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ABSTRACT
Separating an acoustic signal into desired and undesired compo-
nents is an important and well-established problem. It is commonly
addressed by decomposing spectral magnitudes after exponentia-
tion and the choice of exponent has been studied from numerous
perspectives. We present this exponent selection problem as an ap-
proximation to the actual underlying geometric situation. This ap-
proach makes apparent numerous basic facts and some of these have
been ignored or violated in related work efforts. We show that expo-
nent selection is dominated by the phase distribution and that mag-
nitude distributions have almost no influence. We also show that
exponents can be much more effectively selected in the estimated-
source domain, rather than in the domain of the combined sources.
Finally we describe the mechanism that causes exponents slightly
above 1.0 to be preferred in many cases, completely independent of
source distributions.

Index Terms— noise reduction, source separation, spectral
magnitude exponent, spectral subtraction, speech enhancement

1. INTRODUCTION

Separating acoustic signals into two or more contributing sources is
an important problem that has received much attention. A common
and important application is separation into a desired portion (often
speech) and an undesired portion (often other speech or environ-
mental sounds). For this large and vital class of problems it suffices
to view the signal as having just two sources. This paper addresses
the two-source problem only.

The problem is commonly addressed in the frequency-domain
by invoking an additive model for the two sources. This then leads
to scaling down (Wiener filtering) or subtracting from (spectral
subtraction) the frequency-domain representation of the combined
sources to produce a representation for a single source.

Early researchers successfully treated both spectral magnitudes
[1],[2] and squared-spectral magnitudes [3] as additive. Both ap-
proaches have been extensively studied, adapted, enhanced, and ap-
plied over the years and a very small but broad sampling of these
efforts can be found in [4]-[8] and the citations therein. The ap-
proaches have also been extended to a domain where spectral mag-
nitudes have been raised to an arbitrary positive real power ↵, thus
generalizing the cases ↵ = 1 (magnitude) and ↵ = 2 (squared
magnitude or power). Selection of exponents has been studied from
numerous perspectives driven both by specific applications and by
the quest for more general insight into the issue [9]-[16].

For the two-source problem, we present the selection of the
spectral magnitude exponent ↵ as a geometric approximation prob-
lem. This view leads to some basic yet helpful insights, includ-
ing the fact that the approximation is strongly dominated by phase

distributions and magnitude distributions are of very little conse-
quence. Following previous research efforts, we apply established
measures of spectral divergence in the combined-sources domain
and show that they do not inform the selection of ↵ as one might
expect. We then demonstrate that simple and intuitive spectral er-
ror measures in the estimated-source domain provide meaningful
results and also illuminate the true reason that spectral magnitude
exponents slightly above 1.0 often perform best.

2. SELECTING A SPECTRAL MAGNITUDE EXPONENT
AS A GEOMETRIC APPROXIMATION PROBLEM

Consider two independent acoustic sources x1(t) and x2(t). We
sample, window, and apply the Discrete Fourier Transform (DFT)
to produce complex spectral representations of these signals. Ex-
ample complex-valued results are z1 = r1e

j�1 and z2 = r2e
j�2

where r1 and r2 are the real magnitudes of z1 and z2 respectively
(time and frequency indices are not required for this development).
Acoustic waveforms are additive so the two sources combine to pro-
duce x(t) = x1(t)+x2(t). Because all processing steps are linear,
the corresponding complex time-frequency sample of x(t) is

z = z1 + z2 = r1e
j�1

+ r2e
j�2

= rej�,

r = A(r1, r2, ✓) =
q

r21 + r22 + 2r1r2 cos(✓),

✓ = |�2 � �1|, 0  ✓  ⇡. (1)

(The phase difference is wrapped into [�⇡,⇡] before the absolute
value is taken, resulting in 0  ✓  ⇡.) Note that A(r1, r2, ✓) is
the function that produces the actual magnitude of z. An example
is shown in Fig. 1.
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Figure 1: Example geometry.

In the two-source problem we observe x(t) and calculate rej�.
If estimates of r2 and �2 were available we could readily calculate
corresponding estimates of r1 and �1. Typically an estimate of r2
(e.g. noise magnitude) is available but no estimate of �2 is available.
A popular and effective way forward is to assume that magnitude
additivity can be approximately satisfied in the r↵ domain for some
real ↵, (0 < ↵),

r↵ ⇡ r↵1 + r↵2 . (2)
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↵

This leads directly to an estimate of r1 that uses the observation r,
an estimate of r2, and a small positive value of ⇣:

r̂1 = (max(⇣,  r↵ � r̂2↵)) 
1 
. (3)

Rearranging (2) yields a model M(r1, r2,↵) for magnitude of z,

r ⇡ M(r1, r2,↵) = (r↵1 + r↵2 )
1
↵ . (4)

This model does not depend on ✓. This makes it a practical model
but also a very rough model.

Both A and M are symmetric with respect to r1 and r2,

A(r1, r2, ✓) = A(r2, r1, ✓), M(r1, r2,↵) = M(r2, r1,↵), (5)

so we can assume r1 � r2 without loss of generality. The case
r1 = r2 = 0 is trivial so we further assume r1 > 0. A and M also
share a scaling property:

A(r1, r2, ✓) = r1A(1,
r2
r1

, ✓),

M(r1, r2,↵) = r1M(1,
r2
r1

,↵). (6)

This motivates us to define the magnitude ratio � =

r2
r1

, 0  �  1.
The model M should approximate the actual result A,

M(r1, r2,↵) ⇡ A(r1, r2, ✓) =)

(r↵1 + r↵2 )
1
↵ ⇡

q
r21 + r22 + 2r1r2 cos(✓) . (7)

This result is key and the basis for all that follows. It provides
a reminder of the true goal in exponent selection. It reminds us not
to spend undue effort to match signal models to M when in fact M
is just a very rough approximation to the underlying truth expressed
by A. Equation (7) leads directly to the following eleven observa-
tions that may help one more fully appreciate the true approxima-
tion problem. Mathematical developments underpinning research
in this area sometimes overlook or even violate observations 9, 10,
or 11.

1. If r2 = 0 we have sparsity in that time-frequency bin.
The approximation problem disappears and (7) becomes an
equality for any choice of ↵. Thus we assume r2 > 0 (and
� > 0) without loss of generality.

2. If r1 � r2 we have approximate relative-sparsity in that
time-frequency bin, the approximation (7) is nearly exact and
shows minimal sensitivity to ↵.

3. For all r1 and r2 A decreases monotonically with ✓ (0 
✓  ⇡) and has the range r1 � r2  A(r1, r2, ✓)  r1 + r2.

4. For all r1 and r2 M decreases monotonically with ↵ (0 < ↵)
and has the range max(r1, r2) = r1 < M(r1, r2,↵) < 1.

5. When ✓ = 0 (matched phases), ↵ = 1 (magnitude addition)
produces equality in (7) for all r1 and r2.

6. When ✓ =

⇡
2 (orthogonal phases), ↵ = 2 (power addition)

produces equality in (7) for all r1 and r2.
7. Using (6) in (7) and canceling r1 shows that exact solutions

to (7) depend on the magnitude ratio � and ✓. For every value
of � in (0, 1], if ✓ satisfies 0  ✓  ✓m(�) there is a value
of ↵ that produces equality in (7). As ✓ moves through this
range the value of ↵ that produces equality moves from 1
toward 1 as shown in Fig. 2. ✓m(�) = ⇡ � arccos

�
�
2

�
so

✓m increases from ⇡
2 to 2⇡

3 as � runs from 0 to 1.

8. For every value of � in (0, 1], if ✓m(�) < ✓  ⇡, no value of
↵ can produce equality in (7). For these angles the resulting
cancellation cannot be emulated by M.

9. The sources x1(t) and x2(t) are independent and thus un-
correlated but this does not force the phases in any time-
frequency bin to be orthogonal. The expected value of ✓ over
time or frequency is ⇡

2 but IE(A) 6=
p

r21 + r22 and general
optimality for ↵ = 2 does not follow (see Sections 3 and 4).

10. Assuming Gaussian sources has no bearing on the orthogo-
nality of the phases. It is true that when independent Gaus-
sian random variables are added their variances add. If one is
focused on M alone this may steer one to ↵ = 2. But Gaus-
sian sources and ↵ = 2 do not lead to a better approximation
in (7).

11. Assuming Cauchy sources has no bearing on the orthogonal-
ity of the phases. It is true that when independent Cauchy
random variables are added their scale factors add. If one
is focused on M alone this may steer one to ↵ = 1. But
Cauchy sources and ↵ = 1 do not lead to a better approxima-
tion in (7). The same is true for other ↵-stable distributions
and their associated ↵ values.
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Figure 2: Values of ↵ that produce equality in (7) for four magnitude
ratios � =

r2
r1

.

In any practical application ✓ will be unknown and solving for
individual ↵ values (observations 5-7) will not be an option. Our
analysis of phase values produced by application of the windowed
DFT to music and speech shows they are uniformly distributed on
[�⇡,⇡] and their differences follow the triangular distribution on
[�2⇡, 2⇡]. Wrapping this distribution into [�⇡,⇡] gives the uni-
form distribution again. It follows that ✓ is uniform on [0,⇡].

The approximation problem is to select a spectral magnitude
exponent ↵ that is most effective for a given separation task in spite
of unknown absolute phase differences ✓ drawn from the uniform
distribution. A further difficulty is that when the absolute phase
difference ✓ exceeds ✓m, the resulting cancellation produces actual
magnitudes in [r1 � r2, r1] and magnitudes in this region cannot
be achieved by M for any ↵ (see observations 3, 4, and 8). The
remaining range of A must often be approximated by M using a
single value of ↵. Observations 5, 6, and 7 suggest that a compro-
mise value may be in the range 1  ↵  1.

The distribution of the absolute phase differences ✓ dominates
this approximation problem and the distributions of the magnitudes
r1 and r2 are much less significant. The high sensitivity of ↵ to
✓ is clear from Fig. 2. In addition, depending on ✓ there can be
a single solution ↵ for all �, an individual solution for each �, or
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no solution. The variation in ↵ across three orders of magnitude
of � is much smaller. Formal mathematical demonstrations of the
low sensitivity to magnitude distributions follow in Sections 3 and
4 below.

It is true that ↵ can be fine-tuned based on frequency or adapted
over time based on r or estimates of r2 [11],[15]. Such adaptation
can address changing magnitude distributions but it cannot address
the more significant issue of phase differences and thus can provide
modest advantages at best.

3. EVALUATING APPROXIMATIONS IN THE
COMBINED-SOURCES DOMAIN

It is natural to seek to quantify the approximation in (7) as it is writ-
ten in the combined-sources domain. In [14],[16] exponents are
evaluated through three different measures that are applied in the
combined-sources, exponentiated-magnitude domain. These mea-
sures are Kullback-Liebler divergence (KL) [17], Itakura-Saito di-
vergence (IS) [17] and ↵-dispersion (D↵). KL and IS have both
been established as useful ways to compare spectra in numerous ap-
plications. In [14],[16] they are applied in the exponentiated mag-
nitude domain:

KL(r1, r2, ✓) = A↵
(·) log

✓
A↵

(·)
M↵

(·)

◆
�A↵

(·) +M↵
(·), (8)

IS(r1, r2, ✓) =
A↵

(·)
M↵

(·) � log

✓
A↵

(·)
M↵

(·)

◆
� 1. (9)

In [14],[16] D↵ is used to compute absolute error between A
and M in the exponentiated magnitude domain, then map the result
back to the magnitude domain:

D↵(r1, r2, ✓,↵) =
��A(r1, r2, ✓)

↵ �M(r1, r2,↵)
↵
�� 1
↵ . (10)

To capture this error directly in the magnitude domain we now in-
troduce another measure: absolute approximation error (AAE),

AAE(r1, r2, ✓,↵) =
��A(r1, r2, ✓)�M(r1, r2,↵)|p, (11)

with p = 1. Squared approximation error (SAE), also defined by
(11) but with p = 2, provides another measure.

We have applied all five measures to six different signal classes.
For maximum generality these signal classes cover actual audio sig-
nals and statistical models for audio signalsd . We created x1(t)
and x2(t) to use in M and x(t) = x1(t) + x2(t) (0 dB mixing
ratio) which exactly produces A. For the first two signal classes
we processed a wide variety of music and speech signals. For the
next three classes we used white sequences of random variables.
For each signal class we used 10 minutes of signals sampled at
fs = 48kHz for a total of N ⇡ 3 ⇥ 10

7 time-domain samples.
We used the Hann window and a DFT frame length of 512 sam-
ples (10.6 ms) with 50% frame overlap. Note that the Gaussian
and Laplacian time-domain sequences both produce complex DFT
results with independent Gaussian real and imaginary parts, result-
ing in Rayleigh magnitude distributions. For the sixth signal class
(motivated by III-B of [14]) we generated independent frequency-
domain real and imaginary parts from the Cauchy distribution. In
every case we averaged results over all time-frequency samples ex-
cept DC and Nyquist. We searched the range 0 < ↵  3.2 and
show minimizing values of ↵ in Table 1.

Signal KL IS D↵ AAE SAE

Music 0.470 0.830 1.026 2.010 2.684
Speech 0.629 0.826 1.023 2.011 2.771
Gauss ⇡ 0.000 0.668 1.045 2.000 2.719

Laplace ⇡ 0.000 0.668 1.045 2.000 2.721
Cauchy (TD) 1.018 0.861 1.017 1.998 2.660
Cauchy (FD) 2.050 0.795 1.003 2.001 3.128

Table 1: Minimizing values of ↵ for six signal classes and five mea-
sures, applied in the combined-sources domain.

These results demonstrate empirically the arguments in Section
2. Across the five measures there is no basis for linking particular
values of ↵ to particular source distributions. There is no measure-
ment that even leans toward suggesting that Gaussian sources are
better served by ↵ = 2 and and Cauchy sources by ↵ = 1 . This is
not a paradox nor is it counter-intuitive, it is simply a reflection of
the underlying geometry of the true approximation problem.

In [14],[16] KL and IS are applied in the exponentiated mag-
nitude domain. It is also natural to apply them in the magnitude
domain since that might be more indicative of a real application.
We replaced A↵ with A and M↵ with M everywhere in (8) and
(9). The resulting minimizing values of ↵ range from 2.7 to 2.9 for
KL and from 2.7 to 2.8 for IS. Once again we see no indications
of relationships between ↵ values and source distributions.

Table 1 also shows that D↵ is almost completely invariant to
magnitude distributions. We conclude this section with a mathe-
matical explanation for this near-invariance. The expected value of
D↵ requires probability density functions (pdfs) for r1, r2, and ✓
given here by fr1 , fr2 , and f✓ . We have documented that f✓ is
uniform and independent of r1 and r2. Since r1 and r2 are also
independent of each other, the expectation can be factored:

IE

r1,r2,✓
(D↵(r1, r2, ✓,↵)) =

1Z

0

fr1(r1)

1Z

0

fr2(r2)

2

4
⇡Z

0

f✓(✓)D↵(r1, r2, ✓,↵)d✓

3

5
dr2 dr1.

(12)

The bracketed portion of (12) is

⇡Z

0

f✓(✓)D↵(r1, r2, ✓,↵)d✓ =

r1
⇡

⇡Z

0

D↵(1,
r2
r1

, ✓,↵)d✓ =

r1
⇡

⇡Z

0

��
(1 + �2

+2� cos(✓))
↵
2 � (1+�↵

)

�� 1
↵
d✓ =

r1
⇡
D↵(�,↵).

(13)

D↵(�,↵) represents an integral that has no closed form solution
but numeric integration is straight-forward and reveals that for any
�, D↵(�,↵) is always minimized by some ↵ in (1.000, 1.074).

Substituting D↵(�,↵) back into (12) shows that the expected
value of ↵-dispersion is found by scaling D↵ with positive values
and adding (integrating). Given that D↵ is always minimized by ↵
in (1.000, 1.074) and in light of (12) it is not hard to show that the
expected value of ↵-dispersion will also always be minimized by
an ↵ value in (1.000, 1.074) regardless of the pdfs of the sources’
spectral magnitudes.
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4. EVALUATING APPROXIMATIONS IN THE
ESTIMATED-SOURCE DOMAIN PROVIDES INSIGHT

Section 3 demonstrates the difficulty and ambiguity associated with
evaluating magnitude exponents in the combined-sources domain.
It is much more effective to evaluate magnitude exponents in the
estimated-source domain, ideally invoking measurements that are
consistent with human perception and judgment. Several investi-
gations [13]-[16] have followed this approach, covering five dif-
ferent applications and invoking five different measurement tools
[18]-[23]. Optimal values of ↵ in [1.0, 1.4] are commonly reported.
For the case of spectral subtraction (3) we now offer a more general
way to evaluate magnitude exponents in the estimated-source do-
main. This approach reproduces and illuminates the preference for
the range of alpha values near and slightly above 1.0. It shows that
this range is a consequence of geometry and is driven by the phase
distribution.

The extremely straightforward and well-motivated way to eval-
uate just the approximation (7) in the context of spectral subtraction
is to consider the error between r1 and its estimate r̂1, as generated
by (3) using the observation r and the oracle value of r2 in place of
the estimate r̂2:

�(r1, r2, ✓,↵) =
��r1 � (max(⇣,A(r1, r2, ✓)

↵ � r↵2 ))
1
↵ |. (14)

(For the remainder of this paper r1 and r2 are not interchangeable
and we do not require r1 � r2.) By using oracle values of r2, �
captures the absolute error in the estimated magnitude of r1 due
only to the approximation (7). Both � and �

2 are largely insensi-
tive to the choice of ⇣ and this is consistent with real applications.
In this application both KL and IS would include division by ⇣
making them very sensitive to the choice of ⇣ and thus poor choices
for comparing r1 and r̂1.

We calculated empirical expected values for � and �

2 using
the same signal classes and processes described in Section 3. The
resulting minimizing values of ↵ (for ⇣=0) are given in Table 2. As

Signal IE(�) IE(�

2
)

Music 1.180 1.331
Speech 1.162 1.327
Gauss 1.182 1.337

Laplace 1.182 1.338
Cauchy (TD) 1.171 1.242
Cauchy (FD) 1.146 1.215

Table 2: Minimizing values of ↵ for six signal classes and two mea-
sures, applied in the estimated-source domain.

expected, Table 2 shows again that source distributions are of lit-
tle consequence. The range of minimizing ↵ values shown in the
table is consistent with those identified in [13]-[15] by considering
fidelity of the separated sources. In addition, we can now under-
stand why this range is best. Six observations follow directly from
(14), the geometry of the problem, and observations in Section 2:

1. For any r1 and r2, even though ✓ is uniformly distributed,p
r21 + r22 + 2r1r2 cos(✓) is not uniformly distributed and

always has higher probability density at the top of its range
(r1 + r2) than at the bottom of its range (|r1 � r2|).

2. Estimates of r1 increase with ↵.

3. ↵ < 1 produces only underestimations of r1.

4. As ↵ increases from 1 to 2 the faction of underestimations
falls rapidly from 100% to 50% (overestimations increase
from 0 to 50%). The changes are rapid due to the nonuniform
pdf noted in observation 1.

5. As ↵ increases above 2, the fraction of underestimations
slowly reaches an asymptotic value in the range 41 to 45%
depending on the signal class (overestimations reach 55 to
59%).

6. Magnitudes of underestimations are limited by the max

function in (14) but the magnitudes of overestimations are
unbounded.

As shown in Fig. 3, the result is that as ↵ increases above 1.0 the
total contribution of underestimations decreases ever more slowly
while the total contribution of overestimations increases from zero
at a nearly constant rate. Thus the balance between underestima-
tions and overestimations that minimizes average absolute error
(IE(�)) is found not far above ↵ = 1.0 and consideration of av-
erage squared error (IE(�2

)) shifts that balance point to a slightly
higher value of ↵. Figure 3 is based on 10 minutes of speech signals
and results for the other five signal classes are nearly identical.
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Figure 3: Solid lines show IE(�) and its components, dashed lines
show IE(�

2
) and its components (scaled down for display).

On average, added time-frequency components are more per-
ceptually significant than missing time-frequency components (see
equation (4) in [24]). One reason is that they can produce new and
separate auditory precepts often described as artifacts. This may
motivate placing a larger cost on overestimation than on underes-
timation and doing so will shift the balance point down, but never
below 1.0, because at ↵ = 1.0 overestimation has been completely
eliminated. This observation is consistent with reports that larger ↵
values produce more artifacts [13],[16].

5. CONCLUSION

Manipulating spectral magnitudes raised to some power ↵ is a
common, effective, and practical technique for separating sources.
Those who wish to optimize ↵ must acknowledge the underlying
approximation inherent in this approach and shift their attention
from the distribution of magnitudes to the distribution of phases
because it is the phase distribution that dominates the approxima-
tion. The approximation is best evaluated in the estimated-source
domain rather than the combined-sources domain. Our evaluation
in the estimated-source domain provides an intuitive, mathematical,
and perceptually-consistent explanation for the optimality of ↵ at or
slightly above 1.0.
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