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Abstract—Objective speech quality and intelligibility estima-
tors do not correctly assess speech generated by deep neu-
ral networks (DNNs). We use 256 speech files and subjective
scores that cover 14 DNN speech conditions and 18 nonDNN
speech conditions to show that 8 different full-reference (FR)
estimators consistently underestimate subjective scores for the
DNN conditions. Conversely, we find that five no-reference (NR)
estimators consistently overestimate subjective scores for the
DNN conditions. We show that a rudimentary but effective
solution to these shortcomings is to simply average an FR result
with an NR result. We also explore root causes and propose more
fundamental solutions. It has been previously suggested that FR
estimators over-penalize inaudible timing variations or jitter. We
conduct several experiments that measure and remove jitter from
spectral representations of DNN speech inside FR estimators.
Jitter removal compensates for some of the underestimation,
thus confirming that jitter is a part of the cause. In additional
experiments we show that power mismatches on a syllabic
time-scale also contribute to the underestimation issue in FR
estimators. Regarding NR estimators, we suggest that they can
be trained to accurately rate DNN speech when sufficient speech
signals and corresponding subjective scores are available.

Index Terms—DNN speech, neural speech, objective estimator,
speech intelligibility, speech quality

2021 Thirteenth International Conference on Quality of Multimedia Experience (QoMEX)

I. INTRODUCTION

Speech signals are essential in many multimedia expe-
riences and the quality or intelligibility of speech signals
can very strongly influence the overall multimedia quality
of experience. Objective estimators are can provide efficient
and effective means for determining speech quality and in-
telligibility in many existing multimedia telecommunications
environments. Full-reference (FR) estimators compare input
and output speech signals of a system-under-test. No-reference
(NR) estimators require only the output. Now Deep Neural
Networks (DNNs) that generate speech from text or from
speech encoder parameters are emerging, thus enabling DNN-
based speech coding for multimedia telecommunications ap-
plications [1]–[12].

But measuring DNN speech is problematic for both FR and
NR speech quality and intelligibility estimators. Consequently,
evaluations of DNN speech are best done by relatively slow
and expensive subjective tests. In [6] it was noted that the
well-established FR quality estimator POLQA [13] “did not
reflect informal listening impressions” for speech produced by

the parametric WaveNet DNN coder. The objective estimates
were far lower than the listening impressions. This finding has
also been stated in [8], [9]. In [14] a much more detailed study
identifies aspects of speech signals that may contribute to the
issue. These include “micro-alignment time shifts” and “pitch
accuracy.” These are related to each other because warping or
distorting the time axis will also distort pitches. They are also
consistent with the statement in [6] that artificially low quality
estimates were “not unexpected as the parametric WaveNet
coder changes the signal waveform and the timing of the
phones.”

In the next section we describe the speech files and subjec-
tive scores we use to study this issue. We then report and
discuss how objective estimators respond to this data, and
resolutions to shortcomings in those responses. In Section IV,
we detail our experiments with modifying FR estimators to
achieve the invariances needed to more accurately evaluate
DNN speech.

II. SPEECH FILES AND SUBJECTIVE SCORES

We received crowd-sourced subjective test scores and the
corresponding wideband speech files (fs = 16k) associated
with the five tests described in [9]–[11]. These tests followed
the multi-stimulus test with hidden reference and anchor
(MUSHRA) [15] paradigm where listeners are instructed to
submit a “subjective judgement of the quality level for each
of the sound excerpts” using a 0 to 100 scale. This scale is
divided into five equal intervals that are additionally labeled
“bad,” “poor,” fair,” “good,” and “excellent” [15]. Each speech
file received ratings from 100 different listeners. The resulting
scores span most of the 100 point scale. The lowest per-file
mean score is 10.8 and the highest is 100.0. The largest 95%
confidence interval (CI) for a file is 4.4 and the average CI is
2.7, so the 100 point scale is well-resolved.

Four of the tests covered six conditions each, and the fifth
test covered eight conditions. (A “condition” is either a speech
codec or original speech.) Thus 32 different conditions were
tested. Eight speech files were used to test each condition,
and these files were different in the different tests. With 32
conditions and 8 files per condition, we have 256 speech files
and subjective scores to drive our study.

The five tests evaluate 14 DNN-based codecs and 18 con-
ventional (nonDNN) conditions in total. The 14 DNN codecs
include variations of LPCNet [9]–[11], WaveRNN+ [9], andU.S. Government work not protected by U.S. copyright



WaveNet [11]. The 18 nonDNN conditions serve as anchors or
points of reference in the tests. These include original (appears
5 times), µ-law PCM, Opus 9 kbps (appears 4 times), Opus
6 kbps (appears twice), Speex 4 kbps (appears 4 times), and
MELP 2.4 kbps (appears twice).

We listened to the speech files and found that the speech
produced by WaveRNN+ per [9] and LPCNet per [9]–[11] in-
cludes some raspiness, or speech-correlated noise that sounds
similar to quantization noise but with a bit more spectral
or temporal structure than quantization noise. This impair-
ment decreases as the number of dense equivalent units is
increased [9] or when quantization is removed [10]. Speech
from WaveNet per [11] does not have this artifact, but sounds
as if some syllables are over- or under-emphasized in a slightly
frequency-selective manner. The result is a slightly unnatural
sound, as if the talker suffers from a mild impairment or is
making a poor attempt to add dramatic flair to the delivery.

III. OBJECTIVE EVALUATIONS

MUSHRA is a quality scale (it quantifies the pleasing
or non-pleasing nature of speech sounds) which is different
from, yet related to, an intelligibly scale (which quantifies
information transferred by speech signals). To maximize the
breadth of our work, we applied both quality and intelligibility
estimators to the speech files described in Section II. The
nine quality and four intelligibility estimators are labeled
numerically in Table I. The first eight estimators are FR and
the next five are NR.

FR estimators use “reference speech” (the input to the
speech encoder or the system-under-test) as well as “test
speech” (the output of the speech decoder or the system-under-
test). NR estimation is more challenging because reference
speech is not used, and this also means that NR estimation is
possible in situations where FR is not. The final entry in Table
I is the average of two others and the motivation for this is
provided later in this section.

Note that fixed time offsets (delays) between reference and
test files do not influence subjective scores and such offsets
must be removed as part of the FR estimation process. Some
FR implementations do this internally and others require it be
done externally. Thus we used delay estimates from WB-PESQ
to time-align reference and test signals before processing by
the other FR estimators. Also note that FR estimators 1, 2, 3,
and 4 attempt to track varying delays between reference and
test files and the others do not.

We used a quadratic function to map each estimator output
to the MUSHRA scale (0 to 100),

c0 + c1q + c2q
2 = M̂ ≈M, (1)

where q is an estimator output, M is a MUSHRA score,
and the coefficients ci minimize the RMS value of M̂ −M
over the 18 nonDNN conditions under the constraint that (1)
is monotonic over the entire range of the data. These 18
conditions have been broadly available and would have been
used in the development of at least some of the estimators.
Fig. 1 shows example results for five estimators.

TABLE I
OBJECTIVE ESTIMATORS AND LABELS USED IN FIGS. 2 AND 3.

Label Name and Reference Type Dimension
1 POLQA v2.4 [13] FR Quality
2 WB–PESQ [16] FR Quality
3 ViSQOL V3 [17] FR Quality
4 ViSQOL [18] FR Quality
5 PEMO [19] FR Quality
6 SIIBGauss [20] FR Intelligibility
7 ESTOI [21] FR Intelligibility
8 STOI [22] FR Intelligibility
9 NISQA [23] NR Quality
10 WAWEnet mode 1 [24] NR Quality
11 WAWEnet mode 2 [24] NR Quality
12 WAWEnet mode 3 [24] NR Quality
13 WAWEnet mode 4 [24] NR Intelligibility
14 (WB–PESQ + FR+ Quality

WAWEnet mode 1) / 2 NR

A. Objective-Subjective Errors and Agreement

The plots in Fig. 1 show a fairly high level of agreement for
the nonDNN conditions and consistent error trends for many of
the DNN conditions. Fig. 2 shows that these trends are borne
out across all 13 estimators. The FR estimators (1-8) underrate
the DNN conditions by 20 to 31 MUSHRA points and the NR
estimators (9-13) overrate them by 17 to 27 points. Across the
14 estimators, the RMSE for DNN conditions ranges from 20
to 34, and these values are consistently larger than the RMSE
values for nonDNN conditions, which range from 5 to 14.

These results show that DNN speech is more challenging
for all 13 estimators. One might attempt to address this by
refitting (1) using both nonDNN and DNN conditions. Fig. 3
shows the results. As expected, the total error is more equitably
distributed between the DNN and nonDNN conditions but
simple fitting cannot address the root issue. Fig. 3 shows the
magnitude of the mean error is greater for DNN than nonDNN
conditions in all 13 cases. The RMSE for the DNN conditions
exceeds that of the nonDNN conditions for FR estimators, but
they are more nearly matched for NR estimators.

The complementary nature of the FR and NR errors suggests
a rudimentary but pragmatic solution — allow FR and NR
estimators to work together to form a new FR estimator. We
found averaging the output of WB-PESQ with the output of
WAWEnet mode 1 produced the smallest errors overall so that
combination is “Estimator 14” in Table I and in Figs. 2 and
3. This hybrid solution gives very small mean errors for both
DNN and nonDNN conditions and an overall RMS error of
10 points. In spite of this easy and convenient solution, we
continue to investigate how to make individual FR and NR
estimators that more accurately evaluate DNN speech.

Figs. 2 and 3 show that in terms of per-condition RMSE,
the NR estimators are as good as the FR ones — the ranges
covered by the FR and NR estimators differ by no more than 1
point in either figure. These figures also show that the RMSEs
of the intelligibility estimators fall inside the RMSE range
defined by the quality estimators. Overall, quality estimators
and intelligibility estimators do equally well at estimating
MUSHRA quality scores for these conditions.
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Fig. 1. Example scatter plots of fitted objective estimates M̂ produced by
(1) vs MUSHRA scores for 3 FR and 2 NR estimators applied to 14 DNN
conditions (blue) and 18 nonDNN conditions (black). When a DNN condition
has both a training case and a testing case, data for the two cases are connected
by a black line to allow convenient comparisons.

Four of the DNN codecs were evaluated a second time to
assess robustness to speech from outside the training database.
In Fig. 1 these train and test conditions are indicated by
squares and triangles respectively, and are connected by lines.
The MUSHRA scores for these condition pairs are generally
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Fig. 2. Per-condition mean error (dotted) and RMS error (solid) for 14
estimators identified in Table I. Estimators have been fitted to the MUSHRA
scale using 18 nonDNN conditions. Dashed vertical lines emphasize the
contrasting results for FR estimators (1-8), NR estimators (9-13) and the
experimental hybrid estimator (14).
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Fig. 3. Per-condition mean error (dotted) and RMS error (solid) for 14
estimators identified in Table I. Estimators have been fitted to the MUSHRA
scale using all 32 conditions. Dashed vertical lines emphasize the contrasting
results for FR estimators (1-8), NR estimators (9-13) and the experimental
hybrid estimator (14). Legend of Fig. 2 applies in this figure as well.

very close and this shows the codecs are robust to speech
outside the training speech. But the objective estimates often
show much larger spreads, falsely implying a lack of codec
robustness to speech outside the training speech.

B. Expanding Estimator Scope to include DNN Speech

The NR estimators are DNN-based and they have learned
the relationships between mel-frequency log energy features
and speech quality [23] or unprocessed speech waveform
samples and quality and intelligibility [24]. The DNN speech
signals used here exhibit the properties that these NR estima-



tors associate with high quality and intelligibility — so much
so that DNN speech is generally overrated. We expect that NR
estimators could be trained to accurately rate DNN speech if
sufficient speech signals and subjective scores were available.

The FR estimators compare perceptually-motivated spectral
representations of reference and test signals in a manner
that seeks to emulate human cognition. The DNN conditions
produce spectral representations that often register as very
different inside an estimator, when in fact the test speech
sounds similar to the reference speech. This may be resolved
by augmenting the estimator to have an appropriate amount of
invariance to the differences that are unique to DNN speech.
If this augmentation does not interfere with the existing
modeling, then the estimator may work well for both DNN
and nonDNN speech.

The DNN conditions were not seen by the 13 estimators
when the estimators were developed and the estimation er-
rors reported here are not indications of failure. Rather they
simply confirm that DNN speech contains fundamentally new
impairments that are out-of-scope for the 13 estimators.

The issue of scope is a reoccurring one for objective estima-
tors. An ideal estimator would perfectly model average human
audition and cognition and would thus produce results that
agree with average human ratings for all existing and future
telecommunication technologies. But a practical estimator will
only contain sufficient modeling to produce accurate results for
a reasonably broad collection of existing telecommunications
technologies.

As telecommunications evolves, entirely new classes of
impairments emerge and a practical estimator may then fail
to agree with human ratings in the presence of these new
impairments. When this happens we are motivated to augment
existing modeling to more closely emulate the human response
to the new impairments and thus expand the estimator scope
to include the new impairments.

This cycle played out multiple times as telecommunica-
tions evolved from analog to digital waveform coding to
digital model-based coding, from circuit-switched to packet-
switched transport, from wired to wireless transmission, and
from narrowband speech to wideband speech and beyond
[25]–[28]. It is not surprising that the advent of DNN-based
speech coding necessitates another of these development and
evaluation cycles.

IV. ADDING INVARIANCES TO ESTIMATORS

We performed several experiments to determine if addi-
tional invariances could reduce FR estimation error on DNN
speech conditions. We selected four DNN conditions and one
nonDNN condition from the same region of the MUSHRA
scale (69 to 83) to allow a focus on prominent examples of
the issue. Our initial experiments used ViSQOL [18] since
MATLAB®1 ViSQOL code allows for easy experimentation.

1Disclaimer: The commercial software MATLAB® was used to perform
this analysis for the convenience of the author; such use does not imply
recommendation or endorsement by the National Telecommunications and
Information Administration, nor does it imply that the software used is
necessarily the best available for the particular application or uses.

The selected conditions and the ViSQOL estimation errors
M̂ − M (M̂ fit on the 18 nonDNN conditions) are shown
in columns 1 and 6 of Table II.

A. Removing Jitter

We plotted input and output waveforms for the DNN
conditions and compared them. We found that pitch pulse
locations did not maintain consistent relationships between
input and output waveforms but instead exhibited continually
evolving relationships. This provided initial confirmation of
timing variations (jitter) in the four selected DNN conditions,
as previously suggested in [6] and [14]. In the WaveNet con-
ditions, comparison of input and output waveforms confirmed
power mismatches on a syllabic time-scale as reported in
Section II. We theorized that jitter and power matching were
more significant to ViSQOL than to listeners, thus contributing
to the underrating of the DNN conditions. To test this theory
we modified ViSQOL to increase its invariance to these two
impairments.

ViSQOL uses NSIM [29] to compare salient time-frequency
patches extracted from critical band dB-scale spectral rep-
resentations of the reference and test signals. For wideband
speech these 21-band representations are computed from 32
ms long frames spaced every 16 ms (256 samples) and are
represented here by Xij (reference) and Yij (test), where
i ∈ {1, 2, ..., 21} and j ∈ {1, 2, ..., N} are the frequency
band and frame indices, respectively. We decreased the 16
ms spacing by a factor of R = 128 to 125 µs (2 samples) to
produce a high time-resolution 21-band spectral representation
Zik with k ∈ {1, 2, ..., RN} for the test signal only. Next
we selectively sub-sampled the sequence of Zik to create a
standard resolution dejittered sequence Yij for ViSQOL to
compare with the sequence Xij in standard fashion:

Y·j = Z·g(j)

= f(X·j , [Z·L(j,R), Z·L(j,R)+1, . . . , Z·U(j,R)]). (2)

The “·” symbol indicates that (2) operates on all bands at
once. The function f compares the jth frame of X (X·j) with
a range of candidate frames in Z and extracts the frame with
the largest correlation (across the 21 bands) to X·j . The frame
index of the extracted frame is g(j). The range of candidate
frames is set by the lower limit function L and the upper limit
function U which initially define a +/- 64 ms search range.
That range is narrowed to enforce temporal monotonicity,
g(j) < g(j + 1), and to prevent searching outside the range
[1, RN ]. This means L is also a function of g(j−1) and U is
also a function of N (not shown for clarity). Since the number
of candidate frames is variable, they are passed into f as the
columns of an array.

This process produces a dejittered Y and the frame index
history g(j). If there is no jitter then g(j) = R(j−1)+1,∀j.
So g(j)− (R(j − 1) + 1) is a measure of jitter and we report
the RMS value of this (averaged over the 8 files for each
condition) in column 2 of Table II. Pitch errors are related to
jitter. We used the cepstrum method of the MATLAB pitch



TABLE II
SPEECH SIGNAL PROPERTIES MEASURED FOR FIVE CONDITIONS (MEAN OVER EIGHT SPEECH FILES PER CONDITION), ESTIMATION ERRORS, AND

CHANGES IN ESTIMATES INDUCED BY DEJITTERING ALONE AND DEJITTERING WITH POWER MATCHING. WB-PESQ INDICATED BY ”PESQ” DUE TO
SPACE LIMITATIONS.

RMS RMS pitch Relative pitch Power Estimation error Change in M̂ Change in M̂ due to
Condition jitter error error magnitude mismatch M̂ −M due to dejitter dejitter + power match

(ms) (Hz) (%) (dB) (MUSHRA) (MUSHRA) (MUSHRA)
ViSQOL PESQ ViSQOL PESQ ViSQOL PESQ

Opus (9 kbps) [11] 12.3 10.6 2.3 3.6 -11 +2 0 0 +1 +4
WaveNet Train [11] 18.9 13.3 4.6 7.4 -42 -53 +22 +10 +25 +18
WaveNet Test [11] 19.7 17.9 6.0 7.1 -54 -56 +31 +8 +33 +14
LPCNet Train [10] 13.8 12.5 3.2 3.2 -28 -25 +7 +8 +8 +14
LPCNet Test [10] 16.5 17.0 6.8 3.9 -36 -55 +11 +12 +12 +20

function to measure pitch in reference and test speech signals.
The RMS pitch error is given in column 3 of Table II. The
mean magnitude of the pitch errors, expressed as a percent of
the reference pitch appears in column 4.

B. Matching Power

We also experimented with matching the total power of each
pair of frames (reference and test) after dejittering to eliminate
the observed power mismatches:

Ỹ·j = Y·j + p(j), p(j) = 10log10

(
σ2
x(j)

σ2
y(j)

)
,

σ2
x(j) =

21∑
i=1

10
Xij
10 , σ2

y(j) =

21∑
i=1

10
Yij
10 . (3)

The sequence of power matching values p(j) (in dB) is a
measure of the power adjustments made and is also a measure
of the power mismatch before the adjustments. The RMS value
of this sequence of dB values is given in column 5 of Table II.
Columns 2 and 5 in Table II show speech signal measurements
in the ViSQOL frame domain. In the WB-PESQ frame domain
the values are different but the trends are clearly preserved.

C. Invariances Reduce Estimation Errors

Column 6 of Table II reports the average ViSQOL and WB-
PESQ estimation errors for the five conditions. As expected,
these FR estimation errors are large and negative for the DNN
conditions and much smaller for the nonDNN (Opus 9 kbps)
condition.

We used analogous steps to remove jitter and match power
in ViSQOL, WB-PESQ, and ESTOI. The rightmost columns
of Table II show the changes in the final MUSHRA estimates
of ViSQOL and WB-PESQ due to dejittering alone (column
7) and due to dejittering followed by power matching (column
8). In the case of ESTOI we observed similar estimation errors
but much smaller score increases from dejittering and power
matching. Those increases never exceeded 5 points.

As expected, Table II shows that larger jitter is gener-
ally associated with larger pitch errors and that these are
also associated with larger score improvements when jitter
is removed, consistent with the theory that inaudible jitter
causes score underestimation. That table also shows that
increased power matching is often associated with larger score

increases, indicating that power mismatch may also contribute
to underestimation. Jitter removal contributes the majority of
the score increase, and power matching contributes a lesser
portion. The testing conditions show more jitter, and their
scores improve more than the training conditions. For all three
estimators, the two new invariances increase the DNN scores
dramatically more than they increase the nonDNN (Opus 9
kbps) score. This indicates that these two new invariances can
indeed contribute to the solution of the problem.

We have used available data to gain initial insights. One
could also create specific additional data to enable a more
thorough investigation. That is, in a future study one might
add simulated jitter to speech at controlled levels and compare
the responses of the original and modified objective estimators
with subjective scores.

D. Discussion

The contributions are variable between ViSQOL, WB-PESQ
and ESTOI, and they do not completely solve the issue for
any of these three. We attribute this to the fact that these
are the results of relatively simple experiments where we
patched minimally-invasive modifications onto the early pro-
cessing stages of FR estimators. These are not fully integrated,
optimized, and calibrated enhancements. Additionally, in spite
of the high time-resolution spectral representations, the native
frame sizes (32 ms in ViSQOL and WB-PESQ or 25.6 ms in
ESTOI) inhibit the full removal of jitter at timescales shorter
than these values. The comparison stages of the various FR
estimators are complex and they make comparisons in light
of local time-frequency contexts established by the signals
themselves. To be fully effective, any new invariances must be
properly integrated with them, not blindly prepended to them.
And all modifications must be fully tested across a much wider
range of codecs, channel conditions, noise environments, and
other conditions to identify and resolve any negative side-
effects.

In general it will not be desirable to remove unlimited
amounts of jitter or power fluctuation without reflecting at
least some of this correction by lowering the output score.
The audibility of these impairments will depend on their
magnitudes and temporal distributions and these should be
considered in relationship to the speech.



In a separate but related experiment we applied smoothed
power matching to the WaveNet files in the time-domain and
heard a clear improvement in quality and naturalness. This
required access to the reference speech and thus would not be
a practical enhancement strategy, but it does indicate an area
where there is room for improvement and it also reaffirms that
power matching adjustments should be reflected in objective
estimates.

V. CONCLUSIONS

We have provided broad novel evidence confirming that
FR objective speech quality and intelligibility estimators sig-
nificantly underestimate subjective scores of DNN speech.
We have also documented a consistent trend for current NR
estimators to overestimate subjective scores of DNN speech.

A simple combination of FR and NR estimates is a solution,
but it is not as satisfying as one that addresses the root causes.
Our experiments clearly demonstrate that inaudible jitter is
indeed a strong factor in the FR speech quality estimators
ViSQOL and WB-PESQ, and that power mismatches con-
tribute in a lesser way. Additional training should resolve the
problem in DNN-based NR estimators when sufficient speech
files and scores are available.

Thus we have identified multiple paths toward new FR and
NR estimators that more accurately evaluate the DNN speech
signals that will be appearing in multimedia telecommunica-
tions. Such estimators might also be leveraged in automated
training and evaluation cycles leading to more rapid improve-
ments in DNN speech quality, intelligibility, and naturalness.

ACKNOWLEDGMENT

Sincere thanks to Dr. Jan Skoglund of Google. This work
is possible only due to speech files and subjective scores that
Jan provided.

REFERENCES

[1] M. Cernak, A. Lazaridis, A. Asaei, and P. N. Garner, “Composition of
deep and spiking neural networks for very low bit rate speech coding,”
IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol. 24,
no. 12, pp. 2301–2312, 2016.

[2] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A.
Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “WaveNet:
A generative model for raw audio,” in Proc. 9th ISCA Speech Synthesis
Workshop, 2016.

[3] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A.
Courville, and Y. Bengio, “SampleRNN: An unconditional end-to-end
neural audio generation model,” arXiv:1612.07837, Dec. 2016.

[4] A. Tamamori, T. Hayashi, K. Kobayashi, K. Takeda, and T. Toda,
“Speaker-dependent WaveNet vocoder,” in Proc. Interspeech, 2017.

[5] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande,
E. Lockhart, F. Stimberg, A. van den Oord, S. Dieleman, and K.
Kavukcuoglu, “Efficient neural audio synthesis,” in Proc. 35th Intl. Conf.
on Machine Learning, 2018, pp. 2410–2419.

[6] W. Kleijn, F. Lim, A. Luebs, J. Skoglund, F. Stimberg, Q. Wang, and T.
Walters, “Wavenet based low rate speech coding,” in Proc. IEEE Intl.
Conf. on Acoustics, Speech and Signal Processing, 2018, pp. 676–680.
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