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ABSTRACT

The lossless compression algorithm specified in ITU-T Recommen-
dation G.711.0 provides bit-exact G.711 speech coding at reduced
bit-rates. We introduce two Look-Up Coders (LUCs) that also offer
bit-exact G.711 speech coding at reduced rates but the LUCs do not
use arithmetic operations and hence eliminate the need for a proces-
sor. Instead they read in eight G.711 symbols, reinterpret those 64
bits to form eight new symbols that carry temporal information, then
look up Huffman codes for those new symbols. When compared
to G.711.0, LUC rates are 9% to 40% higher and they require 2 to 8
kB additional ROM, but LUCs eliminate about one million weighted
arithmetic operations per second. LUCs reduce the 8 b/smpl G.711
rate to 3.8 to 6.7 b/smpl, depending on speech and noise levels.

Index Terms— G.711, G.711.0, lossless compression, PCM,
speech coding

1. INTRODUCTION

G.711 is the ubiquitous international toll-quality speech coding stan-
dard first established in 1972 [1]. It uses logarithmic quantization
to achieve a signal-to-quantization noise ratio (SQR) that is largely
independent of speech signal level. Due to masking effects in the
human auditory system, this reduces the perceptibility of the quanti-
zation noise (compared to uniform quantization). Thus G.711 speech
coding can be viewed as an early, simple, yet effective form of per-
ceptual speech coding. Jayant and Noll [2] attribute logarithmic
quantization to Holzwarth [3] and report that logarithmic quantiza-
tion with 8 b/smpl (e.g., G.711 speech coding) provides about the
same speech SQR as uniform quantization with 12 b/smpl. G.711
operates on speech sampled at 8000 smpl/s and converts each sam-
ple to an eight-bit symbol. The result is a bit-rate of 64 kb/s.

While G.711 is more efficient than uniform quantization (in the
rate vs. quality sense), it is not particularly efficient compared to
newer speech coders that offer slightly lower quality at rates well be-
low 64 kb/s. This is because G.711 does not exploit temporal corre-
lations found in speech signals, and thus it transmits information that
is redundant. In 2009 an additional layer of encoding and decoding
was specified in G.711.0 [4], [5]. This layer losslessly compresses
the G.711 output, allowing bit-exact G.711 operation at reduced bit-
rates. The G.711.0 encoder selects one of 12 different tools for each
frame of speech [4]–[9].

These tools include two different forms of linear prediction and
numerous tools targeted at low-level and/or sparse speech segments.
Five frame sizes of 5, 10, 20, 30, or 40 ms are allowed. There is no
look-ahead, so algorithmic delay is the same as frame size. On av-
erage, G.711.0 requires one million weighted arithmetic operations
per second to encode and decode a single G.711 stream, just meeting
the objective set out in the G.711.0 development process [5].

But significant bit-rate reduction can also be achieved without
any arithmetic operations. Instead we can use look-up tables (LUTs)
that exploit temporal correlations. In Section 2 we describe two
Look-Up Coders (LUCs) that read in eight G.711 symbols, reinter-
pret those 64 bits to form eight new symbols that carry temporal in-
formation, then look-up Huffman codes for those symbols. Section 3
shows that this very simple procedure is also very effective—LUCs
reduce the 8 b/smpl G.711 rate to 3.8 to 6.7 b/smpl in evaluations that
cover different speech levels, background noise levels, transmission
filters, and languages.

2. LOOK-UP CODERS

Both the A and µ-law symbols generated by G.711 form sign-
magnitude representations for the (amplitude-compressed) speech
samples. LUCs can be applied directly to the symbols produced by
G.711. But for clarity of presentation it is desired that the magnitude
portion of the symbol increase monotonically with the magnitude
of the speech sample. This can be accomplished by inverting mag-
nitude bits 1, 3, 5, and 7 of A-law symbols and all magnitude bits
of µ-law symbols. This bit inversion is assumed in the following
presentation.

2.1. Look-Up Coder 1 (LUC1)

The key to the LUCs is entropy-coding of symbols that carry tempo-
ral information. Toward that end LUC1 uses a speech coding frame
of N = 8 symbols. This value of N is a compromise. Increasing N
will slightly decrease bit-rate but will also cause exponential growth
in LUT sizes. LUC1 uses no look-ahead, so the total algorithmic
delay is 1 ms.

Once eight symbols are available, LUC1 simply reinterprets
those 64 bits to form eight new symbols that carry temporal infor-
mation. This reinterpretation step is most easily described graphi-
cally. Figure 1 shows eight G.711 symbols as columns in a time-bit
plane and how these 64 bits are reinterpreted as eight new symbols
{sl}7l=0.

We arrived at this partition of the time-bit plane by evaluating the
entropy of numerous different partitions, seeking to minimize total
entropy, under the constraint of no more than eight bits per symbol
(in order to keep LUT sizes modest). Each symbol is formed from
eight bits, but the 28 possible symbol values are not equally likely,
thus leading to lowered entropy, as reported in Table 1.

For example, s0 encodes the time history of 8 sign bits. The
temporally correlated nature of speech (specifically the low-pass na-
ture) causes sign-bit patterns with fewer transitions to be much more
likely than those with more transitions. Using our training database
(see Section 3), the two sign-bit patterns with no transitions (all zeros
and all ones) accounted for 26% of the probability mass and the 14
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Fig. 1. LUC1 forms eight new symbols from eight G.711 symbols.
LUC2 uses these same symbols when in Mode 0.

Symbol Entropy (b/symbol)
A-law µ-law

s0 6.2 5.9
s1 3.3 3.4
s2 3.3 3.4
s3 5.8 6.3
s4 5.8 6.3
s5 6.6 6.8
s6 6.9 7.2
s7 7.2 7.5

Table 1. Entropy for symbols defined in Figure 1 calculated using
the training database. Totals are 45.1 or 46.8 bits per 8 symbols for
A- and µ-laws respectively. This is 5.6 or 5.9 bits per speech sample.
Uncompressed G.711 requires 8.0 b/smpl.

patterns with exactly one transition accounted for 37% of the prob-
ability mass. Thus 63% of the probability mass is attributed to only
6% ((2 + 14)/28) of the values of s0.

In general, patterns with greater numbers of transitions are less
likely, and this is a direct consequence of the fact that, on average,
speech exhibits a low-pass nature. This trend is stronger for the
more-significant magnitude bits and weaker for the less-significant
magnitude bits. In addition, the more-significant magnitude bits be-
come inactive when the speech level is low. So for those bits, the
symbol associated with the all-zeros time history becomes even more
likely. Together, these two factors drive the entropy patterns shown
in Table 1.

Symbols s5, s6, and s7 also encode time-histories of eight bits.
Symbols s1 through s4 are different. In this region of the time-bit
plane, entropy can be reduced by increasing the amplitude resolution
to two bits, even though this requires reducing the time-history to
four bits.

The histogram of each symbol leads to a Huffman code that al-
lows the transmission of that symbol at a rate slightly above its en-
tropy [10]. Symbols s1 and s2 have the same Huffman code (as do
s3 and s4). Thus LUC1 requires six distinct Huffman codes, each
containing 256 codewords. The Huffman codes are fixed, so the
Huffman coding step can be implemented by treating each symbol
{sl}7l=0 as an eight-bit pointer into an LUT. The LUT returns a vari-
able length codeword and these are concatenated to form the LUC1

output. Because Huffman codewords vary in length, the length of
each codeword must also be stored so that the correct number of bits
can be concatenated. All ROM sizes reported in this paper include
tables of codewords and tables of codeword lengths.

Here is a formal description of this coding process. Consider
eight G.711 symbols (covering 1 ms) and let bi(j) ∈ {0, 1} with
0 ≤ i, j ≤ 7 represent the value of the ith bit at the jth sample
time (b7(j) is the value of the sign bit and b0(j) is value of the least-
significant magnitude bit). Now define f(x) to be the function that
maps a length-eight vector to an integer, s = f(x) ∈ [0, 255]:

s = f(x) =

7∑
i=0

xi2
i. (1)

Let Hk(s), 0 ≤ k ≤ 5 be the function that represents the kth

Huffman code. This function is defined for integers s ∈ [0, 255] and
it returns a codeword which is a string of M bits, 1 ≤ M . Then
LUC1 maps eight G.711 symbols to the following eight Huffman
codewords, extracted from six distinct Huffman codes:

H0( f( [b7(0), b7(1), b7(2), b7(3), b7(4), b7(5), b7(6), b7(7)] )),

H1( f( [b6(0), b6(1), b6(2), b6(3), b5(0), b5(1), b5(2), b5(3)] )),

H1( f( [b6(4), b6(5), b6(6), b6(7), b5(4), b5(5), b5(6), b5(7)] )),

H2( f( [b4(0), b4(1), b4(2), b4(3), b3(0), b3(1), b3(2), b3(3)] )),

H2( f( [b4(4), b4(5), b4(6), b4(7), b3(4), b3(5), b3(6), b3(7)] )),

H3( f( [b2(0), b2(1), b2(2), b2(3), b2(4), b2(5), b2(6), b2(7)] )),

H4( f( [b1(0), b1(1), b1(2), b1(3), b1(4), b1(5), b1(6), b1(7)] )),

H5( f( [b0(0), b0(1), b0(2), b0(3), b0(4), b0(5), b0(6), b0(7)] )).

(2)

The eight codewords are then concatenated and transmitted or stored
in octets or otherwise, as appropriate for the application.

Decoding exactly inverts this encoding. Incoming bits are com-
pared with the stored Huffman codewords in the appropriate Huff-
man code to identify a match. This can be accomplished using just
look-ups. The location of the match is interpreted as an eight-bit
symbol value. When values for all eight symbols have been deter-
mined, then 64 bits are available and the original G.711 symbols can
be found by reinterpreting those 64 bits as shown in Figure 1.

2.2. Look-Up Coder 2 (LUC2)

LUC2 is a simple extension of LUC1. LUC2 codes N = 8 symbols
at a time, but it can select a different coding mode every 5 ms. Thus
we consider the LUC2 speech coding frame size and algorithmic
delay to be 5 ms.

Once 5 ms of G.711 symbols (40 symbols) are available, the log-
ical OR operation is applied to the most-significant magnitude bits
of those 40 symbols (b6(0), b6(1), ..., b6(39)). If the result is logical
0, then the OR operation is applied to the next most-significant mag-
nitude bits (b5(0), b5(1), ..., b5(39)). This process continues until
either the result is logical 1 or the least-significant magnitude bits
have been tested. Through this process LUC2 identifies the highest
active bit bA. Formally, bA is the largest value of i for which at least
one of the 40 magnitude bits (bi(0), bi(1), ..., bi(39)) has the logi-
cal value 1. If none of the magnitude bits has logical value 1, then
bA = −1.
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LUC2 compares bA to two thresholds to select one of three cod-
ing modes:

bA = 6,⇒ Mode 0,

3 ≤ bA ≤ 5,⇒ Mode 1, (3)
bA ≤ 2,⇒ Mode 2.

This process forms a very simple but effective speech classifier –
Modes 0, 1, and 2 correspond to high, medium, and low-level speech
segments respectively. This classification allows LUC2 to use Huff-
man codes optimized for each of these three classes, thus further re-
ducing bit-rate, at the cost of some additional LUTs. The thresholds
in (3) were selected to minimize total symbol entropy.

In Mode 0, LUC2 uses the same symbols as LUC1 (see Figure
1). The symbols used in Modes 1 and 2 are defined in Figures 2 and
3 respectively. In Modes 1 and 2 it is known a priori that some of
the higher order bits are all zeros, and thus they do not require any
coding.
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Fig. 2. Symbols used when LUC2 is in Mode 1.
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Fig. 3. Symbols used when LUC2 is in Mode 2.

LUC2 also employs a rate-cap feature. If the selected coding
mode produces more than 320 bits for the 5 ms frame (8 bits per
speech sample), then the original G.711 symbols are sent. This is
called Mode 3. LUC2 requires two bits of side information per 5
ms to inform the decoder of the mode. Using our training database,

Modes 0, 1, 2, and 3 were selected for 30%, 40%, 29%, and 1% of
the 5 ms frames respectively (A-law) or 31%, 43%, 25%, and 1% of
the frames respectively (µ-law).

In higher-level speech segments the less-significant magni-
tude bits do not contain significant temporal structure at the 1 ms
timescale; the symbols based on these bits have entropies that are
close to 8 bits. Thus in Mode 0, LUC2 sends s5 - s7 directly and uses
Huffman coding for the other symbols. But in lower-level speech
segments those same bits do contain significant temporal structure.
Thus in Mode 1, s5 and s6 are sent directly and the other symbols
are Huffman coded. In Mode 2 all symbols are Huffman coded.

3. EVALUATION

We designed LUC1 and LUC2 through analysis of a training
database. This database holds 48 minutes of North American
English speech and includes a mixture of different signal levels,
signal-to-noise ratios, noise types, and transmission filters.

We used ten testing databases to evaluate LUC1 and LUC2 and
there is no overlap between the training and testing databases. The
testing databases contain a total of 71 minutes of speech, and various
combinations of language, signal levels, signal-to-noise ratios, and
transmission filters, as summarized in Table 2. Six noise types are
included (bus, car, coffee shop, office, party, street) and a total of 13
female and 13 male speakers are represented. The speech activity
factor ranges from 0.49 to 1.00, with a mean value of 0.75. This is
higher than the value 0.45 used in the G.711.0 evaluations presented
in [5], and this leads to higher bit-rates. Filtering and measurements
were done with tools provided in [11].

Language Filter Level SNR Minutes
North American English BP -26 dB 10 dB 10
North American English BP -26 dB 20 dB 10
North American English BP -16 dB NA 10

Portuguese IRS -26 dB NA 3
North American English IRS -26 dB NA 10

Italian IRS -26 dB NA 2
North American English BP -26 dB NA 10

German IRS -26 dB NA 3
Japanese IRS -26 dB NA 3

North American English BP -36 dB NA 10

Table 2. Summary of testing databases. “BP” indicates a 200 to
3400 Hz bandpass filter, levels are active speech levels relative to
overload, and “NA” indicates no added background noise.

Figure 4 shows the average bit-rate achieved for each of the ten
testing databases (with A and µ-law) vs. millions of weighted (arith-
metic) operations per second (WMOPS) [11] required for encoding
and decoding. For reference, uncompressed G.711 has a bit-rate of
8 b/smpl. The figure provides a visual indication of how bit-rate
can be traded-off against operations. The efficient frontier for all 20
cases in this bit-rate vs. operations plane is formed by (left to right)
LUC2, then G.711.0 using 5, 10, 30, and 40 ms frames. G.711.0
with 20 ms frames is not on the efficient frontier because both its
rate and operations count exceed those of the 40 ms mode. The fig-
ure shows wide rate variations between the databases. The database
order (top-to-bottom) in Table 2 matches the LUC2 A-law rate order
(top-to-bottom) in Figure 4. Databases with low signal and no noise
can be coded at lower rates, but those with higher signal and/or noise
levels require higher rates. This is true for both LUCs and G.711.0.
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Fig. 4. Average bit-rate for ten databases using A-law (black tri-
angles) and µ-law (blue circles) vs. WMOPS. Data points are (left
to right) LUC2, then G.711.0 using 5, 10, 30, 40, and 20 ms frame
sizes. Uncompressed G.711 rate is 8 b/smpl.

Figure 5 emphasizes this point by showing LUC2 rates as a
function of G.711.0 rates for each database and coding law (A / µ).
G.711.0 frame sizes of 5 and 40 ms are used because they represent
the highest and lowest average bit-rates for G.711.0. The increase
in average bit-rate due to using LUC2 instead of G.711.0 is always
between 0.2 and 1.3 bits per sample.

Tables 3 and 4 provide a summary for seven different G.711
lossless compression options using averages calculated across all the
speech in the testing databases. G.711.0 uses 5 kB of RAM and 3.6
kB of program memory in addition to the 5.7 kB of ROM listed in
the tables [5]. Finally, Table 5 compares both LUCs with G.711.0 at
5 ms (lowest WMOPS) and at 40 ms (lowest bit-rate.) LUCs elim-
inate one million or more weighted arithmetic operations each sec-
ond. The cost is 2 or 8 kB of ROM, and a bit-rate increase that ranges
from 9% to 40%.

Maximum bit-rate is also a consideration. For G.711.0 using the
5 ms frame size the maximum bit-rate is 8.2 b/smpl. When measured
over a 5 ms window, the LUC1 bit-rate is less than 8 b/smpl 95% of
the time, less than 8.5 b/smpl 99% of the time, and the absolute
maximum observed was 10.1 b/smpl. LUC2 includes the rate-cap
feature and thus has a maximum rate (5 ms window) of 8.05 b/smpl.

In packetized speech communication the choice of packet size
involves trade-offs. Shorter packets decrease packetization delay,
but increase packet header overhead. Multiple speech coding frames
can always be combined into a single packet. This means that LUC1
allows any packet size that is a multiple of 1 ms. With LUC2 and
G.711.0, packet size can be any multiple of 5 ms. By design, both
G.711.0 and LUCs are stateless—a frame can be decoded without
reference to any previous frame. This property minimizes the effects
of channel losses.

We realize that processors are powerful, inexpensive, and
widespread; eliminating one million weighted arithmetic operations
per second may not seem important in many G.711 applications.
Yet the simplicity and effectiveness of the LUC approach are note-
worthy. LUCs can be implemented with a modest amount of simple
hardware and thus they offer the opportunity to losslessly reduce
G.711 bit-rate in environments without processors.
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Fig. 5. LUC2 average bit-rate for each database and coding law
(A / µ) vs. G.711.0 average bit-rate for 5 ms frames (asterisks)
and 40 ms frames (squares). Lines show that LUC2 excess rate is
bounded by 0.2 and 1.3 b/smpl.

Coder Frame ROM WMOPS Average Rate
Size (enc.+dec.) (b/smpl)
(ms) (bytes) enc. dec.

G.711.0 5 5721 0.61 0.37 4.63
G.711.0 10 5721 0.68 0.38 4.32
G.711.0 20 5721 0.80 0.43 4.11
G.711.0 30 5721 0.74 0.42 4.06
G.711.0 40 5721 0.76 0.43 4.03
LUC1 1 7680 0.00 0.00 5.63
LUC2 5 13,824 0.00 0.00 5.12

Table 3. Lossless G.711 compression summary for A-law.

Coder Frame ROM WMOPS Average Rate
Size (enc.+dec.) (b/smpl)
(ms) (bytes) enc. dec.

G.711.0 5 5721 0.64 0.38 4.90
G.711.0 10 5721 0.72 0.40 4.61
G.711.0 20 5721 0.84 0.45 4.42
G.711.0 30 5721 0.78 0.44 4.38
G.711.0 40 5721 0.79 0.45 4.35
LUC1 1 7680 0.00 0.00 5.86
LUC2 5 13,824 0.00 0.00 5.36

Table 4. Lossless G.711 compression summary for µ-law.

Comparison WMOPS ROM Rate
Decrease Increase Increase

(bytes) (b/smpl)
LUC1 cf. G.711.0 at 5 ms 1.0 1959 1.00 / 0.96
LUC1 cf. G.711.0 at 40 ms 1.2 1959 1.60 / 1.51
LUC2 cf. G.711.0 at 5 ms 1.0 8103 0.49 / 0.46
LUC2 cf. G.711.0 at 40 ms 1.2 8103 1.09 / 1.01

Table 5. LUCs compared with G.711.0. Rate increases are for A / µ-
law.
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