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ABSTRACT 

We present two techniques that can be used to enhance 
objective estimators of perceived speech quality.  Frame 
normalization and frame-energy plane partitioning are 
described and applied to a log-spectral-error-based estimator.  
The resulting estimators are compared with each other and with 
two established estimators.  This is done through correlation 
with MOS values from 17 formal subjective tests.  We find that 
the proposed techniques significantly improve the log-spectral-
error-based estimator. 

1. INTRODUCTION 

Perceived speech quality is measured most directly by subjective 
listening tests.  Because these tests often are slow and 
expensive, numerous attempts have been made to supplement 
them with objective estimators of perceived speech quality.  The 
Perceptual Speech Quality Measure (PSQM) [1] has been 
recognized as a useful estimator for codecs that preserve or 
nearly preserve waveforms connected by error-free transmission 
channels [2]. Measuring Normalizing Block (MNB) estimators 
[3][4] have broader applicability that also includes lower-rate 
non-waveform codecs and transmission channels that include bit 
errors and frame erasures [5]. 

MNB estimators were motivated by the observation that 
listeners adapt and react differently to spectral deviations that 
span different time and frequency scales.  In a simple model for 
adaptation and reaction, MNB estimators iterate to measure and 
remove spectral deviations that cover different time and 
frequency scales.  The iterations start at larger scales and 
progress to smaller scales.  MNB estimators are effective and 
somewhat intuitive, but their iterative nature makes it difficult 
to mathematically demonstrate the merit of a single measure-
and-normalize step. 

In this paper, we provide such a demonstration by adding a 
single measure-and-normalize step to a log-spectral-error-(LSE) 
based estimator.  In addition, we introduce frame-energy plane 
partitioning and show how it can further enhance the LSE-based 
estimator.  We then compare the performance of the resulting 
LSE-based estimators with each other and with the PSQM and 
MNB estimators. 

2. FRAME NORMALIZATION 
In this section we describe a simple LSE-based estimator and 
then augment it with a single, frame-based, measure-and-

normalize step.  Let x(t) represent a speech signal that is fed 
into a system under test.  Let y(t) be the resulting output.  To 
estimate the perceived speech quality of the system under test, 
we estimate the perceived distance between x(t) and y(t).  
Preliminary steps include normalizing the long-term mean and 
variance of each signal to zero and one respectively and 
removing any time shifts. Next we form 32 ms time-domain 
frames (256 samples, 8000 samples/sec, 50% overlap) and 
transform them to frequency-domain frames using a Hanning 
window followed by FFT and magnitude-squared operations.  
(We use an unscaled FFT:  if a length N sequence of ones is 
transformed, the resulting value in the DC bin will be N.)  The 
result is 129 frequency-domain samples from DC to Nyquist.  
For both signals, these samples ({xi} and {yi}) are then 
logarithmically transformed and clipped according to 

( )
.otherwise,40

)1(,0when,40,)(log10max~
10

−=
<−⋅= iii xxx

Since peak values of 
ix~ are near 50, this clipping limits the log-

spectrum dynamic range to about 90 dB, preventing inaudible 
distortions from dominating the calculations that follow.  An 
LSE can then be calculated as 
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As an alternative to (2), we can apply a measure-and-normalize 
step before the LSE calculation.  This involves measuring the 
mean value of each of the two log-spectra and normalizing the 
output log-spectrum to force equality between the means of the 
input log-spectrum and the normalized output log-spectrum: 
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Finally, an LSE is calculated as 
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One interpretation of this normalization step is that it performs a 
simple decomposition of total LSE (et ) into coarse (ec) and fine 
(ef ) components.  The results in Section 4 are based on two-
band implementations of (2) and (3).  The low band extends 
from near DC to near 2 kHz (l=2, u=64) resulting in etl , and ecl , 
while the high band extends from 2 kHz to near Nyquist (l=65, 
u=128) resulting in eth ,and ech .  For the normalization step in 
(3), 

iy~  is normalized by ecl when 2 ≤ i ≤ 64, and 
iy~  is 

normalized by ech when 65 ≤ i ≤ 128. 



3. FRAME-ENERGY PLANE 
PARTITIONING 

In frame-based speech quality estimation algorithms, each pair 
of frames (input, output) can be classified according to the 
energy in those frames.  We calculate frame energy in the 
frequency domain: 
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The most general classification scheme corresponds to an 
arbitrary partitioning of the (ex , ey) frame-energy plane.  The 
classification of each pair of frames can be used to select or 
modify the estimation algorithm for that pair of frames.  The 
MNB estimators effectively partition this plane into quadrants 
but use only frames in one of the four quadrants.  The PSQM 
divides the plane into two halves, applies the same estimation 
algorithm to each half, and then weights the two sets of results 
differently. 

A relatively simple partitioning is shown in Figure 1.  Each pair 
of frames can then be classified by comparing ex and ey with the 
thresholds shown in Figure 1.  (By the definition in (5), most of 
the active speech frames fall into the 10-55 dB range and about 
40% of active speech frames fall above 40 dB.)  The area of 
Figure 1 marked “Louder Frames” contains frames of active 
speech that are largely intact but contain some distortion.  We 
apply the normalized LSE equations (3) and (4) to these frames 
only.  We then average frame results over the entire speech 
signal (typically two sentences, 6 to 9 seconds total duration).  
For ecl and ech, we average the absolute value to arrive at 
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The area marked “Muted Frames” corresponds to active input 
speech that was partially or completely muted by the system 
under test.  Potential causes include groups of bits that were 
lost, erased, or seriously delayed in transmission, and imperfect 
voice activity detection.  The area marked “Noise Frames” 
corresponds to lower-energy frames of input speech that contain 
significant energy at the output.  Potential causes include noisy 
analog systems and undetected transmission errors.  We apply 
the most trivial of all algorithms to frame pairs that fall into the 
“Muted” and “Noise” categories.  We simply count the number 
of frame pairs in each category and normalize by the total 
number of frames in the input signal, resulting in a muted-frame 
ratio (rm) and a noise-frame ratio (rn).  Frame pairs that fall in 
the area marked “Quieter Frames” are not used at all.  As shown 
in Section 4, even this simple partition and these trivial ratios 
provide valuable information for speech quality estimation.  
More intricate partitions and more sophisticated algorithms are 
likely to provide additional valuable information. 

4. EVALUATION AND DISCUSSION 

We measure the performance of estimators by the correlation 
between their estimates and MOS scores from formal subjective 
tests.  We first average all MOS values for a given condition to 
a single value.  Likewise, we average the corresponding 

estimates to a single value.  We then calculate Pearson 
correlations between these two sets of per-condition means, 
yielding per-condition correlations.  The results given here are 
drawn from the 17 formal subjective tests summarized in Table 
1.  Together, these tests contain over 12,000 speech files and 
cover 320 speech codecs, transmission systems and reference 
conditions.  Bit rates for digital systems range from 2.4 to 64 
kb/s.  Both clear and errored channels are included.  Three of 
the tests use flat speech and the remainder use IRS filtered 
speech.  The test material includes over 24 hours of speech from 
about 80 different talkers using four different languages. 

We use least-squares to form optimal linear combinations of the 
calculated quantities (parameters) described in this paper.  The 
target vector contains over 12,000 MOS values so these least-
squares problems are highly over-determined, even when 5 
parameters are used.  Since MOS values come from a finite 
range, we use a logistic function to map objective estimates into 
the finite range (0,1).  Thus, when parameters p1, p2, …, pM are 
used, the quality estimate is given by 
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Note that 1ˆ0 << q , and thatq̂ is positively correlated to MOS. 

When 
thtl ee and, are used together to estimate speech quality, 

correlations with the 17 sets of MOS results range from 0.36 to 
0.95.  When 

fchcl eee and,, are used together, eleven of the 

correlations increase.  Seven of those increases are greater than 
0.10.  (The largest decrease is 0.06.)  The range of correlations 
is now 0.74 to 0.98.  If we then include rm and rn to form a five-
parameter estimator (LSE+), further increases are seen in eleven 
of the correlations.  Seven of those increases are greater than 
0.10.  (The largest decrease is 0.03.)  The range of correlations 
is now 0.84 to 0.98.  These correlations are shown in Figure 2, 
along with those of the PSQM [2] and the MNB-2 [4] 
estimators.  For tests 1-8, MNB-2 and PSQM perform similarly.  
The LSE+ performance is somewhat lower but still remarkably 
high considering the very low relative complexity of the 
algorithm.  Tests 10-17 include the bulk of the bit-error, frame-
erasure, and lower-rate codec conditions.  Here MNB-2 and 
LSE+ show a distinct advantage over PSQM.  The weights for 
LSE+ are given in Table 2. 

We conclude that a two-band LSE-based estimator can benefit 
dramatically from a single measure-and-normalize step.  This 
step separates the coarse and fine spectral errors and allows 
them to be treated separately in an estimate of speech quality.  
(In MNB estimators other scales between these two extremes 
are exploited as well.)  Frame-energy plane partitioning offers 
additional benefits, and these benefits are likely to be more 
dramatic as we move beyond the very simple version presented 
here.  The resulting estimator shows marked improvements over 
PSQM in some situations. 
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Figure 1.  Example frame-energy plane partition. 
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Figure 2.  Correlations for 17 subjective tests. 
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Test 
Number 

Language Filtering Number of 
Conditions 

Summary of Conditions Bit-Rates (kb/s) 

1 English IRS 20 LD-CELP, ADPCM, PCM, MNRU, (Tandems) 16-64 
2 Italian IRS 20 Same as 1 16-64 
3 Japanese IRS 20 Same as 1 16-64 
4 English Flat 19 IMBE, AMBE, VSELP, RPE-LTP, LD-CELP, ADPCM, 

MNRU, (Mixed Tandems) 
6.4-32 

5 English IRS 19 Same as 4 6.4-32 
6 English IRS 35 Multi-Rate CELP, PCM, AMPS, MNRU, (Frame Erasures) 8-64 
7 English IRS 44 ACELP, VSELP, RPE-LTP, LD-CELP, ADPCM, PCM, 

MNRU, (Mixed Tandems) 
8-64 

8 Japanese IRS 44 Same as 7 8-64 
9 French IRS 44 Same as 7 8-64 
10 English IRS 47 Multi-Rate CELP, LD-CELP, MNRU, (Frame Erasures) 13-16 
11 Japanese IRS 27 ACELP, ADPCM, MNRU, (Bit Errors, Frame Erasures) 8-32 
12 English IRS 27 Same as 11 8-32 
13 French IRS 27 Same as 11 8-32 
14 Italian IRS 27 Same as 11 8-32 
15 English Flat 27 LPC, STC, IMBE, CELP, VSELP, CVSD, ADPCM, POTS, 

MNRU, (Bit Errors) 
2.4-32 

16 English Flat 41 CELP, ACELP, VSELP, PCM, AMPS, POTS, MNRU, 
(Bit Errors, Frame Erasures) 

4.8-64 

17 English IRS 41 Same as 16 4.8-64 

Table 1. Summary of material in 17 subjective tests. 
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0      - 4.29 
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cle        0.150 

2 
che        0.0243 

3 
fe        0.449 

4 rm     48.6 

5 rn     52.7 

Table 2.  Parameters and weights used in LSE+. 
 

 

 


