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Abstract—We present a set of relatively small-scale proof-
of-concept experiments where we construct no-reference (NR)
speech quality estimators that give reliable values of system-
under-test (SUT) input speech quality in spite of the fact that NR
estimators can only access SUT output speech. We then explain
why this success is not as counter-intuitive as it might initially
seem. Next we demonstrate that this advance can be used to
adjust NR relative speech quality values to obtain the much
more desirable and useful NR absolute speech quality values. The
experiments start with over seven hours of studio-quality speech.
A processor adds filtering, reverberation, and noise to simulate
the somewhat lower quality speech that often must be used to test
systems. Four different established full-reference speech quality
estimators provide ground-truth values for these experiments.

Index Terms—full-reference, machine learning, no-reference,
speech quality, subjective testing
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I. EXPERIMENT AND RESULTS

Objective estimators of speech quality are extremely useful
in numerous situations where subjective testing is imprac-
tical. Full-reference (FR) estimators compare perceptually-
motivated spectral representations of the system-under-test
(SUT) input (reference) and output (test) speech signals in a
manner that seeks to emulate human cognition. No-reference
(NR) estimators observe only the SUT output (test) speech
signal, so NR estimators can be applied in many cases where
FR estimators cannot.

We construct NR estimators that measure the speech quality
of the SUT input in spite of the fact that NR estimators can
only see the SUT output. We describe our experimental set-
up, data, and results, and explain why the results are not as
counter-intuitive as they may seem. We then show how to build
on these results to create improved NR estimators that track
absolute quality rather than relative quality.

Fig. 1 shows the experiment set-up. We use FR estimates
as ground-truth. The notation Q(t, r) indicates an FR estimate
of the quality of t (test speech) with respect to r (reference
speech). For best generality we repeat all experiments with
four different wideband (WB) FR speech quality estimators:
WB-PESQ [1], POLQA [2], PEMO [3], and ViSQOL [4]. To
allow convenient and equitable comparisons we normalize the
FR estimates Qraw to the range [0,1] using

Q(y, x) =
Qraw(y, x)−Qmin

Qmax −Qmin
. (1)

Fig. 1. Experiment set-up: r represents studio-quality speech, processor adds
adjustable amounts of filtering, reverberation, and noise, r̂ represents speech
available in practice which may be studio-quality or lower quality. Three FR
quality estimates used in the experiments are shown. Only entities to the right
of the vertical dashed line are available in practical applications.

The functional maximum Qmax is found from a study of
Q(r, r). The functional minimum Qmin is found from a study
of Q(n, r) where n is white Gaussian noise with variance that
matches the variance of r. Values are given in Table I.

We use WB speech (16,000 smp/s). The reference speech r
comes from English-language studio-quality recordings from
24 talkers [5] segmented into 2907 different 3-second files that
have a speech activity factor of 50% or greater.

The processor shown in Fig. 1 converts studio-quality
signals to the type of signals that are often recorded in the field
and available in speech databases. The amount of processing is
adjustable from none to extreme. The processor can apply cut
or boost at the low- and high-frequency ends of the spectrum
to simulate imperfect microphones or microphone placement.
It invokes one of nine different room impulse responses [6],
[7] to produce reverberation at a selected ratio of direct-to-
reverberant sound. It adds heating/cooling system noise at a
selected SNR. We use ranges of all processor settings with a
goal that the input quality Q(r̂, r) be roughly uniform on [0.5,
1.0] and we retain only files in this range. The number of files
retained is different for each estimator as shown in Table I.

We use nine WB speech codec modes (codec/rate combi-
nations) as SUTs in this work: EVS at 5.9, 9.6, and 16.4 kbps
[8], AMR-WB at 6.6, 12.65, and 23.85 kbps [9], and Opus at
8, 12, and 16 kbps [10]. We randomly select one of the nine
to process each r̂ file. Q(t, r) is the absolute quality and it
reflects impairments from the processor and the SUT. Q(t, r̂)
is the relative quality and it responds primarily to the SUT.

We performed analysis-of-variance on the absolute quality
Q(t, r) for each FR estimator and calculated the variance
due to the processor divided by the variance due to the
SUT, shown as σ2

Proc/σ
2
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TABLE I
FR ESTIMATOR AND DATASET PROPERTIES.

WB-PESQ POLQA PEMO ViSQOL
Qmin 1.04 1.01 0.39 1.00
Qmax 4.64 4.75 1.00 5.00
Number of Files 9077 13,682 14,251 13,660
Hours of Speech 7.6 11.4 11.9 11.4
σ2
Proc/σ

2
SUT 0.27 1.15 1.91 1.75

our processor settings and SUT selections produce similar
variance, WB-PESQ reports that the SUTs strongly dominate
the total variance, while PEMO and ViSQOL find that the
processor dominates. In spite of these expected individualized
behaviors, the results that follow are fairly consistent across
the four FR estimators.

We trained an NR estimator to emulate each of the three
FR quality values in spite of the fact that NR estimators can
only access t. The three NR estimators are distinguished by
subscripts:

Qt,r̂(t) ≈Q(t, r̂) (Relative Quality), (2)
Qt,r(t) ≈Q(t, r) (Absolute Quality), (3)
Qr̂,r(t) ≈Q(r̂, r) (Input Quality). (4)

Note that the problem (2) and similar problems have been
studied in [11]–[25] but the problems (3) and (4) are new.
The importance of distinguishing relative quality Qt,r̂(t) from
absolute quality Qt,r(t) and their connection through input
quality Qr̂,r(t) is addressed in Section II.

The NR estimators start by extracting the first eight mel-
frequency cepstral coefficients (MFCCs) [26] from each frame
(20 ms length, 50% overlap) of the three-second speech signal
t. Single-frame differences (delta MFCCs) of these 8 are
appended to give 16 values per frame. For each of these 16
we calculate 3 statistics across frames to arrive at a total of
48 features per speech signal. Those statistics are the 5%,
50%, and 95% values across the 298 frames. Our motivation
is to extract robust measurements of the extreme and central
values. Each NR estimator then uses the neural network shown
in Table II to map these 48 features to a quality estimate.
The network has 929 learnable parameters (mn weights and
n biases in each m × n fully-connected layer). We trained
the network with 90% of the files and validated its operation
with the remaining 10%. The resulting Pearson correlations
and root mean squared errors (RMSEs) are given in Table III.

These NR estimators use just 48 features that were selected
for simplicity, not optimality. Those features are processed by
relatively small, simple networks. We present them only as
proof-of-concept results. Previous work [11]–[25] may address
the problem (2) more thoroughly and effectively. But the
simplistic, unoptimized approach we have used here produces
surprisingly high correlations and low RMSEs, especially for
the problem (4) — NR estimation of input speech quality. This
suggests that further development might produce very reward-
ing results. Table III shows only slight drops in correlation and
negligible RMSE increases between training and validation,
suggesting this approach has the potential to generalize.

TABLE II
NETWORK THAT MAPS 48 MFCC FEATURES TO 1 NR QUALITY ESTIMATE.

Layer Description
1 48 × 16 fully-connected
2 ReLU
3 16 × 8 fully-connected
4 ReLU
5 8 × 1 fully-connected

TABLE III
PEARSON CORRELATION (ρ) AND RMSE (ξ) SHOWING AGREEMENT OF
NR ESTIMATOR AND FR GROUND-TRUTH FOR TRAINING / VALIDATION.

WB-PESQ POLQA PEMO ViSQOL
ρ(Qt,r̂(t), Q(t, r̂)) .71 / .66 .72 / .69 .78 / .77 .74 / .73
ρ(Qt,r(t), Q(t, r)) .74 / .69 .77 / .76 .83 / .80 .83 / .80
ρ(Qr̂,r(t), Q(r̂, r)) .85 / .84 .94 / .94 .92 / .90 .92 / .91
ξ(Qt,r̂(t), Q(t, r̂)) .12 / .13 .11 / .11 .06 / .06 .05 / .05
ξ(Qt,r(t), Q(t, r)) .11 / .11 .10 / .11 .07 / .07 .05 / .05
ξ(Qr̂,r(t), Q(r̂, r)) .07 / .07 .05 / .05 .04 / .04 .06 / .06

Successfully measuring input speech quality using only out-
put speech may appear counter-intuitive at first. The key is that
the impairments in the input speech (filtering, reverberation,
and noise) are largely distinguishable from the impairments
caused by the SUT (coding artifacts). We argue that this situ-
ation is realistic and even common (but not ubiquitous) when
measuring multimedia QoE. The SUT significantly modifies
the input speech and any impairments that it carries but input
speech impairments are sufficiently present and recognizable
in the output speech signal that Qr̂,r(t) can detect, quantify,
and map them to levels of input speech quality.

II. APPLICATION: ABSOLUTE SPEECH QUALITY

We have demonstrated the ability to measure input speech
quality using only the SUT output speech signal. Input speech
quality values are intrinsically useful but we focus now on
exploiting them as a bridge from relative to absolute NR
estimates of SUT output speech quality.

Users experience absolute speech quality Q(t, r), not rel-
ative speech quality Q(t, r̂), and we naturally seek to mea-
sure what users experience. The difference can be easily
appreciated by comparing the squares with the circles in
Fig. 2. Absolute speech quality includes all impairments while
relative speech quality includes only those added by the SUT.

Machine learning is extremely useful for creating NR es-
timators but it requires large amounts of speech and ground-
truth quality values. Absolute category rating subjective test
scores are a desired ground-truth, but amassing sufficient quan-
tities of them remains a challenge, even when crowd-sourcing
is exploited. Thus augmenting [18] or substituting [20], [24]
subjective scores with FR estimates may be necessary. In
principle one could use the framework of Fig. 1. In practice,
available databases are often recorded in less-than-ideal field
conditions which means that r̂ is available but r is not. Thus
the absolute quality Q(t, r) is not available.

When r̂ is studio-quality, r̂ = r and absolute and relative
quality are the same. But when r̂ is imperfect they differ, and
using relative quality as ground-truth leads to NR estimators
that produce relative quality values rather than the desired
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Fig. 2. Example normalized speech quality results: SUT output as a function
of SUT input for three SUTs and two estimators. FR absolute quality (squares)
responds to SUT and input speech quality but FR relative quality (circles)
is largely invariant to input speech quality. NR absolute quality (triangles)
achieves the goal of tracking FR absolute quality. Input speech quality values
have been binned using five uniform bins between 0.5 and 1.0, then averaged.
Average number of files per marker is 182 for WB-PESQ and 274 for POLQA.

absolute quality values. We now propose a way to build NR
estimators of absolute quality, even when r̂ is imperfect.

The E-Model is a successful and enduring additive model
for speech impairments [27]–[29] and this motivates us to
explore the additivity of impairments. We define “impairment”
to be the decrease from the top of the quality scale, we weight
and add the impairments of the processor and the SUT, and
we include a constant term. This gives

1−Q(t, r) ≈ w0 + w1(1−Q(t, r̂)) + w2(1−Q(r̂, r)), (5)

which implies

Q(t, r) ≈ w1Q(t, r̂) + w2Q(r̂, r) + w3, (6)

where w3 = 1 − (w0 + w1 + w2). That is, absolute quality
may be approximated using relative quality and input quality.
To test these assumptions and approximations we apply least-
squares fitting to the measured values of Q(t, r), Q(t, r̂),
and Q(r̂, r) to find values for w1, w2, and w3. Results are
shown in Table IV. In the present experiment this simple
model consistently explains significant amounts of variance
in absolute quality.

TABLE IV
LEAST-SQUARES VALUES FOR WEIGHTS IN (6) AND VARIANCE

EXPLAINED.

WB-PESQ POLQA PEMO ViSQOL
w1 0.741 0.533 0.560 0.675
w2 0.508 0.677 0.667 0.246
w3 -0.341 -0.288 -0.300 -0.033
Variance
Explained 90% 92% 93% 79%

This result motivates us to use NR estimates of relative
quality and input quality to calculate NR absolute quality
QA(t). Combining (2), (4), and (6) gives

Q(t, r) ≈ QA(t) = w1Qt,r̂(t) + w2Qr̂,r(t) + w3. (7)

Fig. 2 shows that QA(t) (triangles) does indeed follow the
trends of absolute quality (squares). Space limitations prevent
the display of detailed results for all 9 codec modes and 4 FR
estimators, but they can be summarized by correlations across
45 data points (5 input speech quality levels × 9 codec modes)
as shown in Table V. Our goal is absolute quality values and
Table V allows us to compare three achievable alternatives to
that goal. In this set of experiments, calculated NR absolute
quality QA(t) given in (7) is consistently by far the best option.

TABLE V
PEARSON CORRELATION (TRAINING / VALIDATION) BETWEEN FR

ABSOLUTE QUALITY Q(t, r) (UNAVAILABLE IN PRACTICE) AND THREE
PRACTICAL ALTERNATIVES: FR RELATIVE QUALITY Q(t, r̂), NR

RELATIVE QUALITY Qt,r̂(t), AND NR ABSOLUTE QUALITY QA(t).

WB-PESQ POLQA PEMO ViSQOL
Q(t, r̂) .81 / .81 .55 / .53 .81 / .76 .75 / .76
Qt,r̂(t) .78 / .75 .46 / .43 .84 / .77 .82 / .80
QA(t) .96 / .94 .91 / .92 .93 / .88 .89 / .90

Our proposal is to train NR estimators to estimate both
input and output speech quality. In use, such estimators can
invoke (7) to give absolute speech quality, QA(t). The prime
obstacle is the lack of input speech quality targets Q(r̂, r)
for training the NR estimator of input speech quality Qr̂,r(t).
We have listened to speech from numerous databases and
suggest that many databases can be characterized by a single
quality value (or in some cases one quality value per talker)
associated with the recording environment and equipment.
We propose assigning this single informal subjective quality
value to Q(r̂, r) for each applicable group of files. This would
provide targets for training Qr̂,r(t) which in turn would enable
the no reference absolute speech quality estimator QA(t).
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[15] R. Huber, M. Krüger, and B. T. Meyer, “Single-ended prediction of
listening effort using deep neural networks,” Hearing Research, vol.
359, pp. 40 – 49, Mar. 2018.

[16] P. Seetharaman, G. Mysore, P. Smaragdis, and B. Pardo, “Blind esti-
mation of the speech transmission index for speech quality prediction,”
in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing,
2018, pp. 591–595.

[17] A. Avila, H. Gamper, C. Reddy, R. Cutler, I. Tashev, and J. Gehrke,
“Non-intrusive speech quality assessment using neural networks,” in
Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, 2019,
pp. 7125–7129.
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