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1 Introduction 

Measuring quality and other abstract properties of audio signals is essential to the development, 
deployment, maintenance, and marketing of audio-related products and services. In 
telecommunications, speech quality and intelligibility are critical to customer satisfaction and 
thus to successful products and services. Perception-based measurements have evolved to 
properly account for the various distortions produced as digital encoding, transmission, and 
decoding have permeated telecommunications networks and equipment. Earlier work is 
summarized in [1] and current popular measurements include Perceptual Evaluation of Speech 
Quality (PESQ) [2], Perceptual Objective Listening Quality Analysis (POLQA) [3], and Short-
Time Objective Intelligibility Measure (STOI) [4]. 

Measurement algorithms typically transform transmitted and received speech signals into 
perceptual domain representations (emulating hearing) and then compare those two 
representations (emulating listening, attention, and judgment). A common goal is that results 
should agree with those produced by human subjects in formal, controlled, speech quality or 
speech intelligibility experiments. Thus the measurements are often viewed as “estimators” of 
the “true” values from experiments. “Full-reference” (FR) estimators have produced impressive 
and useful results but only when the transmitted and received speech signals are both available 
for evaluation. PESQ and POLQA are prominent examples of FR perception based speech 
quality estimators and STOI is an effective FR perception-based speech intelligibility estimator. 

“No-reference” (NR) (also called “non-intrusive”) approaches offer the ability to estimate using 
only the received speech. This capability can provide significant additional opportunities, 
including live monitoring, fault detection, or optimization of telecommunications systems. 

Broadly speaking, much of the NR speech estimation work (e.g., [5]–[8]) has been driven by 
models for clean and distorted speech along with a means for analyzing received speech and 
properly locating it within the space defined by those models. As machine learning (ML) tools 
became more developed, powerful, and available, they were naturally incorporated into NR 
speech evaluation algorithms [9]–[18]. Algorithms typically start with the extraction of known 
relevant features (e.g. magnitude spectrogram, Mel-spectral or Mel-cepstral features, pitch 
values, voice activity) from the received speech. This is followed by application of assorted ML 
structures to learn and codify the mapping between these features and some target quantity 
relating to the suitability of speech (e.g., quality, intelligibility, listening effort). In some cases 
automatic speech recognition inspired modeling is invoked as well. 

These approaches are certainly well-motivated. Extraction of features compresses speech 
representations (for efficiency) while retaining information relevant to establishing accurate 
mappings to a target. But starting with established features does constrain the solution space 
accordingly. Given the power of convolutional neural networks (CNN) it is now possible to 
eliminate any assumptions or restrictions explicit or implicit in feature extraction and allow a 
CNN to operate directly on speech waveforms, in effect building the best features for solving the 
problem at hand. 
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In this work we require the machine to learn which features are appropriate for a waveform 
evaluation task. We establish a framework named Waveform Evaluation networks (WEnets) and 
then demonstrate the value of this framework by developing a Narrowband Audio Waveform 
Evaluation Network (NAWEnet) that performs NR prediction of NB speech quality or 
intelligibility. We describe a method to generate training, testing, and validation data for this 
task. Using 133.5 hours of training data and 106.8 hours of testing data we achieve per-segment 
prediction-to-target correlations (ρseg) above 0.91. Due to the straightforward architecture of 
NAWEnet we expect that our future work may provide interpretation of its inner workings. We 
also expect to extend the approach to address the evaluation of wideband or fullband speech or 
even music. 

2 Network Design 

2.1 WEnets Framework Principles 

CNN architectures trained to find objects in images are often required to learn how to perform a 
task regardless of the scale (or spatial sample rate) of the object to be recognized. In a typical 
image classification database like ImageNet, objects of any given class can be found with 
varying spatial sampling rates. In order for any ML process to successfully classify objects in 
images, the ML process must learn to find the object at many different spatial sampling rates.  

VGG, a CNN architecture developed for image classification purposes by the Visual Geometry 
Group [19] is composed of sections containing one or more sequential convolutional layers, a 
non-linear activation (rectified linear unit, or ReLU, in this case), and a max-pooling layer. Each 
maxpooling layer essentially downsamples representations of the input image thus enabling the 
next section to operate at a higher level of abstraction. These sections are stacked until the image 
has been sufficiently down sampled such that all fn representations—512 in the case of VGG—
can feasibly be used as an input to a classification dense network. This architecture is proven to 
find objects at multiple spatial sample rates. 

Like VGG, WEnets are composed of a CNN that is used to extract features and a dense network 
that computes a target speech quality or intelligibility estimate using the extracted features. 

Unlike the images found in ImageNet, audio (and many other one-dimensional) signals have a 
fixed sample rate measured in units of time rather than units of distance. If operating on audio, a 
convolutional architecture as described above will not need to find a fixed-duration feature (or 
object) at multiple timescales. That is, a feature that is x seconds in length will always be x × fs 
samples long where fs is the sample rate of the audio signal. 

Due to this property, waveform-specific CNN architectures need not use network depth as a 
method to robustly handle scale/sample rate variance. Rather, the depth of waveform-specific 
architectures can be informed by the desired input sample rate and the time-scale of the features 
to be extracted. We hypothesize that stacked convolutional layers can be used to find waveform 
features and waveform distortions with time durations consistent with the input sample rates ( 𝑓𝑓𝑠𝑠) 



 3 

of the layers. Thus the WEnets framework uses stacked convolutional layers, non-linear 
activations, and pooling to extract and process the information necessary to evaluate waveforms. 

2.2 NAWEnet Implementation 

The architecture for the NAWEnet, a narrowband-audio implementation of the WEnets 
framework, is shown in Table 1 and Table 2. We designed the CNN feature extractor with 
speech and speech coding in mind. The 𝑓𝑓𝑠𝑠 at the input to S1 is the norm for NB speech and 
preserves all waveform details. The 𝑓𝑓𝑠𝑠  going into S2-S4 support the range of frequencies where 
the lower formants of human speech can be found. In S5 sl is 12 ms, which is on the order of the 
length of speech coding frames and the length of packets used to transmit voice over the internet.  

Table 1. NAWEnet convolutional architecture: each section Sn contains one or two 1D 
convolution layers C-fn-fl with fn filters and filter length fl, stride of 1, and zero padding equal to 

floor(fl / 2). B denotes a batch normalization layer. P-fn indicates a PReLU activation with fn 
parameters. A-k is an average pooling layer with pooling kernel size k; M-k a max pooling layer. 

Number of input and output samples are given by lin and lout, effective sample rate by 𝑓𝑓𝑠𝑠 and 
effective sample spacing by sl. 

S layer type 𝒇𝒇�𝒔𝒔 (Hz) lin sl (ms) lout 

S1 

C-192-11 
B 

P-192 
A-4 

8,000 24,000 0.125 6,000 

S2 

C-192-7 
B 

P-192 
M-2 

2,000 6,000 0.5 3,000 

S3 

C-256-7 
B 

P-256 
M-4 

1,000 3,000 1 750 

S4 

C-512-7 
C-512-7 

B 
P-512 
M-3 

250 750 4 250 

S5 

C-512-7 
C-512-7 

B 
P-512 
M-2 

83.3 250 12 125 
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Table 2.  NAWEnet dense net architecture: each layer (L) has di inputs and do outputs. Dense 
layers 1 and 2 are followed by PReLU with do parameters and a dropout layer with p = 0.5. 

L di do 
L1 64,000 512 
L2 512 512 
L3 512 1 

 
In each convolutional section, the network learns fn representations of the input signal, fn batch 
normalization [20] parameters, and fn parameters that control the slope for the x < 0 portion of the 
Parametric ReLU (PReLU) [21] activation function. Each convolutional section concludes with a 
pooling layer where fn representations are essentially downsampled into lout subsamples. 

In section S1, average-pooling behaves somewhat like a typical downsampling process and 
gathers information from k = 4 samples into one subsample. But in subsequent sections max-
pooling chooses the subsample with the highest value for input to the next section. The 
combination of convolutional filtering and max-pooling coalesces relevant information and 
begins to form features. As training progresses this process ultimately allows the net to learn 
which kinds of features are required to predict a target metric. 

The final max-pooling layer in S5 subsamples each of fn  = 512 representations to a length lout = 
125 subsamples. The output of the feature extractor is then flattened resulting in 512 × 125 = 
64,000 inputs to the dense network. After the first two dense layers we implement dropout [22] 
to minimize over-fitting. Weights for convolutional and dense layers are initialized using the fan-
out variant of the Kaiming normal method [21]. 

Like VGG, NAWEnet requires an input of a specific size. The inputs to NAWEnet are 3 second 
long (sample rate fs = 8000 smp/s) audio segments normalized to 26 dB below clipping points of 
[-1, 1]. The choice of three seconds was driven by the active speech content in the speech files 
commonly used for telecommunications testing. A target PESQ, POLQA, and STOI value is 
calculated for each segment. This allows us to train NAWEnet to suit each target. 

3 Data Corpora 

Data is essential to any ML effort and NAWEnet is no exception. We collected and created a 
large number of speech recordings with a wide range of distortion types and levels. Some of 
these recordings were made in our lab and in other telecommunications labs over the past 
decades in order to test specific telecommunications scenarios or “conditions.” In either case, the 
original undistorted speech recordings are studio-grade with very low noise and minimal 
reverberation and are either unfiltered or prefiltered using bandpass, intermediate reference 
system (IRS), or modified IRS [23] methods. The original speech recordings were passed 
through telecommunications hardware or software resulting in various conditions of interest. 
Then three-second segments were extracted and associated FR quality (PESQ and POLQA) and 
intelligibility (STOI) targets were computed for each segment. 
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Table 3 summarizes attributes of the dataset contents. “NAE” indicates North American English. 
“Mixed” includes NAE, British English, Hindi, French, Mandarin, Finnish, German, Italian, and 
Japanese. In the aggregate of the 10 datasets 86% of the speech is NAE, 4% is British English, 
and 3% is Hindi. Japanese and French each account for 2%, Mandarin and Italian 1% each, while 
Finnish and German each provide about 0.5%. In the case of the English language, the speech 
content is comprised of Harvard sentences [26]. 

Table 3. Source dataset descriptions, including duration of original speech and distorted speech 
in hours. 

 original (h) distorted (h) language cond. 
1 3.2 3.2 NAE Ca 
2 1.8 1.8 NAE Cb 
3 1.0 1.0 NAE Cc 
4 2.0 2.0 NAE Cd 
5 1.2 1.2 Italian Cd 
6 1.8 1.8 Japanese Cd 
7 2.5 40.8 Mixed Ce 
8 2.5 61.7 Mixed Cf 
9 3.6 10.0 NAE Ce 

10 3.6 10.0 NAE Cf 
 
Source datasets 1–6 were originally created for subjective testing of specific conditions of 
interest. The NAWEnet design requires three-second segments of speech. We used software to 
select as many unique segments as possible, subject to a minimum speech activity factor of 75%. 
For datasets 1–6 these segments were taken from the previously produced distorted speech 
recordings. Additional details regarding the conditions in each of the datasets are given in  
Table 4.  

Table 4. Summary of conditions.  MNRU indicates modulated noise reference unit [25]. Level 
variations and tandems also included. 

 rate (kbps) conditions 
Ca 4.8–32 G.728, G.726, GSM, VSELP, IMBE, proprietary 

codecs, MNRU 
Cb 8–16 9 CELP variants, frame erasures, MNRU 
Cc 2.4–64 variable rate CELP, PCM, analog FM, MNRU 
Cd 16–64 PCM, ADPCM, G.728 candidates, MNRU 
Ce 1.2–80 AMR, EVS, PCM, ADPCM, G.728, G.729, 

G.723.1, GSM, AMBE, MELP, proprietary codecs 
Cf 1.2–80 as in Ce  plus frame erasures and concealment 

[24], 0–25%, indep. and bursty, 20 ms frames 
 
Source datasets 7 and 8 were created specifically for training a NAWEnet. They use some 
original undistorted speech recordings from datasets 1–6 along with recordings from the ITU-T 
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P.501 [27], P-Series Supplement 23 [28], and Open Speech Repository [29] databases. To 
augment existing data we allowed the segment selection software to make multiple passes 
through the available original speech recordings. We required a minimum speech activity factor 
of 35% in dataset 7 and 75% in dataset 8. When a 3 second segment with suitable speech activity 
was located a uniformly distributed time offset (0 to 250 ms) was applied. These time offsets 
prevented any given original speech segment from appearing more than once in the datasets. 
These recordings were passed through software implementations of various speech coding and 
transmission conditions as summarized in  Table 4.  

Source datasets 9 and 10 parallel 7 and 8, respectively, but the original speech recordings are 
exclusively from the McGill University TSP [30] database. Thus these databases have otherwise 
unseen talkers and waveforms. The minimum speech activity factor here is 43%. 

Across the ten datasets the speech-activity factor for the segments ranged from 35% to 100% 
with a mean value of 81%. Together the datasets include 9 languages, 148 unique talkers, over 
75 different sources of distortion, and 133.5 hours of speech. 

We used the FR estimators PESQ, POLQA, and STOI to generate three target values for each 
speech segment. These targets were used for NAWEnet training, validation, and testing. These 
FR metrics have limitations and may not be ideally suited for the three-second format used here 
but each still produces meaningful results in this application. In Figure 1 we show histograms for 
the three target metrics over all available data. 

 

Figure 1. Histograms, means, and standard deviations of targets over all available data. 

4 Training Methodology 

In order to train NAWEnet we made training, validation, and testing datasets from each of the 10 
available source datasets. We built the training set by randomly selecting 50% of the segments in 
a source dataset without replacement. From the remaining segments in the source dataset we 
built the test set by randomly selecting 40% of the total data without replacement. The remaining 
10% of segments were then used for validation purposes. Once training, testing, and validation 
sets had been created for each source dataset, all training sets were concatenated into one 
aggregated training dataset; testing and validation sets were combined in the same manner.  

A constant phase inversion is inaudible so quality and intelligibility values and estimates are 
unchanged by phase inversion. We wanted the networks to learn invariance to waveform phase 
inversion so we performed inverse phase augmentation (IPA) by inverting the phase of the 
training, testing, and validation datasets and concatenating the unchanged datasets and the phase-
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inverted datasets. This resulted in 133.5, 106.8, and 26.7 hours of available training, testing, and 
validation data, respectively. In contrast, we did not seek to train any level invariance because 
level normalization is easily accomplished external to the network. 

We generated two sets of training/testing/validation corpora: S1 and S2. S1 used the above process 
on source datasets 1–8 and reserved the entirety of datasets 9 (U1) and 10 (U2) as fully unseen 
testing data to evaluate how well the network would generalize. S2 used the above process on all 
source datasets thus maximizing the breadth of training but leaving no unseen data. 

We used affine transformations to map PESQ and POLQA values ([1, 4.5]) and STOI values 
([0, 1]) to [-1, 1] before use as targets. For PESQ and POLQA we used a typical range mapping 
technique. Since STOI values in our dataset occupy a small portion of the full range possible for 
STOI output (seen in Figure 1), we subtracted the mean and divided by the standard deviation. 

NAWEnet was trained using mini-batches that were as large as GPU memory would allow, in 
this case 55 segments per batch. We used the Adam optimizer [31] with 10-4 learning rate, and L2 

regularization parameter set to 10-5. When the network had trained for an entire epoch we 
evaluated the validation set and logged the epoch RMSE (root mean-squared error) loss El and 
per-segment correlation between the target and the NAWEnet output, ρseg.  In the case that El  on 
the validation set had not decreased by at least 10-4 for 5 epochs, we multiplied the learning rate 
by 10-1. The network was trained for 30 epochs. 

We performed this training process using the NAWEnet architecture for PESQ, POLQA, and 
STOI targets separately using both the S1 and S2 training/testing/validation corpora. This required 
a total of six different training sessions and produced six different instances of NAWEnet. We 
used PyTorch to construct our datasets, and to construct, train, and test our model. The model 
was trained on an NVIDIA GeForce GTX 1070.1 

5 Results 

NAWEnet has roughly 40 million parameters to train; about 7 million reside in the convolutional 
feature extractor and nearly 33 million parameters reside in the first dense layer alone. It takes 
about 16 hours to train for 30 epochs on S2 when mini-batch size is 55 segments. Table 5 shows 
the per-segment correlation ρseg and RMSE values achieved on the test portion of source datasets 
individually and combined for all three target metrics. Figure 2 shows two-dimensional 
histograms for per-segment target and predicted values, for all three metrics. The architecture we 
describe is able to emulate PESQ, POLQA, and STOI with per-segment correlation of 0.95, 0.92, 
and 0.95 respectively. Correlations for training data exceed 0.96 in all cases. Figure 3 is a graph 
of the training and validation PESQ prediction ρseg values over the course of 30 epochs of 
training and demonstrates fast and stable training. Despite the extreme imbalance in the 
distribution of POLQA scores demonstrated in Figure 1 (43% of data is above 4; 14% above 

                                                 
1 Certain products are mentioned in this paper to describe the experiment design. The mention of such entities 
should not be construed as any endorsement, approval, recommendation, prediction of success, or that they are in 
any way superior to or more noteworthy than similar entities that were not mentioned. 
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4.45), NAWEnet manages to achieve ρseg > 0.91, a state-of-the art result. Note that RMSE values 
for STOI cannot be directly compared with those of PESQ and POLQA because STOI values 
have a range of 1.0; PESQ and POLQA a range of 3.5. 

Table 5. Per-segment Pearson correlation and RMSE achieved on testing data after training 
NAWEnet to target PESQ, POLQA and STOI separately. A ● indicates the source dataset was 

included in the training process. Results in the “combined” column reflect evaluation on the test 
portion of the specified aggregated dataset; S1 or S2. Results in columns corresponding to U1 and 
U2 in S1 reflect evaluation on the entirety of datasets 9 and 10 separately as completely unseen 

data. Training time reported as T. MOS values are available for source datasets 1–6; PESQ and 
POLQA (FR) have combined ρseg = 0.81; ANIQUE+ and P.563 (NR) have combined ρseg = 0.60 

and ρseg = 0.53 respectively. 
   1 2 3 4 5 6 7 8 9 10 combined 
   ● ● ● ● ● ● ● ● U1 U2 S1 

S1 

PESQ ρseg 0.946 0.849 0.865 0.953 0.975 0.965 0.937 0.958 0.879 0.856 0.955 
T = 13:8h RMSE 0.263 0.271 0.400 0.302 0.207 0.248 0.198 0.252 0.279 0.339 0.237 
POLQA ρseg 0.920 0.808 0.788 0.954 0.970 0.969 0.874 0.923 0.815 0.792 0.921 

T = 13:7h RMSE 0.358 0.266 0.417 0.302 0.240 0.247 0.254 0.321 0.300 0.367 0.298 
STOI ρseg 0.942 0.886 0.895 0.961 0.953 0.952 0.941 0.950 0.774 0.809 0.947 

T = 13:6h RMSE 0.025 0.016 0.034 0.020 0.028 0.023 0.019 0.026 0.022 0.026 0.024 
              
   1 2 3 4 5 6 7 8 9 10 combined 
   ● ● ● ● ● ● ● ● ● ● S2 

S2 

PESQ ρseg 0.950 0.880 0.877 0.955 0.969 0.974 0.938 0.961 0.915 0.889 0.953 
T = 16:5h RMSE 0.252 0.251 0.383 0.285 0.222 0.229 0.197 0.242 0.236 0.293 0.236 
POLQA ρseg 0.929 0.814 0.803 0.963 0.973 0.962 0.870 0.923 0.855 0.827 0.915 

T = 16:1h RMSE 0.336 0.283 0.433 0.281 0.225 0.267 0.260 0.320 0.242 0.335 0.297 
STOI ρseg 0.935 0.891 0.881 0.964 0.955 0.958 0.943 0.953 0.863 0.873 0.946 

T = 16h RMSE 0.024 0.016 0.035 0.020 0.026 0.022 0.019 0.024 0.016 0.022 0.022 
 

 

Figure 2. Two-dimensional histograms showing target vs. predicted values for PESQ, POLQA, 
and STOI when evaluated on the test data portion of S2. Segments per bin is given by the scale at 

the right. 
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Figure 3. PESQ ρseg on training and validation portions of S2 over 30 epochs. A learning rate 
adjustment occurred shortly after 15 epochs and validation ρseg then remained fairly constant. 

To put these results in context we can compare FR quality metrics PESQ and POLQA with the 
MOS scores that are available for source datasets 1–6. The correlation between these MOS 
scores and either PESQ or POLQA is ρseg  = 0.81. The NR quality metrics ANIQUE+ and P.563 
achieve ρseg  = 0.60 and 0.53 respectively. With ρseg above 0.91, NAWEnet results agree with FR 
measures better than those FR measures agree with MOS and far better than other NR measures 
agree with MOS. Though we have not trained NAWEnet to learn a MOS target directly, we have 
demonstrated the framework’s flexibility to learn very different targets given sufficient data. 

In contrast to recent work, NAWEnet accepts the waveform itself as input, learns appropriate 
features, and predicts one of three target metrics. Quality-Net [11] targets only PESQ and uses 
magnitude spectrum as an input but has the advantage of not requiring a fixed-length input. The 
best results in [16] (ρ = 0.87) target only crowd-MOS and were achieved by using Mel-cepstral 
coefficients and other derived features as an input to a dense network. NISQA [17] achieves a 
per-condition correlation of 0.89, targeting MOS and POLQA jointly, by first creating a set of 
spectrograms and then further processing them with a Mel filter bank. The authors of [18] 
calculate features for input to a DNN and further process the output while targeting only MOS. 

NAWEnet instances tasked with learning PESQ and POLQA show greater ρseg on source dataset 
8 than on source dataset 7. The two source datasets share common speech source but dataset 8 
includes frame erasures and concealments. The higher correlation on dataset 8 is unexpected 
because frame erasure and concealment typically makes quality measurement more difficult. A 
possible explanation is that dataset 8 is large—it constitutes 46% of S2 .  

Examining source datasets 9 and 10 in S1 we see that NAWEnet had some difficulty generalizing 
to completely unseen data with ρseg roughly equivalent to the two more difficult source datasets: 
2 and 3. In addition to having 21 unseen talkers, source datasets 9 and 10 also had the lowest 
average speech activity of all source datasets. However, when source datasets 9 and 10 are 
included as part of S2, ρseg on the test portions of those datasets improves. Source datasets 9 and 
10 constitute 15% of data in S2. This shows that NAWEnet is capable of learning to handle lower 
levels of speech activity and new talkers with commensurate training data. Values for ρseg in the 
test portions of source datasets 1–8 for S2 improved in 17 of 24 cases (8 source datasets × 3 target 
measurements) compared to S1 but were not significantly harmed otherwise. This indicates that 
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the NAWEnet architecture could improve performance on unseen inputs with a carefully tuned 
training corpus. 

By reducing training time and improving accuracy the PReLU activation function was found to 
have superior performance to the popular leaky ReLU activation. Allowing the network to learn 
fn or do distinct PReLU parameters per section significantly increases the flexibility of the 
network without adding an undue number of parameters. 

Because S1 in the convolutional feature extractor is operating on raw audio samples it is slightly 
different than the rest of the convolutional sections. It was experimentally found that fl = 11 
performed better than fl = 7 in S1, but fl > 11 gave no additional benefit. The superiority of the 
slightly longer and more selective filter is consistent with the intuitive notion that emphasizing or 
attenuating specific frequencies in the first layer is an important step towards feature extraction. 
We found that average pooling is superior to maxpooling for downsampling the first layer and 
this is consistent with the observation that no single audio sample is more important than the 
next. 

6 Conclusion 

We have demonstrated that the NAWEnet design is flexible and can quickly learn the necessary 
features and mappings to emulate two different NB speech quality metrics and a speech 
intelligibility metric. 

Future work includes testing suitability of these new networks for transfer learning, pruning the 
number of parameters in the dense portion of the network, using more sophisticated training 
techniques, and implementing additional deep learning best practices. It may be beneficial to 
teach the networks to learn auto-regressive moving-average filters rather than simple moving 
average filters. We plan to inspect our results to see if it is possible to know what features 
NAWEnet is learning and how those features are being quantified and combined to produce 
speech quality or speech intelligibility values. We also plan to use the WEnets framework to 
address higher sample rates. Though it is difficult to find a subjective quality database that is 
large enough to train a convolutional network, it would be very interesting to see how this 
framework performs on subjective test scores. 

7 References 

[1] S. Voran, “Estimation of speech intelligibility and quality” in Handbook of Signal 
Processing in Acoustics, vol. 2, ch. 28, pp. 483–520, Springer, New York, Oct. 2008. 

[2] ITU-T Recommendation P.862, “Perceptual evaluation of speech quality (PESQ): An 
objective method for end-to-end speech quality assessment of narrow-band telephone 
networks and speech codecs,” Geneva, 2001. 

[3] ITU-T Recommendation P.863, “Perceptual objective listening quality prediction,” 
Geneva, 2018. 



 11 

[4] C. Taal, R. Hendriks, R. Heusdens, and J. Jensen, “An algorithm for intelligibility 
prediction of time–frequency weighted noisy speech,” IEEE Transactions on Audio, 
Speech, and Language Processing, vol. 19, no. 7, pp. 2125–2136, Sep. 2011. 

[5] J. Liang and R. Kubichek, “Output-based objective speech quality,” in Proc. IEEE 
Vehicular Technology Conference, Jun. 1994, vol. 3, pp. 1719–1723. 

[6] L. Malfait, J. Berger, and M. Kastner, “P.563 — The ITU-T standard for single-ended 
speech quality assessment,” IEEE Trans. Audio, Speech, and Language Processing, vol. 
14, no. 6, pp. 1924–1934, Nov. 2006. 

[7] D. Kim and A. Tarraf, “ANIQUE+: A new American National Standard for non-intrusive 
estimation of narrowband speech quality,” Bell Labs Technical Journal, vol. 12, no. 1, pp. 
221–236, Spring 2007. 

[8] A. H. Andersen, J. M. de Haan, Z. Tan, and J. Jensen, “A non-intrusive short-time 
objective intelligibility measure,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal 
Processing, Mar. 2017, pp. 5085–5089. 

[9] T. H. Falk and W. Chan, “Single-ended speech quality measurement using machine 
learning methods,” IEEE Trans. Audio, Speech, and Language Processing, vol. 14, no. 6, 
pp. 1935–1947, Nov. 2006. 

[10] M. H. Soni and H. A. Patil, “Novel deep autoencoder features for non-intrusive speech 
quality assessment,” European Signal Processing Conference, Nov. 2016, pp. 2315–2319. 

[11] S. Fu, Y. Tsao, H. Hwang, and H. Wang, “Quality-Net: An end-to-end non-intrusive 
speech quality assessment model based on BLSTM,” in Proc. Interspeech, Sep. 2018. 

[12] H. Salehi, D. Suelzle, P. Folkeard, and V. Parsa, “Learning-based reference-free speech 
quality measures for hearing aid applications,” IEEE/ACM Trans. Audio, Speech, and 
Language Processing, vol. 26, no. 12, pp. 2277–2288, 2018. 

[13] C. Spille, S. D. Ewert, B. Kollmeier, and B. T. Meyer, “Predicting speech intelligibility 
with deep neural networks,” Computer Speech & Language, vol. 48, pp. 51– 66, 2018. 

[14] R. Huber, M. Krger, and B. T. Meyer, “Single-ended prediction of listening effort using 
deep neural networks,” Hearing Research, vol. 359, pp. 40 – 49, 2018. 

[15] P. Seetharaman, G. J. Mysore, P. Smaragdis, and B. Pardo, “Blind estimation of the speech 
transmission index for speech quality prediction,” in Proc. IEEE Int. Conf. on Acoustics, 
Speech and Signal Processing, Apr. 2018, pp. 591–595. 

[16] A. R. Avila, H. Gamper, C. Reddy, R. Cutler, I. Tashev, and J. Gehrke, “Non-intrusive 
speech quality assessment using neural networks,” in Proc. IEEE Int. Conf. on Acoustics, 
Speech and Signal Processing, May 2019, pp. 631–635. 



 12 

[17] G. Mittag and M. Sebastian, “Non-intrusive speech quality assessment for super-wideband 
speech communication networks,” in Proc. IEEE Int. Conf. on Acoustics, Speech and 
Signal Processing, May 2019, pp. 7125–7129. 

[18] J. Ooster and B. T. Meyer, “Improving deep models of speech quality prediction through 
voice activity detection and entropy-based measures,” in Proc. IEEE Int. Conf. on 
Acoustics, Speech and Signal Processing, May 2019, pp. 636–640. 

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image 
recognition,” in Proc. 3rd Int. Conf. on Learning Representations, May 2015. 

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by 
reducing internal covariate shift,” preprint arXiv:1502.03167, 2015. 

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level 
performance on imagenet classification,” preprint arXiv:1502.01852, 2015. 

[22] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, 
“Improving neural networks by preventing co-adaptation of feature detectors,” preprint 
arXiv:1207.0580, 2012. 

[23] ITU-T Recommendation P.191, “Software tools for speech and audio coding,” Geneva, 
2005. 

[24] ITU-T Recommendation G.711, Appendix I, “A high quality low-complexity algorithm for 
packet loss concealment with G.711,” Geneva, 1996. 

[25] ITU-T Recommendation P.810, “Modulated noise reference unit (MNRU),” Geneva, 1996. 

[26] “IEEE Recommended practice for speech quality measurements,” IEEE Trans. Audio and 
Electroacoustics, vol. 17, no. 3, pp. 225–246, Sep. 1969. 

[27] ITU-T Recommendation P.501, “Test signals for use in telephonometry,” Geneva, 2017. 

[28] ITU-T, “P series supplement 23 speech database,” Geneva, 1998. 

[29] Open Speech Repository, Available at https://www.voiptroubleshooter.com/. 

[30] Telecommunications and Signal Processing Laboratory Speech Database, Available at 
http://wwwmmsp.ece.mcgill.ca/Documents/Data/. 

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. 3rd Int. 
Conf. on Learning Representations, May 2015. 

https://www.voiptroubleshooter.com/
http://wwwmmsp.ece.mcgill.ca/Documents/Data/

	1 Introduction
	2 Network Design
	2.1 WEnets Framework Principles
	2.2 NAWEnet Implementation

	3 Data Corpora
	4 Training Methodology
	5 Results
	6 Conclusion
	7 References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 220
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 220
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on 'Publish to Web'] Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /DocumentRGB
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [220 220]
  /PageSize [612.000 792.000]
>> setpagedevice


