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ABSTRACT

We present ABC-MRT16—a new algorithm for objective
estimation of speech intelligibility following the Modified
Rhyme Test (MRT) paradigm. ABC-MRT16 is simple, ef-
fective and robust. When compared to subjective MRT data
from 367 diverse conditions that include coding, noise, frame
erasures, and much more, ABC-MRT16 (containing just one
optimized parameter) yields a very high Pearson correlation
(above 0.95) and a remarkably low RMS estimation error
(below 7% of full scale.) We attribute these successes to
concise modeling of core human processes in audition and
forced-choice word selection. On each trial, ABC-MRT16
gathers word selection evidence in the form of articulation in-
dex band correlations and then uses a simple attention model
to perform word selection using the best available evidence.
Attending to best evidence allows ABC-MRT16 to work
well for narrowband, wideband, superwideband, and fullband
speech and noise without any bandwidth detection algorithm
or side information.

Index Terms— ABC-MRT, ABC-MRT16, articulation
index, modified rhyme test, MRT, objective estimator, speech
intelligibility

1. INTRODUCTION

Many subjective testing techniques have been developed to
quantify speech intelligibility and they can provide meaning-
ful and consistent results for specific application areas. Tuto-
rials can be found many places, including [1]-[3].

Common attributes of these tests include carefully pre-
pared speech material presented to screened listeners in
highly controlled environments. Listeners then answer
content-based questions or repeat what was heard, and anal-
ysis of their responses drives speech intelligibility results.
One approach is rhyme testing, and a specific form called the
Modified Rhyme Test (MRT) [4] is standardized in [5]. The
MRT is based on 50 lists. Each list consists of six English
language keywords of the form consonant-vowel-consonant
and the six differ only in the initial or final consonant (e.g.,
“not,” “tot”, “got,” “pot,” “hot,” “lot”.) The listener’s task is
to select which of the six keywords was presented and the rate

of correct word identification produces a measure of speech
intelligibility. The US National Fire Protection Association
has specified the MRT for critical communications testing
and thus we have performed substantial amounts of MRT
work [6]-[9].

Subjective speech intelligibility test can be time-consuming
and costly and there is good motivation to use signal process-
ing algorithms to estimate speech intelligibility instead. Many
such efforts have been published over the years and examples
can be found in [1]-[3] and [10]-[12]. Work more specifically
aligned with the MRT includes [13] and [14].

A fundamental understanding of how different frequency
bands contribute to speech intelligibility dates to the work of
Harvey Fletcher in the 1920’s. Fletcher’s studies produced
the idea of articulation bands and the intelligibility estimator
called articulation index (AI) [15].

We built upon this fundamental and venerable work when
we developed the Articulation Band Correlation Modified
Rhyme Test (ABC-MRT) algorithm [16]. ABC-MRT is a
narrow band (NB) speech intelligibility estimator that emu-
lates the Modified Rhyme Test (MRT). It directly compares
temporal correlations across the 17 articulation index bands
[1], [15] that cover the NB (roughly 250 to 3850 Hz in this
case) spectrum. The maximum correlation drives the selec-
tion of one of six possible words in each of the 17 bands,
and the rate of successful word identification becomes the
measure of speech intelligibility, just as as in the MRT. This
very simple approach sufficiently emulated human MRT be-
havior for NB test material and we reported good agreement
between ABC-MRT output and MRT results across 139 NB
test conditions in [16]. Several organizations have leveraged
ABC-MRT for NB measurement work and we used it heavily
to great advantage in [9]. In addition, ABC-MRT provided
the basis for a Japanese language intelligibility estimator [17].

We also cited extension to wideband (WB) signals (ap-
proximately 50-7000 Hz) as a future priority, pending access
to WB MRT data [16]. WB speech communication systems
are becoming more common and superwideband (SWB) and
fullband (FB) speech systems (with nominal bandwidths 50-
16,000 Hz and 20-20,000 Hz, respectively) are emerging.

We have now completed WB, SWB, and FB MRTs and
have used the data (properly partitioned) to develop and eval-
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uate a new speech intelligibility estimation algorithm called
ABC-MRT16. This algorithm is much more than a simple
bandwidth extension of ABC-MRT. ABC-MRT16 employs
a very effective yet concise model of core human processes
in audition and forced-choice word selection. On each trial,
ABC-MRT16 gathers word selection evidence in the form
of articulation index band correlations and then uses a sim-
ple attention model to perform word selection using the best
available evidence. The word selection success rate provides
the basis for speech intelligibility estimation. Attending to
best evidence allows ABC-MRT16 to work well for NB, WB,
SWB, and FB speech and noise without any bandwidth detec-
tion algorithm or bandwidth side information.

In the following sections we describe the algorithm in de-
tail, characterize its outstanding performance on 367 diverse
conditions, and provide additional insights into its successes.

2. ABC-MRT16 ALGORITHM DESCRIPTION

ABC-MRT16 is a signal processing algorithm that can pro-
cess NB, WB, SWB, or FB speech and noise signals. It emu-
lates the MRT in order to provide estimates of MRT speech in-
telligibility. The algorithm uses articulation index band tem-
poral correlations following the insights found in [18]. AI
band based time-frequency (T-F) patterns are key to the func-
tioning of the algorithm. The T-F pattern of an impaired
speech signal is correlated with corresponding patterns of six
unimpaired word options. ABC-MRT16 departs dramatically
from ABC-MRT because it then uses a model for attention
that allows it to compare the best evidence for each of the six
word options.

2.1. AI band correlations

The T-F patterns used in ABC-MRT16 are computed as fol-
lows. Time-domain samples xt (fs = 48 kHz) are Hann win-
dowed in blocks of 512 samples (10.7 ms) with 75% overlap.
After DFT, coefficients are converted to power and Stevens’
Law [19] is used to produce a simple and robust first-order ap-
proximation of loudness (exponent 0.3). Each block produces
a column in the matrix X̂ . Thus the entries of X̂are

x̂i,k =

∣∣∣∣∣ 1√
N

N∑
t=1

wtx(k−1)B+t e
−j2π(i−1)(t−1)

N

∣∣∣∣∣
(2×0.3)

,

wt = sin2

(
π(t− 1)

N − 1

)
,

N = 512, B = 128, i = 1 to 215, k = 1 to Nx , (1)

where Nx is the number of blocks available in xt. X̂is then
normalized to produce X̃where each row (each time-history
at fixed frequency) has zero-mean and unit norm:

x̃i,k =
x̂i,k − x̂i,·√∑Nx
k=1 (x̂i,k − x̂i,·)2

, x̂i,· =
1

Nx

Nx∑
k=1

x̂i,k . (2)

The resulting matrix X̃containsNx columns, each associated
with a time increment of 2.7 ms and M = 215 rows covering
0 to 20,063 Hz with a resolution of 93.75 Hz. A key com-
ponent of ABC-MRT16 is the set of precomputed X̃patterns,
one for each of the 1200 original undistorted keyword real-
izations (50 lists × 6 words × 4 talkers).

To apply ABC-MRT16 to a system-under-test (SUT) or
condition, we pass input recordings through the SUT to pro-
duce output recordings. ABC-MRT16 then transforms an out-
put recording to a T-F pattern Ŷ using (1). Ŷ does not require
the normalization given in (2) until a later step. The next step
is to evaluate Ŷ with respect to each of the six keyword T-F
patterns X̃ .

Let X̃be a matrix containing an original keyword T-F pat-
tern and Ŷ be a matrix containing a T-F pattern obtained from
an SUT output (containing at least a keyword). X̃is M by
Nx and Ŷ is M by Ny , with Nx ≤ Ny . First we must lo-
cate the keyword within Ŷ . We assume that the SUT delay is
approximately constant for the duration of the keyword. We
use articulation bands 3 and 4 (rows 7-9, 505-795 Hz) to lo-
cate the keyword. These bands contain greater average speech
power than other bands, so with no further assumptions about
the noise and distortion produced by the SUT, these bands are
most likely to be useful for locating the keyword. Let ŷi(t)
be a column vector of Nx samples from the ith row of Ŷ :

ŷi(t) = [ŷi,t+1, ŷi,t+2, . . . , ŷi,t+Nx ]T ,

i = 7 to 9, t = 0 to Ny −Nx. (3)

We normalize ŷi(t) to ỹi(t) using the process specified in
(2). Let x̃i be the column vector that contains the ith row of
X̃and find the lag t cross-correlation at frequency i:

ρ2i (t) = ỹi(t)
T x̃i,

i = 7 to 9, t = 0 to Ny −Nx. (4)

The maximizing time shift t∗ is the shift that best matches the
contents of Ŷ with the keyword in X̃:

t∗ = arg max
t

(
9∑
i=7

ρ2i (t)

)
. (5)

Once maximizing time shift t∗ has been determined we
use it to calculate correlations for the remaining frequencies.
We use (3) to extract ŷi(t

∗) from Ŷ , then normalize ŷi(t
∗)

to ỹi(t
∗) using (2), and cross-correlate each of these vec-

tors with the corresponding row of X̃using (4), resulting in
ρ2i (t

∗). Finally we accumulate correlation results across AI
bands and eliminate any negative results:

r2j = max

∑
i∈Bj

ρ2i (t
∗), 0

 , j = 1 to 21. (6)

Bj is the set of frequency indices that comprise the jth AI
band j = 1 to 20 as given in [1]. Note that B20 ends at 7 kHz
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as that was the upper frequency originally considered signifi-
cant for speech intelligibility. Ignoring spectrum above 7 kHz
means ignoring the additional speech intelligibility contribu-
tions of SWB and FB, however small. Thus we combine all
remaining (up to 20 kHz) frequency samples (i = 77 to 215)
into a single “super AI band” B21 for completeness. Table 2
shows the modest contribution of this band in the intelligibil-
ity estimation context.

Due to normalizations, (6) is equivalent to a single cross-
correlation for each AI band. Thus we have calculated 21 AI
band correlations (r2j ) for each candidate keyword.

2.2. Attention, decisions, success rate, and intelligibility

ABC-MRT16 proceeds to emulate an intuitive hypotheses for
the human execution of a forced-choice MRT trial. A listener
hears a stimulus and forms an auditory precept. The listener
must compare that precept with six possible explanations for
the formation of that precept (the six keywords that may have
been uttered) and select one. The listener is innately com-
pelled to attend to the most convincing evidence available for
making the selection and will safely ignore the least convinc-
ing evidence. In other words, attention is drawn to the AI
bands that best support the decision making task.

The culmination of 2.1 is that (6) produces 21 AI band
correlations (r2j ) for each candidate keyword. We must now
introduce the keyword argument κ = 1 to 6, and (6) now
produces r2j (κ), j = 1 to 21, κ = 1 to 6. For each keyword
we next sort the 21 correlation values in descending order:{

r̃2s(κ)
}21
s=1

= sort
({
r2j (κ)

}21
j=1

)
, resulting in :

r̃21(κ) ≥ r̃22(κ) ≥ . . . ≥ r̃221(κ), κ = 1 to 6. (7)

For each keyword (7) organizes the AI band evidence from
most convincing (highest correlation) to least convincing
(lowest correlation). Next we compete the first s0 pieces of
evidence (s0 is a fixed value):

κ∗s = arg max
κ

r̃2s(κ), s = 1 to s0. (8)

Eqn. (8) compares the best evidence for each of the six words
to produce κ∗1. It then compares the second best evidence for
each of the six words to produce κ∗2, continuing on through
κ∗s0 . Thus (unlike in ABC-MRT) these comparisons are not
aligned by AI bands, rather they are driven by attention.

Once these s0 selections have been made, they are com-
pared with the correct word for the trial (κ0) using the indi-
cator function δ and the outcomes are averaged to produce a
success rate c:

c =
1

s0

s0∑
s=1

δ(κ∗s − κ0), δ(0) = 1, δ(x) = 0 for x 6= 0. (9)

An MRT listener produces either success or failure on each
MRT trial, but different listeners may produce different out-
comes on identical trials. ABC-MRT16 is deterministic and

thus will produce identical outcomes for identical inputs. In
order to properly represent a population of listeners, ABC-
MRT16 produces an estimated success rate for each trial.
This disrupts the parallelism between a single listener and the
algorithm, but it is necessary in order to acknowledge listener
variation.

The success rate c can then be averaged across all avail-
able trials for a given condition or SUT to produce c̄. Fol-
lowing the MRT procedure, we then correct for guessing us-
ing the affine transformation that maps 1

6 (the success rate for
guessing) to 0 and 1 (perfect keyword identification) to 1, thus
converting estimated success rate to estimated MRT intelligi-
bility, c′:

c′ =
6

5

(
c̄− 1

6

)
. (10)

It is possible that the amount of evidence used to arrive
at a decision (represented by s0) will vary depending on the
listener and the level of difficulty posed by a given MRT trial.
But the goal of ABC-MRT16 is to produce per-condition re-
sults for an ensemble of listeners and trials. Thus we have se-
lected a single value, s0 = 16 AI bands, that best represents
the aggregate behavior seen in MRT results. Note that this is
the only optimized parameter in the ABC-MRT16 algorithm.

3. EVALUATION AND DISCUSSION

Our development and evaluation work is driven by MRT test
results. We previously developed ABC-MRT using 28 condi-
tions and evaluated its behavior across 139 conditions taken
from 4 different tests. These 139 NB conditions are summa-
rized in [16] and further details are given in [6]-[8]. This test-
ing supported the land-mobile radio (LMR) communications
needs of public safety officials, especially firefighters. MRT
input recordings were mixed with high-level background
noise recordings (e.g., alarms, saws, pumps, crowds), then
passed through protective masks and various components of
existing and emerging digital and analog LMR systems.

We developed ABC-MRT16 using that same data, aug-
mented with 168 additional conditions described in [9] for a
total of 307 conditions. These new conditions include a total
of 28 different NB, WB, and FB codec modes operating at bi-
trates from 4.4 to 48 kbps in six different noise environments.
This development process included experimentation with dif-
ferent treatments of frequencies above 7 kHz, different ways
to model attention and estimate success rate, and optimization
of only one parameter, s0.

Even though there is only one optimized parameter in
ABC-MRT16, we insist on evaluation with unseen data to
prevent over-fitting and falsely optimistic results. Thus the re-
sults reported here also include 60 additional conditions pro-
duced by a total of five WB and SWB codec modes (12.65
and 13.2 kbps), operating in three noise environments, with
frame erasure rates of 0, 5, 10 and 20%. Note that frame
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erasures can impair intelligibility in a temporally localized
fashion and as such they present a radically different unseen
impairment for ABC-MRT16. These 60 unseen and highly
unique conditions make up 16% of the 367 conditions used
to evaluate ABC-MRT16 here. They were scored by crowd-
sourced MRT (CMRT) using 1200 trials per condition and
524 listeners. We have recently demonstrated that our CMRT
protocol produces results that very closely align with labora-
tory MRT (LMRT) results [20]. Further our CMRT results are
more repeatable than LMRT results [20]. We have no reason
to consider CMRT data to be inferior to LMRT data.

The final output of ABC-MRT16 is the estimated success
rate corrected for guessing c′, given in (10). We measure
the performance of ABC-MRT16 by comparing per-condition
values of c′ with per-condition subjective MRT scores φ. Re-
sults for ABC-MRT and ABC-MRT16 are provided in Table
1. The Pearson correlation coefficient is a normalized mea-
sure of the covariance between c′ and φ that ranges from −1
to 1. It reports how well the relative scoring of ABC-MRT16
and MRT agree. RMSE is an absolute measure of agreement
that has the same units as the MRT scores φ.

ABC-MRT ABC-MRT16
ρ RMSE ρ RMSE

139 NB Cond. [16] 0.955 0.073 0.9710 0.061
367 Conditions 0.874 0.124 0.954 0.066

Table 1. Agreement with MRT for ABC-MRT and ABC-
MRT16. 367 conditions include NB, WB, SWB, and FB.

ABC-MRT16 offers extremely high correlation and low
estimation error, especially in light of the diversity of condi-
tions represented. Fig. 1 provides a visual representation of
these results. The estimation error magnitude is less that 0.05
for 57% of the conditions, less than 0.10 for 87% of the con-
ditions, less than 0.15 for 98% of the conditions, and in every
case less than 0.18.

Objective-to-subjective RMSE is usually further mini-
mized through a first or second order polynomial mapping
of objective estimates. In the case of ABC-MRT16 the first
order least-squares fit between c′ and φ is nearly null:

φ ≈ φ̂ = αc′ + β, with α = 0.977, and β = 0.031. (11)

Table 2 shows that this fit produces almost no reduction of
RMSE. These results affirm that ABC-MRT16 is captur-
ing the desired behavior from simple first principles and no
ad-hoc corrections are necessary. Thus the output of ABC-
MRT16 is c′, not φ̂. This table also shows the small advantage
provided by band 21 and the large advantage provided by the
attention model. Comparing the final two lines shows that
without attention, adding band 21 is actually harmful.

Table 1 also shows ABC-MRT (17 AI bands and no at-
tention model) performance for the 367 conditions. The final
row of Table 2 gives performance for 20 AI bands and no at-
tention model on those same 367 conditions. Comparing the
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Fig. 1. ABC-MRT16 compared with MRT on 367 conditions
(NB, WB, SWB, and FB).

two reveals that including AI bands 18, 19, and 20 without
the attention model nearly doubles RMSE (0.124 to 0.226).
But including those three bands and the attention model cuts
RMSE nearly in half (0.124 to 0.068). These results clearly
affirm the importance of attending to the most compelling ev-
idence.

Variant ρ RMSE
ABC-MRT16 0.954 0.066
With fit in (11) 0.954 0.065

Without band 21 0.953 0.068
Without attention 0.889 0.241

Without band 21 and without attention 0.889 0.226

Table 2. Agreement with MRT. ABC-MRT16 and four vari-
ants across 367 conditions (NB, WB, SWB, and FB).

4. CONCLUSIONS

We suggested an intuitive hypotheses for the human execution
of an MRT trial. We cannot unravel the inner workings of the
human mind to directly prove or disprove this hypothesis, but
we can conclude that the simple attention model that follows
from this hypothesis is critical to the remarkable success of
ABC-MRT16 across many different types of conditions and
bandwidths. In that sense the hypothesis (or at least our math-
ematical model for it) is consistent with observed data. Be-
cause of this, ABC-MRT16 works for all four standard speech
bandwidths without any explicit bandwidth switching, just as
human listeners do. ABC-MRT16 tools and MRT databases
are available at www.its.bldrdoc.gov/audio.
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