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ABSTRACT

The separation of acoustic signals is often accomplished through
subtractive decompositions of frequency-domain representations.
This is typically enabled by the zero phase approximation or the un-
correlated signals approximation but both of these are very coarse
approximations in the mathematical sense. We investigate this dis-
connect between what works in practice and what is mathematically
correct. We conduct a broad search for a domain where the addi-
tivity of spectral magnitudes is best satisfied. We apply objective
estimators to time-domain reconstructions to characterize the true
auditory impact of the magnitude additivity approximation. Our re-
sults show the auditory impacts of additivity approximations and
allow comparison with the impact of using mixture phase and exact
magnitudes in the time-domain reconstruction.

Index Terms— auditory scene analysis, compositional model,
noise reduction, noise suppression, source separation, spectral sub-
traction, speech enhancement

1. BACKGROUND

Separating a mixture of acoustic signals into individual components
associated with physical sources is an important problem that has
received significant attention over the decades. One may seek to
separate a desired signal (often speech) from one or more unde-
sired signals (noise suppression) or to isolate individual contributors
(talkers, instruments, environmental sounds) in an acoustic scene
for further analysis or transmission (source separation).

The problem is often addressed in the frequency-domain using
an additive model for the individual sources. More to the point, sub-
tractive decompositions of frequency-domain representations are
effective in practice. In the spectral subtraction algorithm an es-
timate of the spectral magnitude of the noise is subtracted from an
estimate of the observed signal, resulting in an estimate of the spec-
tral magnitude of the desired signal [1]-[3]. A parallel development
operates in the magnitude-squared (power) domain [4]. These time-
honored practices are effective and have been extensively studied,
adapted, and enhanced. A small sampling of this rich body of work
can be found in [5]-[11].

More recent insights have led to the constructive composition
model for acoustic mixtures [12]-[14]. In this model acoustic atoms
and activation functions are combined to additively construct time-
frequency representations for acoustic mixtures. Sophisticated it-
erative algorithms can identify the atoms and activation functions
required to subtractively decompose an observed time-frequency
pattern in a manner that is largely consistent with the underlying
physical sources. The approach is intuitive and effective, and at its
core lies the subtraction of spectral magnitudes to separate sources.
Indeed, researchers have repeatedly demonstrated that additivity of
spectral magnitudes is a pragmatic and effective approximation.

Addition is a very good model for combining multiple acoustic
waveforms. But spectral magnitudes add only if they have the same
phase values and two squared magnitudes add only if they have
phase differences of ±π

2
. Phase differences tend to be uniformly

distributed and approximating all phase deferences as zero or ±π
2

is a giant mathematical stretch. This disconnect between what is
effective in practice and what is mathematically correct can be un-
settling. It is natural to ask how good these approximations are and
if there might be a better approximation. A prerequisite question is
how to relevantly measure the effect of these approximations.

The question of an application-specific optimal exponent for
spectral magnitudes has been studied previously, resulting in mul-
tiple answers based on multiple application-specific definitions of
optimality (e.g., [6], [9], [10], [15], [16].)

Our approach to these questions is novel. We strip away as
many application-specific details as possible in order to focus on
the core issue of magnitude additivity. We search for a domain
where additivity is best satisfied and we search far beyond the do-
main of the single fixed exponent. We apply objective estimators to
time-domain reconstructions in order to characterize the true audi-
tory impact of the magnitude-additivity approximation. Our results
show the auditory impacts of additivity approximations and allow
comparison with the impact of using mixture phase and exact mag-
nitudes in the time-domain reconstruction.

We develop a generalized mathematical framework for our
work in the next section. Then we present our experiment configu-
ration and results for three specific cases: separation of wide-band
speech from a single non-stationary noise signal, separation of two
to eight musical instruments, separation of two to eight wide-band
speech signals. The paper concludes with discussion of the results.

2. MATHEMATICAL FRAMEWORK

Let the vector xi contain the time-domain samples of the ith real-
valued source signal, i = 1 to N, 2 ≤ N . To obtain a complex-
valued spectral representation of a signal we form length M (M
even) frames with 50% frame overlap. We then apply the Hann
window and the Discrete Fourier Transform (DFT) to each frame.
We use the operator FM to represent these well-known processes:

FM (xi) =
{
Xidke

jφxidk
}
,

1 ≤ i ≤ N, 1 ≤ d ≤ D, 1 ≤ k ≤ K, (1)

where i, d, and k are the source, frame, and frequency indices, re-
spectively. Note that F−1

M exists and is comprised of the inverse
DFT followed by the overlap–and–add process. Let y represent the
sum of the N sources:

y =

N∑
i=1

xi, (2)
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and y has spectral representation

FM (y) =
{
Ydke

jφydk
}
,

1 ≤ d ≤ D, 1 ≤ k ≤ K. (3)

(We will drop the frame index d and range for k without ambiguity.)
The operator FM is linear so

Yke
jφyk =

N∑
i=1

Xike
jφxik . (4)

When signals are added the complex spectral representations are
added as well.

The use of spectral representations provides an added dimen-
sion (frequency) that often greatly facilitates the separation of y
into the constituent sources. For example, it is often possible to es-
timate a spectral representation for a noise signal and then use this
estimate to separate speech from a mixture of speech and noise.

But (4) shows that decomposing a spectral component of y into
N spectral components contributed by the N sources requires de-
composing a complex number intoN complex numbers. The phase
values of audio signals are typically more difficult to estimate than
the magnitude values [14]. It is fortuitous that the phase values
are also often less critical to auditory fidelity than the magnitude
values [17]. As a consequence, it is common (successful com-
plex decomposition efforts [18]-[20] and phase reconstruction ef-
forts [21] not withstanding) to focus efforts on the magnitude por-
tion of (4) and to (often implicitly) make the zero phase approxima-
tion: φxik = φxjk , 1 ≤ i, j ≤ N [1]. With this approximation (4)
leads to

Y pk ≈
N∑
i=1

Xp
ik, (5)

with p = 1. But one might equally well choose to argue that the
signals xi, 1 ≤ i ≤ N are approximately uncorrelated at each
frequency k [14]. Under this approximation (5) still applies, but
with p = 2 [4].

Of course in general, real signals show empirical distributions
of φxik −φxjk , i 6= j that are nearly uniform. Replacing a uniform
distribution with one concentrated at zero (supporting p = 1) or
±π

2
(supporting p = 2) is a very coarse approximation indeed. It

follows that (5) is a very coarse approximation for p = 1 or 2.
This motivates us to invoke the function Gp to aid in our study

of this approximation. Gp is a strictly increasing function that maps
non-negative real values to non-negative real values. The function
is invertible and is parametrized by the vector p. Gp is intended to
map spectral magnitudes to a domain where additivity is approxi-
mately satisfied:

Gp(Yk) ≈
N∑
i=1

Gp(Xik). (6)

In light of (5), the two special cases defined by p = [p], Gp(x) =
xp, p = 1 and 2, are of particular importance in our study.

Let {X̂ik} be estimates for {Xik}, 2 ≤ i ≤ N . These esti-
mates can be used with (6) to estimate the spectral magnitudes for
the first source:

X1k ≈ X̂1k = G−1
p

([
Gp(Yk)−

N∑
i=2

Gp(X̂ik)
]+)

. (7)

The function [·]+ retains positive values and replaces negative val-
ues with zero to enforce the fact that magnitudes are non-negative.

An estimate of the time-domain signal x1 can be constructed
using the estimated magnitudes {X̂1k} along with the phase values
of the mixture signal y:

x1 ≈ x̂1 = F−1
M (

{
X̂1ke

jφyk
}
). (8)

In general, this use of “mixture” phase in (8) is a pragmatic
solution to obtain phase values for signal reconstruction. But when
N = 2 and certain additional conditions are met, φyk is the MMSE
estimator of φx1k and ejφyk is the MMSE estimator of ejφx1k [22].

In the case N = 2, we can interpret x1 as a desired signal and
x2 as noise and select Gp(x) = x (zero phase approximation) so
that (7) will reduce to the classic spectral subtraction result:

X̂1k =
[
(Yk − X̂2k)

]+
. (9)

We have established that the exact decomposition of a mixture
of acoustic signals into individual components requires the decom-
position of complex numbers into sums of complex numbers. The
pragmatic approach has been to invoke the zero phase approxima-
tion or the uncorrelated signals approximation and to then manip-
ulate spectral magnitudes or squared magnitudes accordingly. We
have introduced the parametrized function Gp to allow generaliza-
tion beyond these two options. We will now explore the relative
merits of these approaches in terms of the perceived quality of the
time-domain reconstructions they produce.

3. SIGNAL PROCESSING EXPERIMENTS

Our experiments use objective estimators to compare the original
time-domain signal x1 with versions recovered from the mixture y
as we vary Gp. We are seeking a Gp that minimizes the perceptual
difference between x1 and the recovered version. This approach is
akin to minimizing the error in the approximation (6) but it elimi-
nates the problem of finding a relevant measure for that error and it
includes the effect of using mixture phase to reconstruct the time-
domain signal.

We first define x̂P1 which is a reference estimate of x1 that char-
acterizes only the effect of using mixture phase in a reconstruction:

x̂P1 = F−1
M (

{
X1ke

jφyk
}
). (10)

x̂P1 differs from x1 due to phase (P ) alone.
In typical real problems y is observed, Yk are calculated, and

one must somehow estimate Xik in order to recover X1k. Algo-
rithms that estimate Xik form an entire field of study, and their
behavior will certainly be influenced by the choice of Gp. We wish
to focus on finding a domain where spectral magnitudes are most
nearly additive. To do so we must eliminate other sources of varia-
tion to the extent possible. Thus we use “perfect estimates” or “or-
acle values” (i.e., the original known values) for the spectral mag-
nitudes of sources 2 through N to estimate those of the first source:

X̂A
1k = G−1

p

([
Gp(Yk)−

N∑
i=2

Gp(Xik)
]+)

. (11)

We then use these estimates to generate an estimate of the time-
domain signal x1:

x̂AP1 = F−1
M (

{
X̂A

1ke
jφyk

}
). (12)
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Note that x̂AP1 differs from x1 due to additivity (A) and phase
(P ). The additivity component of the difference can be traced to the
fact that (6) is an approximation, not an equality. An ideal outcome
would be to find a function Gp that transforms spectral magnitudes
to a domain where they are truly additive; (6) would then become
an equality, the values of X̂A

1k would exactly match those of X1k,
and the signal x̂AP1 would match the signal x̂P1 . Of course we did
not achieve this ideal, but objective estimators did tell us which Gp

come closest.
Motivated by (5) our experiments included Gp(x) =

xp, 0.5 ≤ p ≤ 2. We also considered a family of functions that
allow the exponent p to increase or decrease monotonically with log
frequency:

p = [k, p0, α, β], Gp(x) = xp0+α(log2(k)−log2(β)). (13)

We included a similar family of functions where a single fixed ex-
ponent is used for each octave. In another family of functions we
allowed different exponents for different magnitude ranges:

p = [α0, . . . , αm, p0, . . . , pm−1],

αi ≤ x < αi+1 =⇒ Gp(x) = xpi − βi, 1 ≤ i < m, (14)

and the βi were calculated to enforce continuity at each threshold
αi. We also considered the logistic function:

p = [α, β], Gp(x) =
1

1 + eβ−αx
. (15)

We optimized the free parameters in each of these functions for
best average results across the breadth of each experiment described
below. This optimization was driven by objective estimators and
equates to the search for a domain in which spectral magnitudes
are maximally additive. In spite of these multi-parameter optimiza-
tions, no function consistently outperformed Gp(x) = xp. Thus
the only results presented below are for Gp(x) = xp. In Section 4
we describe a specific situation where the function in (13) provides
a slight advantage.

3.1. Wideband Speech and Non-Stationary Noise

Our first experiment used N = 2 sources: wideband speech and
non-stationary noise. We used four noise types: street noise, cof-
fee shop noise, an interfering talker, and the babble of ten talkers.
The speech material was recorded by five different female talkers
and five different male talkers. Each talker recorded 20 unique Har-
vard Sentences [23] (English language) for a total of 200 sentences
lasting over 10 minutes total.

Perceptually consistent objective estimation of audio quality or
distortion has been a subject of significant study over the years
[24, 25]. We selected the widely-used Wideband Perceptual Evalu-
ation of Speech Quality (WPESQ) algorithm [26] to estimate the
quality of x̂P1 and x̂AP1 resulting in quality estimates QP and
QAP , respectively. This application is outside the stated scope of
WPESQ, but our listening checks confirmed the reasonableness of
the WPESQ results presented here.

The sample rate was fs = 16 kHz. We experimented with M
values (processing frame sizes) ranging from 128 to 1024 and found
that results (QP and QAP ) showed only very slight sensitivity to
this parameter. We then selected M = 512 (32 ms).

Fig. 1 shows QAP for the reconstructed speech for three SNR
values, four noise types, and a range of p values. QAP increases
with SNR since the additivity and phase issues disappear as x2 is

reduced. QAP shows a minor dependence on noise type and the
case of the single interfering talker gives the highest quality. The
value of p that maximizes QAP increases slightly with SNR, but
always remains in the neighborhood of 1. After averaging across
the four noise types, the maximizing value of p (0.05 resolution)
moves from 0.95 at SNR=-10 dB, to 1.15 at SNR=+40 dB.

p
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Figure 1: Estimated wideband speech quality as a function of mag-
nitude exponent p for four noise types and three SNRs.

Fig. 2 shows QP and three instances of QAP as a function
of SNR. As expected, quality improves with SNR. At every SNR,
p = 1 gives higher quality than p = 2. Optimizing p does not yield
a significant increase in QAP over the case p = 1. Comparison
of QAP and QP indicates that the major portion of departure from
the upper asymptotic quality level (near 4.5) can be attributed to the
use of mixture phase. The additional quality drop from QP down
toQAP is modest and never exceeds 0.5, which is about 15% of the
full quality scale.

3.2. Multiple Musical Instruments

Our musical instrument separation experiment used twelve differ-
ent multitrack recordings selected from the MTG MASS database
[27] and from [28] (converted from fs = 44.1 to 48 kHz). For each
recording we created allNa!/N !(Na−N)! combinations of tracks,
2 ≤ N ≤ Na whereNa is the number of tracks (instruments) avail-
able, limited to a maximum of eight. The result was between 48 and
98 cases (track combinations) for each value of N . We then recon-
structed one of the N sources using oracle values for the spectral
magnitudes of the other N − 1 sources as in (11) and (12). We re-
peated this process so that each of theN sources would take the role
of x1. Our results are based on four minutes of music that cover ap-
proximately ten musical genres. We experimented withM = 1024,
2048, and 4096, and found that results showed only very slight sen-
sitivity to this parameter. We then selected M = 1024 (21.3 ms).

For fullband music the Perceptual Evaluation of Audio Quality
(PEAQ) algorithm [29, 30] is somewhat analogous to WPESQ. But
PEAQ is intended to quantify distortions much smaller than those
found in this work and our listening checks found that PEAQ did
not provide useful information in this experiment. PEAQ performs
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Figure 2: Means and 95% confidence intervals for wideband speech
quality vs. SNR.

multiple audio measurements and then combines these through a
neural network to create a single output. One of these measurements
is average distorted block (ADB). This is a normalized measure of
distortion calculated only where that distortion is deemed likely to
be detectable by listeners [29, 30]. We have found that ADB has
a consistent relationship to perceived distortion in this experiment.
Thus we employ ADB and report the perceived distortion in x̂P1 and
x̂AP1 as DP and DAP , respectively.

Fig. 3 shows DP and three instances of DAP as a function of
the number of sources. Perceived distortion increases modestly as
more sources are combined. At every value ofN , p = 1 gives lower
distortion than p = 2. Optimizing p to minimize ADB can reduce
ADB for small values of N . Comparison with DP shows that a
large portion of the distortion can be attributed to the use of mixture
phase. In the case of two sources, DP is 71% of the DAP result
when p = 1, and is 84% of the DAP result when p is optimized.
When eight sources are combined, DP shows 63% of the distortion
present in the DAP , p = 1 case. The optimizing values of p are
1.35, 1.25, and 1.10 for N = 2, 3, and 4 respectively. For N ≥ 5,
the optimal value for p is 1.05.

3.3. Multiple Wideband Speech Sources

Our final experiment was similar to the experiment in 3.2 but used
the wideband speech of 3.1. We combined N = 2 to 8 wideband
speech signals (unique talkers) and then reconstructed each one of
them using oracle values for the spectral magnitudes of the other
N−1 sources. Results were very close to those in 3.1: QAP values
were reliably maximized in the immediate neighborhood of p = 1.

4. DISCUSSION AND CONCLUSION

We have searched for a domain where magnitude spectra are max-
imally additive using a novel and relevant approach that applies
objective quality and distortion estimators to time-domain recon-
structions. This approach also eliminates the problem of finding a
relevant measure for spectral error and it allows for inclusion of the
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Figure 3: Means and 95% confidence intervals for musical instru-
ment distortion vs. N .

effect of using mixture phase in the reconstruction. We designed
our experiments to eliminate as many application-specific factors
as possible and they cover many different talkers, sentences, noise
conditions, and musical genres. We considered a broad selection of
candidate functions for mapping magnitudes to the desired domain.

When the full breadth of this work is considered, the best sin-
gle domain for adding and subtracting spectral magnitudes is the
original domain: Gp(x) = xp with p = 1. This corresponds
to approximating phase differences as zero—a great stretch in the
mathematical sense, but not far from optimal in the practical sense,
at least within the context explored here. Our interpretation is that
the variability of magnitude and phase relationships in this class of
problems is so great that a single fixed model of these relationships
at any level more refined than the highest level (i.e., a single fixed
exponent p) is simply not merited and furthermore is not effective.

Our experiments also equip us to judge the magnitude additivity
approximation in absolute terms. Comparison of the QAP and QP
curves in Fig. 2 or the DAP and DP curves in Fig. 3 shows that
(depending on SNR or N ) there is some, but not much, room for
improvement in the additivity approximation when mixture phase
is used in reconstruction.

Finally, we focus on individual cases. All three experiments
showed a weak preference for increasing p values as the separation
problem gets easier (higher SNR or fewer sources) and this is con-
sistent with the SNR-driven exponent adaptation formulation given
in [10]. When separating N = 2 musical sources, p = 1.35 has a
significant advantage over p = 1 (Fig. 3). Separating speech from
street noise is another case of interest. Here it is advantageous to
use (13) parametrized to increase p from 0.2 at 62.5 Hz to 1.25 at
8 kHz (increasing p by 0.15 each octave). This advantage stems
from the fact that street noise is dominated by low-frequency com-
ponents. That can translate into lower SNR at lower frequencies,
thus making smaller p values more suitable at lower frequencies.

We have treated the question of additivity at the most basic
level in order to find application-independent results. We expect
that these results can provide the basis for further explorations that
are individualized for specific applications.
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