

that no bridge exists between red/gray. The linguistic path 

from red to green goes through brown—not gray, as is 

implied by the four-basic-hues model.  

A consequence for color perception in video is that 

we would expect a perceptually uniform color space to 

reflect the importance of basic color terms. The 

significance of magenta and insignificance of grey within 

Fig. 3 is troubling. 

 

5. EXPLORING COLOR IN ART 

 

The oldest and most mature field in which to study color 

is art. From an engineer’s perspective, this is also the most 

foreign. Art is taught visually and kinesthetically, and thus 

the knowledge can be less accessible.  

 

5.1. Color Palettes and Color Schemes  

 

Exploring Color [7] describes how artists use color. This 

section provides a brief overview. 

Artists use a six-basic-hues model called the color 

wheel (see Fig. 5). All six colors are given equal 

importance and placed equidistant in a circular 

configuration. The entire color wheel is modified to create 

different palettes by shifting all of the colors. The palette 

creates a cohesive group of compatible colors that are well 

matched in intensity, tinting strength, and opacity. The 

artist’s color wheel and palettes more closely match the 

linguistic model of color perception than does YCbCr 

(compare Figs. 3, 4 and 5).  

Notice that the color wheel does not contain neutral 

colors (white, black, and grey). In art, neutrals are 

considered achromatic or colorless. Neutrals are used to 

understand the value of a color (i.e., the luma component) 

and to modify colors. For example, the pastel palette in 

Fig. 3 is shifted toward white, while the Old Masters’ 

palette is shifted toward a warm brown by substituting 

Raw Sienna, Burnt Sienna and Payne’s Gray for yellow, 

red and blue respectively. 



A color scheme establishes a subset of the colors to 

be used. A color scheme unifies the artwork through 

harmony and contrast: 

 Monochromatic: one color has no discord 

 Analogous: two adjacent colors produces harmony 

(e.g., red and orange) 

 Complementary:  opposing colors are the most 

dynamic (e.g., yellow and purple)  

 Triad: a triangle of colors is bold and energetic (e.g., 

purple, orange and green)  

 Pure hue against a neutral color scheme: produces 

the most striking contrast (e.g., yellow against black) 

 
Figure 5. The entire color wheel (left) is shifted to 

create a pastel palette (right).  

 

Other techniques can be used to increase or decrease 

contrast:  

 Intensity contrast: varying the color saturation  

 Temperature contrast: warm colors appear to 

advance, while cool colors recede 

 Quantity contrast: the size and use frequency of a 

color impacts its perceived contrast (e.g., large areas 

have greater color impact; a color broken into many 

small areas creates energy and movement) 

 Gradation: gradual color changes reduce contrast 

and divert attention, while abrupt color changes 

increase contrast and draw attention 

Artists choose color to draw your attention toward some 

areas and away from others.  

 

5.2. Painting Lessons  

 

Painting What You Want To See [8] demonstrates a 

traditional progression of art lessons for watercolor and oil 

painting:  

1. Line drawings: contour drawings, outline shapes 

2. Value drawings: grayscale or color, showing local 

values (object color) without shadows 

3. Shadows  

4. Mixing different colors (e.g., skin tones, rich darks, 

shades of green)  

Fig. 6 shows example artworks that depict the first 

three elements separately. Children’s artwork captures line 

and sometimes value, but shadow is omitted. To 

understand how natural this omission is, look back at Figs. 

1-3 and 5. The highlights and shadows improve the figure 

artistry without detracting from the color representation.  

Conversely, the luma plane characterizes line, shadow 

and some parts of the value drawing—while omitting 

other parts of the value drawing. From an artistic 

perspective, the luma plane representation of an image 

overemphasizes shadows. Compare the luma plane in Fig. 

7 with the shadow and grayscale drawings in Fig. 6.  

 

    
Figure 6. From left to right, shows an example contour 

drawing, value artwork, shadow painting, and 

grayscale drawing (by the author).   
 

  
Figure 7. Look at the man’s skin tones and the sign’s 

backdrop. In color (left), the light yellow of the sign 

contrasts with the man’s skin tones. In the luma plane 

(right), the sunlit and shadowed areas match.  
 

Figs. 1-3 and 5 use darker colors to denote shadows. 

This darker colored shadow choice appears in The Calling 

of the Apostles by Domenico Ghirlandaio on the northern 

wall of the Sistine chapel.  

Reid [8] often uses color opposites to create shadows 

(e.g., create watercolor skin tones by mixing cadmium 

red, cerulean blue and cadmium yellow light). This 

technique can be seen in the far more famous paintings by 

Michelangelo Buonarotti on the ceiling of the Sistine 

chapel, such as The Creation of Adam. The aesthetic 

impact is more compelling, and thus probably a more 

accurate rendering of shadow perception.  

 

6. SHADOWS AND OPTICAL ILLUSIONS  

 

The lighting conditions we experience change in intensity, 

color temperature, and angle. Vary the light conditions, 

and an object’s shadows, hue, saturation, and lightness 

change. The human visual system mitigates the impacts of 

these changes to reveal the object’s color. From the 

perspective of linguistics and art, this color more 

accurately describes the object than does the range of 

luma values spanned by its shadows.  

Edward H. Adelson [9] describes how the human 

visual system compensates for illumination and other 

viewing conditions. Stated loosely, the visual system 
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Yellow Green 
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Purple Red 

Orange 

Yellow Green 

Blue 

Purple 



partially removes shadows to better characterize the object 

behind the shadows. While the Y plane of YCbCr reflects 

a single measurement of luma for the entire image using 

one white balance, the visual system makes multiple 

measurements. By analogy, the visual system uses several 

white balances at once and defines Y conditionally, 

depending upon the surroundings. This allows us to 

differentiate a light surface in dim light from a dark 

surface in bright light.   

Fig. 8 demonstrates the simultaneous contrast effect, 

by which surrounding colors influence lightness 

perception. The lightness or darkness of each square is 

judged within the local context of the neighboring square. 

Additionally, the human visual system tends to ignore 

gradual changes in light level, such as the soft edge of the 

shadow. This allows the human visual system to break the 

image down into meaningful components, here a 

checkerboard and cylinder
 
[9].
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These cognitive processes may partially explain the 

behavior of basic color terms seen in Section 5. Our visual 

system modifies colors in response to context and 

illumination. The broad range of colors spanned by each 

basic color term may reflect an understanding that the set 

of just noticeably different colors represent the same color 

impacted by different illumination.  

 
 

Figure 8. Same color illusion (left) and proof (right) by 

Edward H. Adelson.
2
 The light squares in shadow (B) 

have the same luma value as the dark squares in light 

(A). This visual illusion demonstrates how the visual 

system compensates for shadows.  

 

7. COLOR SPACES & SUBJECTIVE DISTANCES 

 

The subjective video quality test “NTIAcolor” was 

conducted according to ITU-T Rec. P.913. The stimuli 

were two colors displayed side-by-side as large rectangles 

on a computer screen. The background surround was mid-

level gray.
3
 Subjects were asked to rate the color 

difference on a discrete 5-level scale with labels 

imperceptible, subtle, mediocre, obvious and striking. The 

LCD monitor was color calibrated and the room lighting 
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http://web.mit.edu/persci/people/adelson/checkershadow

_illusion.html  
3
 Judd [5] recommends a surround that averages the luma 

of both samples, for decreased bias.  

was dim (≈20 lux). The test was conducted in a sound 

isolation booth at 3H viewing distance, as shown in Fig. 1 

top within [10].  

The test included two pools of subjects. Pool 1 

focused on comparisons among the eleven basic colors 

(see Section 5 in [10]) and color placed between these 

basic colors. Pool 2 focused on random color comparisons 

and comparisons between colors that ranged across one 

dimension (e.g., from white to purple). Pool 1 contains 

273 comparisons, and pool 2 contains 214 comparisons.  

Subjects were screened using the post screening 

method in Annex A.1 of ITU-T Rec. P.913, with a 

Pearson correlation threshold of 0.3. This eliminated two 

subjects from pool 1 and two subjects from pool 2. Pool 1 

contained two colorblind people, each of whom missed 

10+ color plates. These subjects were retained, as the 

subject screening threshold did not indicate any unusual 

behavior. After screening, pool 1 contained 29 subjects 

and pool 2 contained 11 subjects. These pools were 

combined without any scaling, which adds noise to this 

analysis. The four comparisons that appeared in both sets 

were treated as separate data points (e.g., white to black). 

Table 1 shows the Pearson correlation between color 

distance measured in the following two ways: 

 Subjectively, reported as mean opinion score (MOS) 

 Linear distance, measured using Euclidean distance 

Linear distance is measured for each plane separately and 

for all three planes. Column “All Planes” contains the 

square root of the sum of the squared distances from each 

plane, measured separately. One limitation of these 

statistics is that the dataset ignores frequency of different 

color combinations. Table 1 should be considered a 

preliminary analysis. 

 

Table 1. Pearson Correlation between Subjective Edge 

Distance MOS and Color Space Distance  

Color space Each Plane All Planes 

RGB R =0.41 G =0.48 B =0.35 0.44 

YCbCr Y =0.51 Cb=0.37 Cr=0.44 0.69 

XYZ X =0.50 Y =0.51 Z =0.36 0.64 

CIELAB L*=0.42 A*=0.33 B*=0.15 0.24 

 

Table 2 shows distance MOSs for most combinations 

of basic colors using the 29 subjects in pool 1. Table 3 

shows the same distances measured in the luma plane of 

YCbCr. Notice that some obvious differences in Table 2 

are negligible in Table 3. The nonlinearities of YCbCr can 

be seen by trying to add distances within Table 2. For 

example, white/gray (3.7) plus gray/black (3.6) is greater 

than white/black (6.3 versus 5.0). Tables 2 and 3 

demonstrate how poorly the luma plane represents the 

human visual system. 

 

http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html
http://web.mit.edu/persci/people/adelson/checkershadow_illusion.html


Table 2. Subjective Edge Distance
4
  

 Black Wh. Red Gr. Yel. Blue Gray 

Black  5.0 4.6 4.3 4.6 4.2 3.7 

White 5.0  4.6 4.5 4.1 4.3 3.6 

Red 4.6 4.6  4.3 4.1 4.3 4.2 

Green 4.3 4.5 4.3  3.9 3.9 3.6 

Yellow 4.6 4.1 4.1 3.9  4.1 4.1 

Blue 4.2 4.3 4.3 3.9 4.1  4.0 

Gray 3.7 3.6 4.2 3.6 4.1 4.0  

Brown 3.8 4.2 3.9 3.8 4.1 4.1 3.4 

Orange 4.5 4.2 3.7 4.0 3.4 4.4 4.0 

Purple 4.0 4.2 4.3 4.0 4.1 3.7 3.5 

 

Table 3. Objective Distance in Luma Plane of YCbCr  
 Black Wh. Red Gr. Yel. Blue Gray 

Black  219 65 118 194 25 112 

White 219  154 101 25 194 107 

Red 65 154  53 129 40 47 

Green 118 101 53  76 93 6 

Yellow 194 25 129 76  169 82 

Blue 25 194 40 93 169  87 

Gray 112 107 47 6 82 87  

Brown 63 156 2 55 131 38 49 

Orange 146 73 81 28 48 121 34 

Purple 71 148 6 47 123 46 41 

 

8. THE COLOR DISTANCE CHALLENGE 

 

Objective video quality models currently rely upon the 

YCbCr color space. Consequently, measurements of color 

difference differ from human visual system perceptions of 

color difference. Objective measurements ignore higher 

cognitive phenomena, such as the eleven basic color terms 

and the simultaneous contrast effect. Objective video 

quality model performance is unlikely to improve without 

at least partially addressing these problems.  

Objective video quality metrics do not necessarily 

need an optimized color space. The first need is for a 

distance measure for extremely large color differences. 

Errors on the order of a just noticeable difference will be 

subsumed by the error present in objective metrics and 

subjective scores. This solution has the advantage of 

simplicity: a look-up table would suffice, given sufficient 

subjective data. The accuracy of the distance measure 

could be demonstrated using a modified version of PSNR 

(e.g., calculated on color distance between pixels of the 

original and degraded frames). 

The second need is for an improved color edge 

detector. Ideally, such an edge detector would incorporate 

knowledge of the visual system from the multiple 

perspectives presented in this paper. My experience 

gained over two decades of analyzing subjectively rated 

video sequence indicates that people care more about 
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 Abbreviated column labels are white (Wh.), green (Gr.) 

and yellow (Yel.) 

large edges than small. At 3 × 3 pixels, the Sobel and 

Laplace filters overemphasize noise. Thus, the color edge 

detector should measure large edges (e.g., a 13 × 13 pixel 

spatial information filter [11]). 

The core challenge is that the solution will be more 

complex than a simple matrix manipulation of an existing 

color space. Any technique that is substantially more 

perceptually uniform than those seen in Tables 1 and 3 

will require subjective testing and a nonlinear mapping.  

The NTIAcolor subjective dataset provides a starting 

point for the development of a color distance metric or 

color edge detector. The MOS scores is available at 

http://www.its.bldrdoc.gov/resources/video-quality-

research/data.aspx. Due to the fast and simple task, 

crowdsourcing may be an excellent mechanism to 

improve upon this database. The NTIAcolor database 

could be used for subject screening.  
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