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Abstract 

Video quality metrics (VQMs) have often been evaluated and compared using simple measures of correlation to 

subjective mean opinion scores from panels of observers. However, this approach does not fully take into account the 

variability implicit in the observers. We present techniques for determining the statistical resolving power of a VQM. 
defined as the minimum change in the value of the metric for which subjective test scores show a significant change. 

Resolving power is taken as a measure of accuracy. These techniques have been applied to the video quality experts 
group (VQEG) data set and incorporated into the recent Alliance for Telecommunications Industry Solutions (A TIS) 
Committee TIA I series of technical reports (TRs), which provide a comprehensive framework for characterizing and 

validating full-reference VQM. These approved TRs, while not standards, will enable the US telecommunications 
industry to incorporate VQMs into contracts and tariffs for compressed video distribution. New methods for assessing 

VQM accuracy and cross-calibrating VQMs are an integral part of the framework. These methods have been applied to 

two VQMs at this point: peak-signal-to-noise ratio and the version of Sarnoff's just noticeable difference metric 
(JNDmetrix 11 ) tested by VQEG (Rapporteur Ql l/12 (VQEG): Final report from the VQEG on the validation of 

objective models of video quality assessment. June 2000). The framework is readily extensible to additional VQMs. 
© 2003 Elsevier B. V. All rights reserved. 
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1. Introduction 

US telecommunication companies use digital 
techniques of compression for the transport of 
video over long distances. The transport or a given 
digital video stream rrom source to final destina-
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609-895-7472. 

E-mail aclclrC'ss: mbrillci!)dutacolor.com (M.H. Brill). 

tion often requires the services or more than one 
telecommunications company. The companies 
involved need a mutually accepted way of measur­
ing video quality at the points where the video is 
transmitted from one network to the next. Only in 
this way can end-to-end video quality be managed 
and assured to the end-user. Since these are 
publicly regulated companies, industry-sanctioned 
methods ror measuring video quality are required. 
Such objective video quality metrics (VQMs) are 
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needed to help design and control digital transmis­
sion systems. 

Many VQMs exist, including several commer­
cial products now being used in varying degrees by 
industry (for example, see [6] for a description of 

10 different VQMs). To assure quality of service 
across many platforms and VQM choices, there is 
a need to quantify the accuracy of each VQM and 
also a need to translate (or cross-calibrate) from 
the output of one VQM to that of another. VQMs 
have traditionally been evaluated and compared 
using simple measures of correlation to subjective 
mean opinion scores from panels of observers. 
However, this approach does not fully take into 
account the variability implicit in the observers. 
The present paper describes the recent effort of 
one US telecommunication standards organiza­
tion, the Alliance for Telecommunications Indus­
try Solutions (A TIS), to develop a better means of 
quantifying VQM accuracy and cross-calibration. 
Computation of the quantitative relationships 
requires the use of an existing subjective data set 
and corresponding videos (undistorted and dis­
torted). We will describe the new methods in detail 
and present example computations using a selected 
subset of subjective data from the video quality 
experts group (VQEG) [6]. We will also present a 
summary of possible future improvements that can 
be made to the method. 

2. Background on ATIS TlAl.l 

TIA 1.1 (Multi-Media Communications Coding 
and Performance) was a working group under 
Committee T l  (Telecommunications) of ATIS. 
(TIA 1.1 has recently disbanded and merged with 
TIAI.3, Performance of Networks and Services). 
In response to the perceived urgent need for 
sanctioned guidance on video quality, TIAI.I 
decided in February 200 I to develop a series of 
technical reports (TRs) rather than standards, 
which can take much longer time to develop. Four 
of these TRs [1--4] were approved in October 200 I 
and a fifth TR was approved in January 2002 [5]. 
The first TR [I] provides an extensible framework 
into which any properly documented VQM can be 
incorporated and quantitatively related to other 

VQMs that are already part of the report series. 
The second TR [2) provides a description of 
normalization methods for correcting calibration 
problems in the distorted video stream (e.g., 
spatial/temporal shifts, non-unity gains, level 
shifts) before making any VQM measurements. 
The third and fourth TRs [3,4) provide full 
implementation details for two VQMs currently 
used by industry, peak-signal-to-noise ratio 
(PSNR) and Sarnoffs JNDmetrix as tested by 
VQEG, respectively. The fifth TR [5] provides 
sample data and program code for implementing 
the VQM accuracy and cross-calibration methods 
described in [I] for PSNR [3] and Sarnoffs 
JNDmetrix [4]. All of the TRs are available from 
www .a tis.org/atisjdocstore. 

3. Initial data analysis 

The primary data used in this analysis are 
subjective scores of various video-source materials 
subjected to various kinds of digital-processing 
distortion. These data must be brought into 
a form in which they can be used to evaluate 
VQMs. 

Let each video-source/distortion combination in 
a data set be called a "situation", and let N be the 
number of situations in this data set. A subjective 
score for situation i and viewer I will be denoted as 
Si/, and an objective score for situation i will be 
denoted as 0;. Averaging over a variable such as 
viewer will be denoted with a dot in that variable 
location. For instance, the mean opinion score of 
a situation will be denoted as S; •. The subjective­
score statistics from each pair (i,j) of these 
situations are to be assessed for significance of 
VQM difference, and then used to arrive at 
a resolving power for the VQM difference, as a 
function of the VQM value. 

Prior to any statistical analysis, the original 
subjective mean opinion scores S;. are linearly 
transformed to the interval [0,1], defined as the 
common scale, where 0 represents no-impairment 
and I represents most impairment. If best repre­
sents the no-impairment value of the original 
subjective scale and II'Orst represents the maximum 
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impairment of the original subjective scale, then 
the scaled scores S;. are given by 

S;. = (S;. - best)/(worst - best). (I) 

Next. the VQM scores are transformed to this 
common scale as a byproduct of the process of 
fitting the VQM scores to the subjective data. 
Fitting removes systematic differences between the 
VQM and the subjective data (e.g., de shift) that 
do not provide any useful quality discrimination 
information. In addition, fitting all VQMs to one 
common scale will provide a method for cross­
calibration of those VQMs. 

The simplest method of data fitting is linear 
correlation and regression. For subjective video 
quality scores, this may not be the best method. 
Experience with other video quality data sets [6] 
indicates chronically poor fits of VQM to sub­
jective scores at the extremes of the ranges. This 
problem can be ameliorated by allowing the fitting 
algorithm to use nonlinear, but still monotonic 
(order-preserving), methods. If a good nonlinear 
model is used, the objective-to-subjective errors 
will be smaller and have a central tendency closer 
to zero. 

Nonlinear methods can be constrained to 
effectively transform the VQM scale to the [0, I] 
common scale. Besides improving the fit of data 
with a VQM, a fitting curve also offers an 
additional advantage over the straight-line lit 
implied by the native scale (i.e., the original scale 
of the VQM): the distribution of objective-to­
subjective errors around the fitted model curve is 
less dependent on the VQM score. Of course, the 
nonlinear transformation may not remove all the 
score dependency of objective-to-subjective errors. 
To capture the residual dependence, it would 
ideally have been useful to record objective-to­
subjective error as a function of VQM value. 
However, our database was too small to divide 
among VQM bins in a statistically robust way. 
Therefore, as will be clear in Section 4, we 
compute a sort of average measure over the 
VQM range. 

We denote the original (native scale) objective 
scores as 0;, and the common scale objective 
scores as 0;. A fitting function F (depending on 
some fitting parameters) connects the two. The 

function used to fit the objective VQM data (0;) to 
the scaled subjective data (S;.) must have the 
following three attributes: (a) a specified domain 
of validity, which should include the range of 
VQM data for all the situations used to define the 
accuracy metric; (b) a specified range of validity, 
defined as the range of Common Scale scores 
(a sub-range of [0, I]) to which the function maps; 
and (c) monotonicity (the property of being either 
strictly increasing or strictly decreasing) over the 
specified domain of validity. Of course, the fitting 
function would be most useful as a cross-calibra­
tion tool if it were monotonic over the entire 
theoretical domain of VQM scores. covered the 
entire subjective common scale from 0 to I, and 
mapped to zero the VQM score that corresponds 
to a perfect video sequence (no degradations, 
hence a null distortion). However, this ideal may 
not be attainable for certain VQMs and function 
families used to perform the fit. 

One possible family of fitting functions is the set 
of polynomials of order M. There are also two 
kinds of logistic functions. All these are discussed 
in [I]. The selection of a fitting-function family 
(including a priori setting of some of the para­
meters) depends on the asymptotic (best and 
worst) scores of the particular VQM. 

4. VQM accuracy algorithm 

We define a new quantitative measure of VQM 
accuracy, called resolviuo power, defined as the 
AVQM value above which the conditional sub­
jective-score distributions have means that are 
statistically different from each other (typically at 
the 0.95 significance level). Such an "error bar" 
measure is needed in order for video service 
operators to judge the significance of VQM 
fluctuations. 

Of several ways to assess a VQM's resolving 
power, the Student's t-test was chosen. This test 
was applied to the measurements in all pairs i andj 
of situations. Emerging from the test are the 
AVQM (i.e., the difference between the greater and 
lesser VQM scores of i and j) and the sinnificauce 

from the t-test. This siouificauce is the probability 
p that, given i and j, the greater VQM score is 
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associated with the situation that has the greater 
true underlying mean subjective score. Thus, p is 
the probability that the observed difference in 
sample means of the subjective scores from i and j 
did not come from a single population mean, nor 
from population means that were ordered oppo­
sitely to the associated VQM scores. To capture 
this ordering requirement, the t-test must be one­
tailed. For simplicity, the t-test was approximated 
by a z-test. This approximation is a close one when 
the number of viewers is large, as was the case for 
the VQEG data set (6]. 

An analysis of variance (ANOV A) test might 
seem better than the t-test method. However, 
although a single application of ANOV A will 
determine whether a statistical separation exists 
among a set of categories, further paired compar­
isons are needed to determine the magnitudes and 
conditions of the statistically significant differ­
ences. Also, ANOVA assumes equal category-data 
variances (which may not be true). Finally, 
although ANOV A resides in many software 
packages, finding the right software package may 
not be easy (e.g., not all ANOVA routines will 
accept different quantities of data in different 
categories). 

Ref. [5] provides data and program code to fully 
implement the VQM accuracy algorithm that is 
described here. The algorithm has the following 
steps: 

Step 1: Start with an input data table with N 
rows, each row representing a different situation 
(i.e., a different source video and distortion). Each 
row i consists of the following: the source number, 
the distortion number, the VQM scores 0;, the 
number of viewer responses N;. the mean sub­
jective opinion score S; •• and the sample variance 
of the subjective scores V;. 

Step 2; Transform the subjective scores S;. to 
the common scale S;. as described in Section 3. 
The variance V; of the subjective scores must also 
be scaled accordingly as 

V; = V;j(worst- best)�. (2) 

Note that transforming the subjective scores and 
their variances is optional. It will not change the 
z-statistic defined below, but it may change the 
VQM fitting process. Next, transform the VQM 

scores 0; to the common scale using a fitting 
function as discussed in Section 3. The result of the 
fitting process is a set of common scale VQM 
scores 0;. Display the coefficient values used in the 
fit, and also the VQM domain over which the fit 
was done (domain of validity). 

Step 3: For each pair of distinct situations i and 
j (i "# j), use a one-tailed .:-test to assign a 
probability of siynijicance to the difference be­
tween the greater and lesser VQM (0; and bj. 
respectively). The significance is the probability 
that the greater VQM score comes from the 
situation with the greater true underlying mean 
subjective score. The z-score is 

(3) 

and the probability of significance of the z-score 
p(z) is just the cumulative distribution function 
of.:: 

p(z) = c df(.:) = (2n:)- 0.5 
f'"'J 

exp(- z2 /2) dz. 

(4) 

Step 4: Create a scatter plot of p(:::) (ordinate) 
versus Ll VQM score (abscissa). Given N situa­
tions, record each pair (i,j) with i > j, record the 
VQM difference 0; - Oj in a vector of length 
N(N- I )/2 called AVQM (with index k), and 
record the corresponding :::-score in a vector called 
Z with length N(N- I )/2 (with the same index k). 
It is desired that Ll VQM(k) is always nonnegative, 
which can be ensured by definition of the 
otherwise arbitrary ordering of the endpoints i 
and j. To ensure that this is so, if Ll VQM(k) is 
negative, then replace Z(k) by -Z(k) and 
Ll VQM(k) by -Ll VQM(k). 

Fig. I provides a scatter plot of the subjective Z 
vector versus the A VQM vector for the JNDmetrix 
VQM on the common scale, before computation 
of p(z) as given in Step 3. 

Step 5: Consider 19 bins (indexed by m) of 
LlVQM, each one of which spans 1/10 of the total 
range of LlVQM. The bins overlap by 50%. 
Associate Ll VQM111 with the midpoint of each bin 
and associate p111 with the mean of p(:::) for all z in 
bin m. 

Step 6: Draw a curve through the points 
(LlVQM111,pm) to produce a graph of p versus 
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Fig. I. Scaller plot of subjective =-score versus .1. VQM for the 
JNDmetrix of [4] on the common scale. 

AVQM. Note that p can be interpreted as the 
average probability of significance. 

Step 7: Select a threshold probability p, draw a 
horizontal line at the ordinate value p, and let its 
intercept with the curve of step 6 determine the 
threshold AVQM, defined as the accuracy. For an 
average probability of significance p or greater, the 
AVQM should exceed this threshold. Common 
choices of p are 0.68, 0. 75, 0.90, and 0.95. 

Having found a value of AVQM for a chosen p, 
one can use it directly in common scale, as would 
be appropriate for cross-calibration in Section 6. 
Alternatively, for other purposes, one has the 
option of mapping this AVQM value back to the 
native scale to give a native scale resolving power 
R as a function of the native objective score 0: 

R(O) = IF-1[F(0) + AVQM]- 01, (5) 

where F is the fitting function defined in Section 3. 
Fig. 2 shows a plot of average probability of 

significance (or confidence) versus common scale 
AVQM score, for PSNR [3] and JNDmetrix [4]. By 
choosing an acceptable confidence, one arrives at a 
value of AVQM which is adopted as the common 
scale resolving power of the VQM. Note that, at 
0.90 confidence, the resolving powers of PSNR 
and JNDmetrix are 0.14 and 0.15, respectively, 
whereas at 0.95 confidence, the respective resolving 
powers are 0.20 and 0.18. For this VQEG 
subjective data subset [5], there is no clear trend 
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Fig. 2. Confidence versus common-scale .1. VQM score. for 

PSNR (dashed curve) and JNDmetrix (solid curve). 

indicating that either PSNR or JNDmetrix has 
more resolving power in general. 

5. VQM classification errors 

Ref. [5] also provides sample data and program 
code for computation of classification errors, 
which is another way to evaluate the effectiveness 
of a VQM. A classification error is made when the 
subjective test and the VQM lead to different 
conclusions on a pair of situations. There are three 
different types of classification errors that can arise 
when 11sing a VQM. The "false tie" error is 
probably the least offensive error. This occurs 
when the subjective test says two situations are 
different but the VQM says they are the same. 
A "false differentiation" error is usually more 
offensive. This occurs when the subjective test says 
two situations are the same but the VQM says they 
are different. The "false ranking" error would 
generally be the most offensive error. In false 
ranking, the subjective test says situation i is better 
than situation j, but the VQM says just the 
opposite. 

Fig. 3 presents an example plot of the relative 
frequencies for the different classification errors 
versus AVQM. For the plot, the common scale was 
used for both the objective (PSNR) and subjective 
scores (VQEG data subset) and the .:-score 
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fig. 3. Frequencies for the different types of classification 
errors for PSNR of [3) where the subjective and objective scores 

arc both on the common scale. 

threshold was selected to give an estimated 95% 
confidence in the subjective classifications. Note 
that as L\ VQM is increased, the VQM will declare 
more and more pairs of situations as equivalent. 
This reduces the occurrences of false differentia­
tions and false rankings, but increases the occur­
rence of false ties. One might use a graph like this 
to select an appropriate value of L\ VQM. For 
example, one might select L\ VQM to maximize the 
probability of making correct decisions, or to 
minimize some weighted sum of the different 
classification errors. Note that the four outcomes 
shown in Fig. 3 are exhaustive and thus the 
relative frequencies will add up to 1.0 for each 
value of L\VQM. 

6. VQM cross-calibration 

The need to relate two VQMs is met by the 
transformation to a common scale described in 
Section 3. Once two VQMs (say, PSNR and 
JNDmetrix) are transformed to the common scale 
(through an agreed-upon subjective data set), the 
transformation from PSNR to JNDmetrix is the 
forward transformation from PSNR to the com­
mon scale, composed with the inverse transforma­
tion from JNDmetrix to the common scale. If the 

domains or ranges of the mapping mismatch. the 
cross-calibration is undefined. 

Cross-calibration of two VQMs does not mean 
one of the VQMs can be substituted error-free for 
the other. One reason is that the present cross­
calibration depends on the particular subjective 
data that define the common scale. More funda­
mentally, even within the chosen set of situations, 
there are likely four situations (call them 1-4) such 
that both VQM scores change in the same 
direction going from I to 2, but in opposite 
directions going from 3 to 4. Such behavior makes 
one VQM better than another, and cannot be 
captured in any cross-calibration method. 

7. Outlook 

The TIAI methods promise to be useful in an 
arena even larger than US telecommunications. 
For example, they are included in the test plans for 
future VQEG efforts [ http://www.its.bldrdoc.gov/ 
vqeg/]. However. there is room for improvement. 

In step 5 of Section 4, the use of bins and bin 
averages produces the possible (though perhaps 
rare) problem of a low occupation number in a 
bin. Such an occurrence would be less likely if one 
were able to merge bins as much as possible. A 
different method that does not use bins follows. 
First, select a .:-score threshold (i.e., percent 
confidence, as defined in step 3 of Section 4) that 
is appropriate for the application. For example, 
select :; = 2.4 to get a confidence of 99%. Next, 
accumulate z-scores above and below this .:-score 
threshold to the right of a particular L\ VQM score, 
and adjust that L\ VQM score to its minimum value 
such that, say, at least 95% of the data points lie 
above the z-score threshold. In this example, the 
resulting value of L\ VQM gives the minimum 
VQM difference required so that 95% of the 
situation pair decisions have at least 99% con­
fidence. 

Another useful exercise would be to define the 
accuracy of the cross-calibration between two 
VQMs. This would provide an automatic safe­
guard against too much trust in cross-calibrating 
from say a good VQM to a bad one, apropos of 
the caveat in Section 6. 

•••••••••••••••• ;..<...< . . . 
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