

On the Impact of Policing and Rate Guarantees in Diff-Serv
Networks: A Video Streaming Application Perspective

 Wael Ashmawi*

Intel Corp.
3600 Juliette Lane

Santa Clara, CA 95052
wael.a.ashmawi@intel.com

Roch Guerin**
U. of Pennsylvania

200 South 33rd Street
Philadelphia, PA 19104

guerin@ee.upenn.edu

Stephen Wolf, Margaret Pinson
Inst. Telecommun. Sciences

325 Broadway
Boulder, CO 80305-3328

(steve,mpinson)@its.bldrdoc.gov

ABSTRACT
Over the past few years, there have been a number of proposals
aimed at introducing different levels of service in the Internet. One
of the more recent proposals is the Differentiated Services (Diff-
Serv) architecture, and in this paper we explore how the policing
actions and associated rate guarantees provided by the Expedited
Forwarding (EF) translate into perceived benefits for applications
that are the presumed users of such enhancements. Specifically,
we focus on video streaming applications that arguably have
relatively strong service quality requirements, and which should,
therefore, stand to benefit from the availability of some form of
enhanced service. Our goal is to gain a better understanding of the
relation that exists between application level quality measures and
the selection of the network level parameters that govern the
delivery of the guarantees that an EF based service would provide.
Our investigation, which is experimental in nature, relies on a
number of standard streaming video servers and clients that have
been modified and instrumented to allow quantification of the
perceived quality of the received video stream. Quality
assessments are performed using a Video Quality Measurement
tool based on the ANSI objective quality standard. Measurements
were made over both a local Diff-Serv testbed and across the
QBone, a QoS enabled segment of the Internet2 infrastructure.
The paper reports and analyzes the results of those measurements.

1. Introduction
As IP networks are being used to carry an ever-increasing

range of traffic types, it has been argued that the associated
diversity of service requirements calls for the introduction of
service differentiation in the network. A recent proposal in that
direction is embodied in the Differentiated Services (Diff-Serv)
architecture [1] that supports service differentiation by specifying a
small number of different “behaviors” [12],[16] for the network
when forwarding packets. Our general goal in this paper is to gain
a better understanding of the relation that exists between the better
network guarantees that such new capabilities are providing and
the actual benefits that ensue as perceived by the applications that
use them. Because this is obviously a broad topic with possibly as

many different answers as there are applications, we narrow our
investigation to a specific application, namely, streaming video.
Video applications are gaining in popularity and have seen
significant evolution over the past five years. Early video
transmissions over IP networks were mostly limited to content
delivery that allowed users to download compressed videos in
order to play them back locally. The disadvantage of having to
wait for the download to complete before being able to start
playing back a video as well as the desire to avoid storage, and
ultimately duplication, of local copies, quickly led to the
development of progressive download technologies that allow
clients to watch the video as the content files are being
downloaded. Several currently available video compression
schemes were modified to enable progressive downloads:
QuickTime™, VIVO™, VIDO™, and RealNetworks™ are
examples of such schemes♣.

One of the main challenges for these new technologies is to
develop adaptive schemes capable of dealing with the uncertainty
of network resource availability between clients and servers. This
has led to a number of approaches aimed at “dynamically”
adjusting the rate of video delivery based on estimating the
resources available between the server and the client. The more
basic schemes only allow users to select from several possible
video qualities at the connection setup time, based on an initial
estimate of the available bandwidth between the server and the
client. Some of the more sophisticated and recent schemes, e.g.,
[23], include the ability to increase or decrease quality in real-time
as available resources vary. These advances not withstanding, the
transmission of video over the Internet has remained somewhat
hampered by the relative unpredictability of its quality, in
particular when it comes to the delivery of high bit rate video
streams. As a result, video streaming has been identified by many
as an application that stands to benefit most from the introduction
of Differentiated Services.

Our goal in this paper is not to argue for or against such a
position. Instead, as stated earlier, we are interested in
understanding how the network level mechanisms of Diff-Serv,
and in particular their configuration, translate into better video
quality for the users viewing them. Specifically, we want to “plot”
the evolution of video quality perceived by a user, as a function of
�
* The work of this author was done while at the University of

Pennsylvania and was supported by NSF Grant ANI99-06855.
** The work of this author was supported in part by NSF Grants

ANI99-02943, ANI99-06855, and ANI00-85930.

Copyright 2001 Association for Computing Machinery. ACM acknow-
ledges that this contribution was authored or co-authored by a contractor
or affiliate of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.
SIGCOMM’01, August 27-31, 2001, San Diego, California, USA.
Copyright 2001 ACM 1-58113-411-8/01/0008…$5.00.

the various network level parameters, e.g., token rate and burst
size, associated with the support of different types of network
services. Clearly, video quality will depend on a number of other
factors, in particular the design of the server itself, which can
heavily influence the outcome based on how well it takes
advantage of the different services offered by the network. Our
perspective is, however, not that of a video server designer.
Instead, we want to take the position of a typical user, one who
relies on existing client and server technology and who is trying to
determine how best to connect the two across a Diff-Serv enabled
network. In other words, the user has no or limited information
about the internals of the video server and clients, and is primarily
focused on selecting network parameters for its video connection
in order to maximize video quality. Implicit here is the fact that
there is a cost associated with network resources, so that the user
has an incentive for understanding their relation to video quality,
and achieving the best possible quality with the minimum amount
of network resources.

Despite its relatively simple formulation and the several
restrictions we impose, e.g., servers and clients as “black boxes,”
and Diff-Serv as the only network level mechanism we consider,
achieving the stated goal of accurately evaluating the relation
between network parameters and user level quality is not a simple
task, as there are still many different aspects to consider and
possible parameters to vary. A first and critical dimension is to
measure video quality, as users viewing the received video streams
perceive it. Clearly, network-level impairments such as packet
losses or delay and the availability of resources such as bandwidth
will play a role, and it is safe to say that video quality will improve
as available bandwidth increases or as losses and delay decrease.
However, this is a far cry from providing a precise and quantitative
evaluation of the relation between them. On one hand,
characterizing the relation that exists between network parameters
such as token bucket parameters and network performance, e.g.,
losses or delay, is a relatively well investigated area when it comes
to video, and a number of works have provided guidelines on how
to select parameters, e.g., [20][21][24] and how to measure
network performance [11][22]. On the other hand, determining
how these translate into different levels of video quality has
received little attention. As a result, one of this paper’s
contributions is to provide a quantitative, even if still partial,
answer to this question and to illustrate the use of objective video
quality measurement tools in doing so.

Another difficulty in accurately characterizing how “better”
network services can improve user level perception of video
quality is to perform such an evaluation in a reasonably realistic
setting. Because our investigation is experimental in nature, the
approach we took to address this issue was to consider a relatively
broad range of configurations and scenarios. Specifically, we
experimented with multiple types of video servers and clients, as
well as several video clips and encoding schemes. In addition,
several different network configurations were employed, ranging
from a Diff-Serv capable local testbed to video transmissions
across the QBone [25], a wide area Diff-Serv enabled segment of
the Internet2 Abilene network.

 In the rest of this paper, we describe the experimental setup
used for our investigation and report our findings regarding the
relation that exists between network level quality and the resulting
video quality as perceived by users. The paper is structured as
follows. In Section 2, we provide background information on
Differentiated Services, video server technology, and video quality
measurement tools. Because of constraints imposed by the

testbeds over which we conducted our experiments, in particular
the wide area testbed we had access to, our focus has mainly been
on a service built on the Expedited Forwarding Per Hop Behavior
(EF PHB). Section 3 is devoted to a description of the three main
components of our experimental setup: the video quality
measurement tool, the setup we have developed in order to capture
the video information we feed to the quality measurement tool, and
the different network testbed configurations. Results and their
analyses that illustrate the relation and differences that exist
between network level and user level quality measures are the
topic of Section 4. Finally, Section 5 summarizes our findings and
concludes the paper.

2. Background Material
2.1 The Differentiated Services Architecture

The Diff-Serv working group has put forth a number of
specifications outlining not only the general architecture of the
Diff-Serv approach [1] and the fields in the IP header available to
support it [19], but also specifying two1 initial Per Hop Behaviors
(PHBs) that are to be used to provide differentiated forwarding
treatments in Diff-Serv enabled networks. The basic premise of
the Diff-Serv architecture is that complex flow level functions are
performed at the network edge, and that core routers only support a
few coarse classes or Behavior Aggregates (BAs). The Diff-Serv
architecture, therefore, relies on two distinct components: flow
classifiers and policers at the edges that are responsible for
mapping incoming packets to the appropriate BA and marking
them with the appropriate Diff-Serv Code Point (DSCP) [19], and
various scheduling and buffer management mechanisms in the core
that are responsible for implementing the different PHBs and
mapping packets to PHBs based on their DSCP.

Of most significance in the context of our investigation are
the policing actions performed at the network edge and the
parameters they involve. Specifically, policers are used to impose
limitations on the traffic entering the network marked with a given
DSCP. These limitations are typically enforced through a token
bucket, e.g., [13][14], that controls both the rate and the burstiness
of the traffic. The token bucket parameters, i.e., token rate and
token bucket depth, therefore play a major role in determining the
level of service provided to a flow assigned to a given BA. In
addition to the token bucket parameters, the policing actions
applied to non-conformant packets, i.e., packets that arrive to find
an empty token bucket2, are also expected to have a major impact
on performance. A complete investigation should, therefore,
consider all possible combinations of these different factors to
assess their relative effect on user level video quality. Fortunately,
the current specification of the two PHBs that have been defined
somewhat limits the range of combinations that need to be
considered. Specifically, the Expedited Forwarding (EF) PHB [16]
essentially requires a small burst size, i.e., a token bucket depth of
one or at most two Maximum Transmission Units (MTUs), and a
policer that either drops or shapes non-conformant packets.
Conversely, while the Assured Forwarding (AF) PHB [12] group
allows for a wider range of burst sizes, it primarily calls for

�
1 Actually one PHB [16] and a PHB Group [12].
2 Note that we assume here that tokens correspond to credits that

are needed to transmit packets. This is consistent with the
terminology of RFC 2212, 2697, and 2698.

policing actions that mark packets with different “colors” (DSCPs)
depending on their level of non-conformance. As mentioned
earlier, our focus is on the EF PHB for which the main variables
are the token rate and token bucket depth assigned to the stream
and whether the policer shapes or drops non-conformant packets.
Some preliminary experiments were conducted using the AF PHB
that are not reported in this paper, as the results were heavily
dependent on the level of cross traffic and its impact on the
performance given to marked packets. A comprehensive
investigation of these issues calls for an altogether separate paper.

2.2 Streaming Video Technologies
New streaming technologies use special servers to deliver

video content intelligently and adaptively to clients. This is
accomplished through the use of a protocol between the server and
its clients that allows continuous monitoring of the resources, e.g.,
bandwidth, available between them. Based on this information, the
server can respond to network dynamics and deliver the content at
a suitable data rate given the available bandwidth and the
compression rate of the audio and video content.

Existing servers rely on either standard, e.g., MPEG [18], or
proprietary, e.g., Windows Media Technology™ (WMT) [28],
media formats, and this affects the type of video clips they can
stream.

Standard servers such as MPEG streaming servers support
either MPEG-1 or MPEG-2 encoded video with different rates and
frame sizes. Often, large to medium scale servers are designed to
deliver MPEG content types in broadband Intranet/Internet
environments, i.e., environments where bandwidth is reasonably
plentiful. Microsoft Netshow Theater™, 2netfx-ThunderCastIP™,
and IBM Video Charger™ are examples of such servers with
which we experimented. These three servers are designed to
deliver high quality full motion MPEG-1 or MPEG-2 digital video
streams (up to 15 Mbps per stream) over IP networks. In our
experiments, we noticed that even for constant rate encoding, all
three servers generate reasonably bursty traffic, although with
sizable differences in the magnitude of the burstiness. This is not
entirely unexpected in the context of video, but does have
important implications for the network and the potential benefits of
service differentiation. The main contributor to the size of the
bursts generated by each server appears to be the size of the
(application level) datagrams they are configured to use. In
particular, the first two servers are configured to generate large
datagrams that can be up to 16280 bytes long3, and which are then
fragmented into smaller (1500-byte) packets by the IP stack on the
server itself prior to their transmission on the network. This results
in the generation of relatively large bursts of back-to-back packets.
In contrast, the Video Charger™ server allows smaller message
sizes so that while some burstiness remained in the traffic it
generated, it was significantly lower than with the other two.
Because of their propensity to generate large intrinsic bursts, the
first two servers did not perform very well in bandwidth-
constrained environments, and we found that their behavior in
settings supporting service differentiation was of limited interest,
i.e., mostly bi-modal with poor performance until sufficient (peak)
bandwidth was allocated and nearly perfect performance thereafter.
�
3 The datagram size for both the Netshow Theater™ and

ThunderCastIP™ servers is actually proportional to the frame
size and the MPEG encoding rate.

As a result, our experiments with video servers using standard
video formats were mostly limited to the Video Charger™ server.

We also experimented with another server that exhibited
similar burstiness characteristics, while relying on a proprietary
data format. Specifically, we experimented with a Windows Media
Technologies™ server, which uses Microsoft Advanced Streaming
Format (ASF) or Windows Media Video™ (WMV). ASF and
WMV integrate and synchronize objects of different media types
(audio, video, and data) optimized (encoded) for delivery over
lossy networks. Both formats support multiple bandwidths within a
single file. Media objects stored in the media files are encoded
using a variety of encoders implemented by Microsoft media
technologies. In addition, the server also supports reduced message
size (UDP/TCP packet size) for its encoded content that can fit in a
single packet. This eliminates the previously mentioned problem
of generating large bursts of back-to-back packets because of large
messages being fragmented in many small packets prior to
transmission.

2.3 Video quality assessments
Rating the (user level) quality of video streamed over IP

networks is a difficult task, and there are no standard procedures
one can simply apply to generate the desired quality measures. As
a result, the approach we took was to rely on methods that had
been developed for video quality assessment in more traditional
environments, i.e., television and video conferencing technologies,
and then to adapt those techniques to our own environment. This
task was further complicated by the fact that standardized objective
video quality assessment methods for digital video systems are a
recent development (see [26] for details and pointers). Video
quality assessment can be performed in either a subjective or an
objective manner. Subjective quality tests typically require a group
of viewers to watch short video clips of approximately 10 seconds
in duration in a very controlled environment, and then rate this
material. The most widely used methods for measuring the
subjective quality of speech and video images have been
standardized and recommended by the International
Telecommunication Union (ITU), and the results are frequently
expressed in terms of the ITU-T mean opinion score (MOS) (see
[7] and [9]).

Although subjective quality measurements reflect real human
perception of the quality of a video stream, they involve a
relatively complex and time-consuming process that is often not
practical when a large number of configurations with varying
parameters need to be assessed. These limitations of subjective
quality measurement methods prompted the development of
alternative approaches, called “objective quality measurement
methods,” that lend themselves more easily to automation and are
capable of operating in less controlled environments. Objective
quality measurement methods are based on computational models
that combine a number of key video quality measures, and which
are calibrated based on the correlation of the model scores to
subjective scores for a number of pre-determined experiments. Just
as with subjective methods, the various parameters that objective
performance assessment tools can incorporate have been
standardized by the American National Standards Institute (ANSI)
(see [1]). In our experiments, we relied on an objective video
quality measurement tool developed by the Institute for
Telecommunication Sciences (ITS), which enabled us to evaluate
the quality of a large number of combinations of video servers and
formats and network configurations. In the next section, we
provide additional details on both the video quality measurement
tool and on the overall experimental setup that was used.

3. Methodology and Experimental Setup
The development of the various components required to carry

out our video quality assessment experiments represented a
significant fraction of the work, and several aspects turned out to
be of independent interest. In this section, we briefly describe the
three main pieces of our experimental setup: the video quality
measurement tool, the network testbeds over which video was
transmitted, and finally the video clips themselves, with their
intrinsic properties.

3.1 Video Quality Measurement Tool
The tool and methodology that we adopted in our experiments

are those developed by ITS, and which are based on the ANSI
objective quality standards T1.801.03-1996 [1] as well as several
more recently developed metrics [29]. The ITS Video Quality
Measurement (VQM) software tool is based on a family of
objective quality assessment methods called Feature Extraction or
Reduced Reference [17], [27]. The approach is to rely on
mathematical models to capture the major features of either
individual frames (spatial features) or sequence of frames
(temporal features) from both the received video stream and the
reference video stream. The quality of a received series of video
frames is then assessed by comparing the time histories of the
received feature streams with the reference feature streams, and by
combining multiple quality parameters so generated into an overall
quality score. As mentioned earlier, the combination is performed
so as to generate good agreement with the results of a number of
previous subjective assessment experiments. In summary, the ITS
tool follows this method and performs the following three steps to
generate quality-rating indices.
� Extract quality features that characterize fundamental aspects

of video quality (spatial detail, motion, color) from sequences of
input and output video frames,

� Compute perception-based video quality parameters by
comparing the features of the received (output) video frames
with the corresponding features of the original (input) video
frames, and

� Produce a composite quality score from the computed digital
video quality parameters that is highly correlated with the
subjective assessments of human viewer panels.

A number of additions were needed in order to be able to use
the VQM tool to assess the quality of video transmitted over an IP
network. This is because the tool was originally developed for
television and video conferencing systems, where both the video
formats and the content delivery mechanisms are completely
different from those used to transmit video over IP networks. The
tool runs on an IRIX™ platform and takes decoded
(uncompressed) video as input in the YUV 4:2:2 [8] file format,
which is a binary file format used by the ITU Video Quality
Experts Group (VQEG) (this file format will henceforth be
referred to as BigYUV, since all the YUV frames from a scene are
stored in one large file). The main challenge for us was to generate
an appropriately formatted input for the VQM tool, based on the
received video streams after they were transmitted over the
network. This difficulty was compounded by the fact that because
the processing involved is computationally intensive, the tool is
typically unable to process received video streams in “real-time.”
As a result, it is necessary to provide some intermediate storage of
the received video prior to feeding them to the tool. This
introduced a number of additional problems.

The first problem is that video streaming clients are typically
built to only render contents on a screen and do not have the option
of recording or saving the received video. As a result, it was
necessary to add an intermediate step in which received video
streams are saved to a file. The quality measurement process could
then be conducted offline, i.e., after the streaming process, by
presenting the saved video frames to the VQM tool. The second
problem associated with storing the received video stream was that
this additional step had to accurately preserve the perturbations,
e.g., information regarding frame delays and drops, introduced by
the various network configurations being tested. Finally, a third
problem we encountered was caused by the fact that the tool, like
most other objective assessment tools, was designed to handle
relatively short duration video segments, e.g., on the order of 5 to
10 seconds. We wanted to experiment with longer video segments,
e.g., between 75 and 150 seconds, to be able to consider video
clips that would incorporate a broader and more representative
range of scene types, and get a more realistic assessment of the
overall impact of network configurations. As a result, some care
had to be exercised when using the tool to process such extended
segments. In the rest of this section, we outline how we addressed
these problems in developing our experimental setup.

Source file
reader

Format Parser
and Splitter

Audio Media
Decoder

Video Media
Decoder

Audio Media
Renderer

Video Media
Renderer

Filter Graph Manager

Filter Graph
Figure 1. Directshow™ filter graph and graph manager.

3.1.1 Storing Received Video Frames to File
We investigated a number of approaches for implementing the

required intermediate video storage step, and ultimately settled on
one that had the benefit of being readily portable, at least across
the video clients we were using that all ran on the Microsoft
Windows™ platform. Most of the multimedia clients built for the
Windows™ platform are implemented using the Directshow™
architecture. Directshow™ controls and processes the playback of
multimedia streams from local files or network servers. It enables
the playback of compressed video and audio contents using a
modular approach that divides the processing of multimedia
objects into a set of stages known as filters. Filters are pluggable
components connected to each other through “pins” that represent
a logical point of connection for a unidirectional data stream
flowing to/from the filter. A filter graph is composed of a
collection of connected filters of different types used to process a
specific media format. Applications use what is called a filter
graph manager to assemble and connect the filter graph suitable
for their media format, and for controlling the movement of data
through the assembled graph. When an application starts rendering
a piece of media content, the filter graph manager first selects a
source filter capable of reading the media content, and then
proceeds to select and connect subsequent filters based on the filter
graph, the last filter being typically the rendering stage. An
illustration of the structure of a typical filter graph is shown in
Figure 1.

Given the modular structure of the Directshow™ architecture,
a natural approach for introducing the ability to store received
video frames is to develop a filter performing the required storage
operations, and to insert it at an appropriate location in the filter

graph of video clients. The location we chose to insert our
“storage” filter was after the video decoder in lieu of the renderer.
The one disadvantage of such a choice is the storage requirement it
implies, as video frames must be stored in an uncompressed
BigYUV format. However, our experience has been that this
disadvantage was more than compensated for by a greater
robustness and reliability across clients and media formats. In
addition to replacing the renderer filter by our new storage filter,
another modification that had to be made to the original client filter
graph was to ensure that the video decoder would produce an
output in the desired BigYUV format. This was relatively easy
since most decoders allow the application to select the output
format they will generate.
3.1.2 Capturing Network Dynamics Information

The storage filter receives each frame, captures the relevant
timing information that consists of its arrival time and target
presentation time, and then saves the frame in a binary file and the
timing information in a parallel ASCII file. The timing information
will be used to create a modified set of frames that will be fed to
the VQM tool, and that will emulate the impairments caused by
network perturbations, as a user viewing frames being played out
by the renderer would have perceived them. Specifically, we want
to capture in our quality assessment the effect of the techniques
used by most renderers4 to compensate for lost or delayed frames.
The most common and simplest technique is to keep repeating the
last received frame until a new frame arrives. This is the approach
we chose to emulate. This was implemented using a simple PERL
script that takes as input the initial file of stored received frames
together with the associated statistics file created by the filter.
From these inputs, the script produces a new file containing stored
frames, but which now incorporates the repeated frames that a
renderer would have generated while attempting to compensate for
lost or delayed frames.

 Fram e Fram e

 Fram e Fram e

R ead F ra m e B uffe r W rite

P o sitive O ffset

R ead F ra m e B uffe r W riteR ep eat

N eg a tive O ffset

Fram es
W aitin g

Figure 2. Handling of Lost or Delayed Frames.

The mechanism on which the script relies is based on
maintaining two time references associated with the presentation
time and the arrival time, and by comparing them to determine
when the playback buffer runs out of frames because of lost or
delayed frames. This is achieved by maintaining an offset value
representing the difference between the arrival and presentation
times of frames. Frames that are early or on time have an arrival
time less than their presentation time, and result in an increase of
the offset value by an amount equal to their difference. In contrast,
a late frame has an arrival time that is greater than its presentation
�
4 It is the renderer rather than the decoder that is often responsible

for concealing the impairments caused by excessive delays or
lost frames in the network.

time, in which case this negative value is used to decrease the
current offset value by a similar amount. The script updates the
offset value for each received frame, and the resulting value is used
to determine the state of the playback buffer as seen by the
renderer. A positive offset value indicates that frames are available
for rendering in the buffer, while a negative offset value
corresponds to an empty playback buffer that would trigger the
repetition of the previous frame by the renderer. As a result, the
script inserts copies of the previous frame in the output file it
produces. The number of copies that are inserted is a function of
the offset value and the presentation and arrival times of the next
available frames. An illustration of the process implemented by
the script is shown in Figure 2.
3.1.3 Handling Extended Duration Video Clips

As mentioned earlier, the VQM tool was originally designed
to measure the quality of short (5 to 10 seconds) duration video
segments, while we wanted to use longer (between 75 and 150
seconds) video clips in our experiments. In order to use the VQM
tool on those longer clips, we therefore had to divide them into
smaller 10-second segments that were then fed to the tool one by
one, and whose individual quality scores had to be combined.
Applying this process raised two questions. The most significant
one involved the calibration process that is used to remove
systematic errors (i.e., gain, spatial shift, temporal shift) from the
received video stream. A control file that performs both spatial and
temporal calibration between the two sets of frames drives this
calibration. The second question concerned how to combine the
scores obtained by short duration segments to produce a
meaningful overall score for the extended duration video clip.

We configured the tool to segment the stored video files into
segments consisting of 300 frames each (10 seconds duration). The
segmentation is done so that the first 100 frames of each segment
overlap with the last 100 frames of the segment preceding it (see
Figure 3). Note that the last 100 frames of the last segment and
first 100 frames of the first segment do not overlap with other
segments. The overlap of consecutive segments is used to provide
sufficient margin to allow the temporal calibration mechanism of
the tool to find the proper alignment between the original file and
the received file. This is achieved by setting the Alignment
Uncertainty parameter specified in the control file of the tool to
allow searching in this specified range. The quality estimation of a
segment is then based on the next 100 frames following the
alignment point identified by the temporal calibration mechanism.

Segment #1 (300 Frames) Segment #3 (300 Frames)

Alignment
Uncertainty Unprocessed

Segment #2 (300 Frames)

To Tool

….

Figure 3. Segmentation Process of the Stored Video File.
In order to calculate the overall quality of an extended video

clip, we simply averaged the quality estimates of all the individual
segments. However, some care had to be exercised to deal with
long (around 10 seconds or more) periods of degraded quality,
which the temporal calibration process was not able to deal with
even with its extended range. Specifically, segments for which the
temporal calibration process did not succeed were assigned a
default quality index of 1 that corresponds to the worst quality
index assigned by the tool (the best quality index assigned by the

tool is zero). Here, the term “quality index” refers to the quality
estimate produced by the tool.

3.2 Network Testbeds
Quality assessments of received video clips were performed

using two network testbeds. One was a local testbed consisting of
several Diff-Serv capable routers to which a video server and video
clients were connected. The ability to easily change the
configuration of the local routers as well as the easy access to the
video server facilitated the exploration of a relatively wide range of
configurations. However, it is clear that a local testbed cannot
emulate all of the possible interactions that occur in actual
networks. In particular, while the policing actions of the token
bucket are expected to be the dominant contributor to video
quality, there are other factors that can influence token bucket
operations and introduce additional perturbations to a video
stream. For example, interactions with cross traffic prior to
reaching the router where policing actions are performed can
impact the number of frames that are found non-conformant and,
therefore, discarded (this jitter effect is well-known and was the
motivation behind the introduction of cell delay variation tolerance
in ATM [3]). Similarly, the use of shapers5 as well as the traversal
of multiple network hops can affect the end-to-end quality
perceived by a video application. As a result, it is desirable to
carry out experiments over a broad range of configurations. For
that purpose, additional tests were conducted over the QBone; a
wide-area testbed implemented across the Internet2 Abilene
network that supports a service built on the EF PHB. The rest of
this section is devoted to a brief overview of the two testbeds.
3.2.1 Local Testbed

The local testbed consists of three Diff-Serv enabled routers,
three workstations, and several Ethernet hubs that were used for
local connectivity. A sample configuration of the different testbed
elements is shown below in Figure 4. Routers 1 and 2 are
connected through a Frame Relay over High Speed Serial Interface
(HSSI), which is a standard interface for high-speed (up to 52
Mbps) serial connections over WAN links. The two routers are
connected directly using a HSSI Null modem cable. The third
router, router 3, is connected to router 2 using Frame Relay over
V.35.
3.2.1.1 Workstation Configurations

The workstations used for the video server and for the video
client are running the Microsoft Windows™ operating systems. A
higher end system was allocated to the video client because the
combination of real-time decoding of the received video streams
and the storing of the resulting large volume of data on the hard
disk proved to require significant resources. Specifically, with a
frame size of 320x240 pixels, the size of a decoded frame in
BigYUV format comes to 153.6 kbytes or 1.2 Mbits. Given a
frame playout rate of 30 frames per second, this imposes some
reasonably stringent speed constraints on the hard disk of the
receiving client system (about 35.16 Mbps).

�
5 A shaper is a token bucket, which instead of simply dropping

(policing) non-conformant packets, is configured to delay them
until the earliest time at which they are deemed conformant.

Video Server
Hub

Video Client

FR over
HSSI

Hub

Linux Router
w/ 2 Eth. Hub

FR over
V.35

Router 1 Router 2
Router 3

Figure 4. Sample Configuration of the Local Testbed.
In the local testbed, the video server that was used in our

quality assessment experiments was the Microsoft Windows Media
Technologies™ (WMT) server, which uses the Microsoft
proprietary media streaming protocol called Microsoft Media
Streaming™ (MMS). The protocol uses a TCP connection for
sending and receiving media control commands, and a UDP or
TCP connection for streaming the data.

The Linux workstation shown on the left-hand side of Figure
4 is running RedHat™ 6.0 and was configured to act as a router
that was used to perform traffic shaping in some of our
experiments. The use of a shaper prior to the router responsible for
implementing the token bucket in charge of policing the video
traffic was motivated by the relatively bursty characteristics of the
traffic generated by the video server (see Section 4.2).
3.2.1.2 Router Configurations

The two major aspects of the router configurations are the
parameters of the frame relay interfaces and the configuration of
the policy component responsible for traffic policing.

Frame Relay Interfaces Configuration
Router # I/f # CIR Bc Be I/F Type

FR 1 2*106 2*106 0 V.35
2

FR 0 2*106 2*106 0 HSSI
1 FR 1 2*106 2*106 0 HSSI

3 FR 1 2*106 2*106 0 V.35

Table 1. Configurations of the Frame Relay Interfaces.
The configuration of the frame relay interfaces on the three

routers is given in Table 1, which specifies for each interface the
values used for the three parameters required by frame relay:
Committed Information Rate (CIR), Committed Burst Size (Bc),
and Excess Burst Size (Be). The main purpose of the
configurations used was to emulate a set of constant rate links
connecting the different routers. Note that all CIR values were less
than the maximum transmission speed allowed over the V.35
Interface (E1), which was the main bandwidth bottleneck of the
system.

Support for different levels of service was provided through a
simple priority queue structure, with the high priority queue being
assigned to traffic marked with the EF DSCP.
Policy Configuration

Diff-Serv policies were configured on routers 1 through 3. A
policy specifies a “profile” that identifies the packet to which the
policy applies, and an action that determines the treatment that
these packets are to receive. At router 1, the profile specifies the
source address of the video server and the destination address of
the video client, which will then trigger the creation of a classifier

entry at the router to extract the corresponding set of packets. The
output of the classifier is connected to a policer that is responsible
for marking conformant packets with the EF DSCP (101100) and
for forwarding them to the router’s high priority queue. The
policer’s configuration information includes parameters such as
token rate and token bucket depth, as well as the treatment of non-
conformant packets. Given our focus on a service based on the EF
PHB, the policer was configured to drop packets that it did not find
conformant. As mentioned earlier, this was meant to allow us to
assess the impact that such “hard” policing actions had on the
quality of the received video. In addition, the token bucket depth
was typically set to two link MTUs in order to limit the size of the
burst that was allowed to enter the network. The impact of
dropping non-conformant packets was assessed with and without
the Linux router performing a shaping function. Policy
specification at routers 2 and 3 was simpler, as it only amounted to
classifying packets marked with the EF DSCP and forwarding
them to the high priority queue at the router.
3.2.2 QBone Testbed

The QBone [25] is an inter-domain Diff-Serv testbed aimed at
exploring the benefits of service differentiation on a wide area
scale. QBone participants are considered to form Diff-Serv enabled
domains that are in turn connected to the QBone, with which they
agree on Service Level Specifications (SLS’s) that define how
traffic is classified, policed, and forwarded at boundary nodes. The
edge routers located at the ingress boundary nodes are responsible
for enforcing SLS’s. The QBone currently offers one service, the
QBone Premium service that is based on the simplex Abilene
Premium Service (APS), which is built on the Expedited
Forwarding (EF) PHB. The SLS for the service was in the form of
a token bucket that specified peak rate and maximum burst size. At
the time our experiments were carried out, the APS test program
was in its early phase and the Abilene network was lightly loaded,
so that except at boundary nodes, the APS service was
implemented simply by means of over-provisioning. As of this
writing, service support has been upgraded to also provide
preferential forwarding treatment to EF packets within the Abilene
backbone.

Figure 5 provides an overview of the connectivity across the
QBone between our local testbed and a remote site. A video server
(Video Charger) was located at the remote site and used to stream
across the QBone different video clips to a video client located in
the local testbed. The packets generated by the server were pre-
marked as EF packets by the server and were policed at the border
Cisco router of the remote site. Policing was performed using
Cisco’s Committed Access Rate6 (CAR), which was configured to
drop packets that exceeded the APS profile. Experiments were
conducted using various APS profiles with different token rates
and token depth values, as shown in Section 4.1.

�
6 For a brief introduction to CAR, please refer to [10].

FORE ASX1000

Cisco

Local testbed

Cisco 7507

Cisco 7507

Campus #3

Cisco 7507

UUNET

Router

Campus #2
3Com CB3500

Campus #1

QWEST

Cisco

Abilene
QBone

3com corebuilder

FAST E/N

FAST E/N

Indianapolis
NOC

MREN
Gigapop

Cisco ATM Switch

Cisco 7507 Switch

Video Charger
Remote
site

MAGPI
backbone

Campus #4

Figure 5. Connectivity Configuration Across the QBone.

3.3 Video Clip Properties
Two video clips, called Lost and Dark in the rest of the paper,

with different scene characteristics were used in our experiments.
They were obtained from the trailers of two motion pictures, and
were re-encoded using two different encoding formats (MPEG-1
and WVM) and a variety of encoding parameters corresponding to
different levels of video “quality.” The clips were uploaded to
different servers and streamed to clients using a number of network
service configurations, i.e., specifying different token bucket
parameters. The MPEG-1 versions of the clips were used for
experiments carried out over the QBone, and they were uploaded
to the video charger server located at the remote site. The WVM
format clips were used with the Windows media technologies
server in our local testbed experiments.
3.3.1 MPEG-1 Clips

The two clips were encoded using a constant bit rate setup for
three different rate values 1M, 1.5M, and 1.7M, and a fixed frame
size of 320x240. The three rate values produced videos of different
qualities but potentially better suited to different network
configurations, i.e., token rates. Note that the MPEG servers we
used do not support multi-rate encoding, i.e., the ability to
dynamically select a given video quality when multiple copies
encoded at different rates are available. As a result, and although
we expect such a capability to be available in future MPEG
servers, this means that once a given encoding has been selected, it
is the only one used for the remainder of the experiment. The
characteristics of the two clips are summarized in Table 2 and
Figure 6. The table gives the characteristics of the encoding
process and its output (the rate information is computed after every
frame using the MPEG_stat tool), while Figure 6 displays rate
information for what is actually transmitted to the network.

As can be seen from both the table and the figure, although a
constant rate encoding was used, the resulting output still exhibits

significant variations, as illustrated through the differences
between minimum, average, and maximum rate values in the table

and the range of transmission rates found on the figure.

Clip Lost
Rate Information in bps Encoding

rate
Bytes read frames Length Avg. Frame size

Max Avg. Min
1.7M 15276442 2150 71.74 s 7101 bytes + 4 bits 2047496 1702659.43 128640
1.5M 13453779 2150 71.74 s 6253 bytes + 6 bits 1835320 1499402.84 117976
1M 8970075 2150 71.74 s 4168 bytes + 2 bits 1263464 999396.85 87744

Clip Dark

Rate Information in bps Encoding
rate

Bytes read frames Length Avg. Frame size
Max Avg. Min

1.7M 29975812 4219 140.77 s 7101 bytes + 2 bits 2038840 1702624.58 153152
1.5M 26399218 4219 140.77 s 6253 bytes + 5 bits 1789408 1499371.64 139088
1M 17600951 4219 140.77 s 4168 bytes + 1 bits 1155672 999378.16 97592

Table 2. MPEG Encoding Properties of Clips Lost and Dark.
 Figure 6 also illustrates the impact of the differences in

scenery between the two video clips, with the high motion content
of the clip Dark translating into greater rate fluctuations (especially
towards the end of the clip). We expected those fluctuations to
have some impact on the interactions between the policer used for
different configurations and the resulting video quality.
 Dark Clip transmitted bit rates for different encoding rates

encoding rates

600000

1100000

1600000

2100000

2600000

1 392 783 1174 1565 1956 2347 2738 3129 3520 3911
Frame

B
itr

at
e

(b
ps

)

Dark 1.7 M Dark 2.25 M
Dark 1.5 M Dark 1M

Lost Clip transmitted bit rates for different encoding rates
encoding rates

600000

1100000

1600000

2100000

2600000

1 177 353 529 705 881 1057 1233 1409 1585 1761 1937 2113
Frame

B
itr

at
e

(b
ps

)

Lost 1.7 M Lost 2.25 M
Lost 1.5 M Lost 1M

Figure 6. Instantaneous Transmission Rates of MPEG-1 Clips
for Different Encoding Rates.

3.3.2 Windows Media Encoded Clips
The properties of the two clips encoded using the Windows

Media™ encoder are summarized in Table 3. The encoder allows
the specification of several encoding parameters, including the
desired bandwidth. However, the resulting encoding produced by
selecting a given bandwidth value is not a constant rate encoding,
and instead corresponds to a maximum bandwidth value. This can
be seen by comparing the expected and average rates values in
Table 3. Note that the WMV format supports the multi-rate
encoding feature mentioned earlier, and we used it in some
experiments. Note also that the encoder does not encode video-
only content, so that both audio and video had to be accounted for.

In order to minimize the effect of the additional audio packets, we
set the encoding rate for audio near zero.

Lost Clip Dark Clip
Session:
Bytes encoded (total): 6936504
Bit rate (expected): 1015.5 Kbps
Bit rate (average): 771.7 Kbps
Video [1015.4 Kbps]:
Bytes encoded (total):6935380
Bit rate (expected):1015.4 Kbps
Bit rate (average):771.6 Kbps
Frames per second (expected):30.0
Frames per second (average):29.9
Frames (total):2150
Audio [0.1 Kbps]:
Bytes encoded (total):1124
Bit rate (expected):0.1 Kbps
Bit rate (average):0.1 Kbps
Samples (total):562

Session:
Bytes encoded (total):11976984
Bit rate (expected):1015.6 Kbps
Bit rate (average):680.5 Kbps
Video [1015.5 Kbps]:
Bytes encoded (total):11974782
Bit rate (expected):1015.5 Kbps
Bit rate (average):680.4 Kbps
Frames per second (expected):30.0
Frames per second (average):30.0
Frames (total):4219
Audio [0.1 Kbps]:
Bytes encoded (total):2202
Bit rate (expected):0.1 Kbps
Bit rate (average):0.1 Kbps
Samples (total):1101

Table 3. Properties of Windows Media Encoded Clips.

4. Results
As mentioned in Section 2.2, we originally considered a

number of different video servers but ultimately limited our
experiments to only two types of servers: The Video Charger™
server for experiments over the QBone and a Windows Media™
server for experiments over our local testbed. Table 4 summarizes
the different configurations used.

As mentioned previously in Section 2.2, the main motivation
for not including the other servers we initially considered was their
relatively poor performance in the presence of the dropped packets
induced by traffic policers. Recall that those servers rely on large
datagrams for the transmission of video frames, and those
datagrams were then fragmented into many smaller packets, so that
the loss of even one packet at the policer would typically result in
the loss of an entire datagram. This problem was further
compounded by the fact that a single datagram triggered the
generation of many back-to-back packets, which resulted in several
dropped packets at the policer because of the small token bucket
depth used for EF traffic. In addition, policing losses together with
the service guarantees provided to EF traffic appeared to somewhat
confuse the adaptation mechanism of the servers. Specifically, the
fact that delivered packets experienced small delays seems to have
been interpreted by the server as an indication that sufficient
bandwidth was available. As a result, the adaptation mechanism
reacted to the loss of packets (because of policing) by forcing the
server to increase its data rate to make up for the losses. This in
turn resulted in further packet losses followed by yet other rate
increases until performance got so poor that the server would back

down to very low transmission rates. This cycle would repeat a
number of times, until the client decided to break the connection,
as it was deemed too unreliable. In short, traffic conditioning
essentially misled the dynamic rate control approach of the servers,
to the point of making them unusable unless the token rate was set
to the maximum rate of the server.

 Experiments on
 QBone Local Testbed

Video Server used Video Charger Windows Media Server
Network protocol UDP TCP, UDP

Contents Type MPEG1 WMV Format
Contents properties Constant Bit

rate
Max bit rate is constant

PHB tested EF
Service parameters Token rate, Bucket Depth

Out of profile
action

Drop Drop (router 1)
(Shape – Linux router)

Table 4. Summary of Experimental Configurations.
The main results of our experiments consist of the quality

estimates generated by the VQM tool for the different
configurations we tried. Before we proceed with the description
and discussion of the results, it is important to note that there is
some variability in the results themselves. Specifically, for the
same combination of video server, video client, and network
parameters, it is possible to obtain slightly different quality
estimates in consecutive runs of an experiment. This is because
many factors can affect the set of packets ultimately delivered to
the client together with their timing. For example, different load
conditions at the server or variations in the level of interfering
traffic through the local network connecting the server to the router
performing policing, can all influence the set of packets that the
policer will ultimately drop. Those differences in lost packets will
in turn affect the resulting quality of the video played out at the
client. In particular, as seen in, say, in Figure 7 and Figure 8, it is
quite possible for a small increase in token rate to yield a degraded
video quality. This is in part because depending on the types of
scenes, the intrinsic rate of the video clip, and how the server
reacts to a slight increase in token rate, the end-result need not
always be fewer dropped frames. Such inherent issues not
withstanding, we have tried to minimize such variations by
eliminating most external interference sources, e.g., dedicated
video server, absence of local interfering traffic, etc., so that the
focus was on the impact of policing actions for different
configurations. Note that a few experiments on the local testbed
did involve interfering cross-traffic, and the QBone experiments
did not allow us to control the presence and absence of interfering
traffic. In all cases where we were able to compare the outcome of
experiments with and without interfering traffic, only minor
variations were observed that were primarily a reflection of how
the different routers implemented the prioritization of EF traffic.
In general, it is impossible to completely eliminate all sources of
variation, and although results did not vary significantly when
experiments were repeated, it is important to keep this in mind
when interpreting the results. In other words, general trends are
clearly meaningful, but minor fluctuations in quality need not be.

4.1 QBone Testbed Results
Copies of the clips Dark and Lost encoded at the different

rates identified in Section 3.3 were streamed through the QBone
from a Video Charger server located at the remote site to a video
client at the local site (see Figure 5). Streaming was done over
UDP, as this was the only configurable option at the remote server
when EF marking was also to be applied. Each clip was streamed

through the network several times and for different choices of
network service parameters (token rate and bucket depth). Two
(small) token bucket depth values were used, namely 3000 bytes
and 4500 bytes, and for each the token rate value was varied from
just below the average stream rate to a value for which the
maximum video quality rating of 0 was achieved. This typically
corresponded to the maximum rate of the video stream. Initial
results are shown in Figure 7 through Figure 9 for the Lost clip and
in Figure 10 through Figure 12 for the Dark clip. Each figure has
two sets of curves, one for each token bucket depth. The two
curves in each set correspond to the fraction of lost frames and the
corresponding video quality rating produced by the VQM tool.
For comparison purposes, those values are plotted against the same
y-axis scale, while the x-axis corresponds to increasing token rate
values. Tables available from [2] provide more precise numerical
values. Recall that a quality score of 1.0 is the worst possible7,
while a score of 0.0 corresponds to the best possible video quality,
i.e., identical to the quality of the original clip used as reference.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1200 1400 1600 1800 2000 2200
Token Rate

Quality Index,
B=3000
Frame Loss,
B=3000
Quality Index,
B=4500
Frame Loss,
B=4500

Qu
al

ity
 In

de
x/F

ra
m

e L
os

s

Figure 7. QBone Streaming (Lost clip/1.7Mbps encoding):

Video Quality & Frame Loss vs Token Rate.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

1200 1400 1600 1800 2000 2200
Token Rate

Qu
al

ity
 In

de
x

/ F
r

am
e

lo
ss

Quality Index
B=3000
Frame Loss,
B=3000
Quality Index,
B=4500
Frame Loss,
B=4500

Figure 8. QBone Streaming (Lost clip/1.5 Mbps encoding):

Video Quality & Frame Loss vs Token Rate.

�
7 Quality index scores may exceed 1.0 for extremely distorted

video that falls outside the range of subjective assessments used
to develop the VQM tool.

In this first set of experiments, the quality of the received
video was compared to that of the transmitted clip, i.e., the
reference points were different for each encoding rate. The first set
of experiments was performed to assess the quality degradations
resulting from network impairments. In a latter set of experiments,
the comparison was done with respect to the highest quality
original clip, namely the clip corresponding to a 1.7 Mbps
encoding rate, so as to assess the trade-off that exists between
quality degradations imposed by the network and those due to the
encoding itself.

0.00
0.20
0.40
0.60
0.80
1.00

700 800 900 1000 1100
Token Rate

Q
ua

lit
y

In
de

x
/ F

ra
m

e
lo

ss

Quality Index,
B=3000
Frame Loss,
B=3000
Quality Index,
B=4500
Frame Loss,
B=4500

Figure 9. QBone Streaming (Lost clip/1.0Mbps encoding):
Video Quality & Frame Loss vs Token Rate.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1200 1400 1600 1800 2000 2200
Token Rate

Q
ua

lit
y

In
de

x
/ F

ra
m

e lo
ss

Quality Index,
B=3000
Frame Loss
B=3000
Quality Index,
B=4500
Frame Loss,
B=4500

Figure 10. QBone Streaming (Dark clip/1.7Mbps enc.): Video

Quality & Frame Loss vs Token Rate.
These first results show very similar behavior for the two

clips, Lost and Dark, which appears to indicate that the different
motion characteristics of their content do not significantly affect
the basic relation that exists between video quality and network
resources. In other words, while video characteristics will clearly
play a role in determining the absolute level of quality achievable
given certain network resources, general trends should remain
similar across different types of video clips. For example, when
comparing the results of, say, Figure 7 and Figure 10, that
correspond to the 1.7Mbps encoding rate versions of the Lost and
Dark clips, respectively, we see that for a token bucket depth of
3000 bytes and a token rate of 1.9 Mbps, both clips experience a
similar frame loss of about 1%, but their respective quality
measures differ, i.e., 0.19 versus 0.14. However, despite those
differences that are actually more pronounced for higher encoding
rates, the general “shape” of the quality index curves are similar
for the two clips.

There are a number of initial conclusions one can draw based
on the results obtained from this first set of experiments. The first
and most interesting one is that the relation between video quality
and network level performance improvements is highly non-linear.
For example, we see that in some regions, improvements in frame
losses hardly affect the quality of the received video that remains
relatively poor until a cutoff point is reached. Once this cutoff
point is passed, video quality improves at a much faster pace than
the corresponding improvements in frame loss. The location of the
cutoff point as well as the subsequent difference in slope between
video quality and frame losses vary based on the encoding rate as
well as the type of clip, but the behavior is consistent across all the
experiments.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1200 1400 1600 1800 2000 2200
Token Rate

Q
ua

lit
y

In
dex

 /
Fr

am
e

lo
ss

Quality Index,
B=3000
Frame Loss,
B=3000
Quality Index,
B=4500
Frame Loss,
B=4500

Figure 11. QBone Streaming (Dark clip/1.5Mbps enc.): Video
Quality & Frame Loss vs Token Rate.

In addition to this general conclusion, the experiments also
provide more specific information in terms of the network
“service” parameters required to ensure adequate video quality.
The first observation is that setting the token rate value below the
encoding rate is of no use at all. This is not surprising given the
dropping actions taken on non-conformant packets by the ingress
policer. The token rate value needed to achieve good video quality,
i.e., a score close to 0, depends on the token bucket depth. We see
that with a token bucket depth of 3000 bytes (2 Ethernet MTUs),
the token rate has to be set to a value around or even above the
maximum encoding rate of the clip (see Table 2 for rate values) in
order to approach the desired quality score. However, when the
token bucket depth is increased to 4500 bytes, a token rate set to
the average (constant) encoding rate is typically sufficient. Note
that this is despite the fact that the network level transmission rates
of the video streams still exhibit significant variations (see Figure
6). Nevertheless, this points to the fact that a service built on the
EF PHB may not be really suitable to the efficient transmission of
streaming video, because of the constraint it imposes on the token
bucket depth. This is not a major surprise in itself, but the results
of the experiments help quantify this behavior. In particular, we
see that although the token bucket depth needed is greater than the
“typical” 2*MTUs often quoted for the EF PHB, it is not
significantly larger, at least for video clips using constant bit rate
encoding. This means that a minor relaxation on token bucket
depth limits may make such a service more useful to video
streaming applications. Clearly, such relaxation needs to be
weighed against its impact on delay and losses in the network, but
depending on the intended use of the service, it may be worth
considering.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

700 800 900 1000 1100
Token Rate

Qu
al

ity
 In

de
x

/ F
ra

m
e l

os
s

Quality Index,
B=3000
Frame Loss
B=3000
Quality Index,
B=4500
Frame Loss,
B=4500

Figure 12. QBone Streaming (Dark clip/1.0Mbps enc.): Video

Quality & Frame Loss vs Token Rate.
The next set of experiments carried out across the QBone
attempted to answer the more general question of the relation
between initial video quality and available network resources. In
other words, is it better to lose a relatively large number of packets
from a high quality video stream, or is it better to loose fewer
packets from a lower quality video. The latter seems the
intuitively natural answer, but we wanted a more quantitative
assessment of this trade-off. For that purpose, we conducted
another set of experiments, using again the Lost and Dark video
clips encoded at the three rate values of 1.0Mbps, 1.5Mbps, and
1.7Mbps, and compared the quality of the received video to that of
the highest quality 1.7Mbps version of the clip. As before, the
comparison was carried out for different values of the token rate.
A token bucket depth of 3000 bytes was used for all the
experiments. The results are reported in
Figure 13 and Figure 14 for the Dark and Lost clips, respectively.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

600 1100 1600 2100
Token Rate

Q
ua

lit
y

In
de

x
/ F

ram
e

lo
ss

Quality Index,
1.5M
Frame Loss
1.5M
Quality Index,
1M
Frame Loss
1M
Quality Index,
1.7M
Frame Loss
1.7M

Figure 13. Frame Loss and Relative (compared to 1.7Mbps

version) Quality for Dark Clip.
The results from the two figures essentially confirm our

earlier intuition that one should select an encoding rate that is near
but below the specified token rate. This is clear from the data in
the figures: as for all token rate values the best performing stream
in terms of quality score is always the one with the closest
encoding rate. In other words, at least for the range of encoding
rates available in our experiments, the basic rule of thumb to apply
is to select the largest encoding rate that is less than the token rate.

This seems to be primarily due to the fact that the impairments
caused by packet losses have a much larger impact on video
quality than the differences in raw video quality caused by
different encoding rates.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

600 1100 1600 2100
Token Rate

Q
ua

lit
y

In
de

x
/ F

ra
m

e
lo

ss

Quality Index
1.5Mbps
Frame Loss
1.5Mbps
Quality Index
1Mbps
Frame Loss,
1Mbps
Quality Index
1.7Mbps
Frame Loss,
1.7Mbps

Figure 14. Frame Loss and Relative (compared to 1.7Mbps
version) Quality for Lost Clip.

4.2 Local Testbed Results
Experiments conducted in the local testbed were aimed at
exploring the same set of issues as those that motivated the QBone
experiments, but this time using a different video server and
possibly more configurations because of the accessibility of the
local equipment. The motivation for using a different server was
to determine the level of dependency of our initial conclusions on
the specific characteristics of the video server we used. The use of
a different server at the remote site, which would have enabled us
to carry this new set of experiments over the QBone, was not
feasible due to logistics constraints. As a result, this next set of
experiments was conducted over the local testbed described in
Section 3.2.1. The basic conclusion from these additional
experiments is that most of the earlier findings remain essentially
true. In particular, the fact that frame loss is not an accurate
predictor of video quality still holds. As before, in many cases
small differences in frame loss resulted in large differences in
video quality and vice-versa. These behaviors are illustrated in
Figure 15 and Figure 16, where we can again see areas of rate
changes that yielded substantial reductions in frame losses without
comparable improvements in video quality, as well as cases where
a relatively small decrease in frame loss resulted in a significant
improvement in video quality.

Another behavior that was consistent with our observations
from experiments over the QBone was the impact of increasing the
token bucket depth. As before, a small increase in the token
bucket depth, i.e., from 3000 bytes to 4500 bytes, resulted in
significant improvements in our ability to achieve nearly perfect
video quality using a token rate value close to the encoding rate of
the video stream itself. However, despite those similarities, some
differences were also observed. They reflected the impact of a
different server technology as well as differences in the network
configurations that were used, and it is worthwhile to briefly
review them as well as their causes.

The main difference is that much higher token rates were
required in order to achieve nearly perfect video quality. As a
matter of fact, because our maximum token rate was limited by the
speed of the V.35 link between routers 2 and 3 (about 2 Mbps), we
could not exceed this value, which prevented us from achieving the

ideal quality score of 0 when the token bucket depth was 3000
bytes. This was in spite of the fact that the “maximum” rate
specified when encoding both clips was limited to about 1 Mbps
(see Table 3). In other words, despite a token rate of about twice
the maximum encoding rate, we were still not able to achieve the
best quality level. Note that increasing the token bucket depth to
4500 bytes largely eliminates this difference. The main reason
behind this behavior is the relatively bursty nature of the server’s
output. As a matter of fact, the main reason that the experimental
results we report are limited to the 1 Mbps clip is that we were not
able to achieve decent levels of quality at higher rates, at least not
with the network configurations we were using. This was
observed even after switching over to TCP streaming and relying
on shaping in the Linux router to which the server was connected.
UDP streaming remained too bursty to allow meaningful
experimentation in the network configurations we were
considering. TCP streaming, because of the intrinsic rate
adaptation capability of TCP, resulted in a smoother traffic flow
that produced better quality results.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

500 1000 1500 2000 2500
Token Rate

Q
ua

lit
y

In
de

x
/ F

ra
m

e
lo

ss

Quality Index,
B=3000
Frame Loss,
B=3000
Quality Index,
B=4500
Frame Loss,
B=4500

Figure 15. Local Testbed Experiments (Lost clip at 1Mbps) –
Quality and Frame Loss vs Token Rate.

A related point worth emphasizing in this context is that the
difference in video quality achieved by increasing the token bucket
depth from 3000 bytes to 4500 bytes is much more substantial in
this setting. In other words, the benefits derived from allowing a
slight increase in bucket size are much larger with this type of
server and encoding, than when using constant rate encoding
together with servers that attempt to pace their transmissions, as
was the case for the QBone experiments. This seems to add
further support to considering slightly larger bucket sizes than the
two MTUs limit that was originally mentioned for services built on
the EF PHB.

5. Conclusion
In this paper, we have carried out an experimental

investigation of the relation that exists between (user level) video
quality and various network configurations embodying a service
based on the Diff-Serv EF PHB. The experiments considered
different types of video clips, different encoding rates, different
video servers, and evaluated the quality of received video streams
transmitted over both local and wide area (QBone) testbeds for
different settings of the token bucket associated with the “service”
assigned to the stream. The assessment of the quality of the
received video was performed using an objective quality
measurement tool that provides accurate estimates of video quality,
as users perceive it. The main focus was on the impact of the

dropping actions performed by the policer on non-conformant
packets.

One of the findings of the investigation was to confirm that
frame loss itself is not necessarily an accurate measure of video
quality. The evolution of the two is often decoupled, so that in
some instances large increases in allocated rate do not translate
into significant quality improvements, while in other cases, a small
amount of additional bandwidth can yield a drastically better video
quality. This conclusion does not appear to significantly depend
on the type of video used, but the exact relation between video
quality and frame loss (or token rate) does depend on the type of
server and encoding used. In general, a token rate larger than the
encoding used is needed in order to achieve high quality for the
received video. The required margin above the encoding rate is
where the dependency on the server and encoding used comes in.

Another interesting finding that emerged from our
investigation is that a small increase of the token bucket depth used
by the policer can translate into substantial improvements in the
quality of the received video. Allowing such an increase should
clearly be weighed against the larger burstiness it will allow and its
associated impact on frame losses and delays in the network.
Specifically, a larger token bucket means that larger EF bursts can
now enter the network. This can in turn contribute to the
accumulation of larger bursts as the EF traffic traverses multiple
hops, e.g., [4]. However, given the magnitude of the observed
improvements and the relatively small increase in token bucket
depth that is required, this may be an option worth considering
when building services that will use the EF PHB. Especially since
increasing the potential burst size by one MTU (from two to three)
is unlikely to contribute a significant increase in burstiness in the
network, at least not for moderate EF loads.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

500.0 1000.0 1500.0 2000.0 2500.0
Token Rate

Q
ua

lit
y

In
de

x
/ F

ra
m

e
lo

ss

Quality Index
B=3000
Frame Loss
B=3000
Quality Index
B=4500
Frame Loss
B=4500

Figure 16. Local Testbed Experiments (Lost clip at 1Mbps) –
Quality and Frame Loss vs Token Rate.

6. Acknowledgments
The authors would like to acknowledge the assistance of the many
individuals who made the experiments over the Internet2 QBone
possible. They include Matthew Davy, Indiana University,
Shumon Huque, Dikram Kassabian, and Jon Looney, ISC,
University of Pennsylvania, Ben Teitelbaum, Internet2, Tim Ward,
Daniel Weaver, and Jeremy Weinberger, NorthWestern University,
Ira Winston, University of Pennsylvania, Rick Wood,
NorthWestern University, and Matthew Zekauskas, ANS. In
addition, we would like to thank iCAIR and in particular Joel
Mambretti, as well as IBM for providing us with access to the
Video Charger™ video server that was used for streaming video

over the QBone, and IBM for donating most of the equipment used
in the local testbed experiments.

7. References
[1] ANSI T1.801.03 – 1996, “American National Standard for

Telecommunications - Digital Transport of One-Way Video
Signals – Parameters for Objective Performance Assessment,”
American National Standards Institute.

[2] W. Ashmawi, R. Guerin, S. Wolf, and M. Pinson, “On the
impact of policing and rate guarantees in Diff-Serv
networks: A video streaming application
perspective.” Technical report, 2001, University of
Pennsylvania, http://pender.ee.upenn.edu/~guerin.

[3] ATM Forum – “Traffic Management Specification Version
4.1,” (AF-TM-0121.000), John Kenney, Ed., March 1999.

[4] J. C. R. Bennett, K. Benson, A. Charny, W. F. Courtney, and
J.-Y. Le Boudec, “Delay Jitter Bounds and Packet Scale Rate
Guarantee for Expedited Forwarding.” Proceedings of
INFOCOM’2001, Anchorage, Alaska, April 2001.

[5] D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, and S.
Blake, “An Architecture for Differentiated Services.” Internet
Engineering Task Force, Request For Comments, RFC 2475
(Informational), December 1998.

[6] B. Carpenter, D. Kandlur, and J. Mambretti, “Experiments
with Differentiated Services at iCAIR.” Proceedings of the
First Joint Internet2/DOE QoS Workshop, Houston, TX,
February 2000.

[7] ITU-R Recommendation BT.500, “Methodology for
subjective assessment of the quality of television pictures,”
Recommendations of the ITU, Radiocommunication Sector.

[8] ITU-R Recommendation BT.601-2, “Encoding parameters of
digital television for studios,” Recommendations of the ITU,
Radiocommunication Sector.

[9] ITU-T Recommendation P.910, “Subjective video quality
assessment methods for multimedia applications,”
Recommendations of the ITU, Telecommunications
Standardization Sector.

[10] Cisco Committed Access Rate,
http://www.cisco.com/warp/public/732/Tech/car/.

[11] T. Ferrari and P. Chimento “A Measurement-based Analysis
of Expedited Forwarding PHB Mechanisms.” Proceedings of
IWQoS 2000, Pittsburgh, PA, June 2000.

[12] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski,
“Assured Forwarding PHB Group.” Internet Engineering
Task Force, Request For Comments, RFC 2597 (Standards
Track), June 1999.

[13] J. Heinanen and R. Guerin, “A Single Rate Three Color
Marker.” Internet Engineering Task Force, Request For
Comments, RFC 2697 (Informational), September 1999.

[14] J. Heinanen and R. Guerin, “A Two Rate Three Color
Marker.” Internet Engineering Task Force, Request For
Comments, RFC 2698 (Informational), September 1999.

[15] M. Hemy, U. Hengartner, P. Steenkiste, T. Gross, “MPEG
System Streams in Best-Effort Networks.” Packet Video 99,
Columbia University, New York, NY, April 1999.

[16] V. Jacobson, K. Nichols, and K. Poduri, “An Expedited
Forwarding PHB.” Internet Engineering Task Force, Request
For Comments, RFC 2598 (Standards Track), June 1999.

[17] M. Knee, “The Picture Appraisal Rating (PAR) – a single-
ended picture quality measure for MPEG-2.” Proceedings of
the International Broadcasting Convention, Amsterdam, The
Netherlands, September 2000.

[18] The MPEG Home Page, http://www.cselt.it/mpeg/.

[19] K. Nichols, S. Blake, F. Baker, D. Black, “Definition of the
Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers.” Request For Comments, RFC 2474 (Standards
Track), December 1998.

[20] T. V. Lakshman, A. Ortega, and A. R. Reibman, “VBR
Video: Trade-Offs and Potentials.” Proc. IEEE, pp. 952-973,
May 1998.

[21] J.-Y. Le Boudec and O. Verscheure, “Optimal Smoothing for
Guaranteed Service.” IEEE/ACM Trans. Networking, Vol. 8.
No. 6, pp. 689-696, December 2000.

[22] V. Paxson, G. Almes, J. Mahdavi, and M. Mathis,
“Framework for IP Performance Metrics.” Internet
Engineering Task Force, Request For Comments, RFC 2330
(Informational), May 1998.

[23] R. Rejaie, M. Handley, and D. Estrin, “Quality Adaptation for
Congestion Controlled Video Playback Over the Internet.”
Proceedings of SIGCOMM’99, Cambridge, MA, August
1999.

[24] J. Rexford and D. Towsley, “Smoothing Variable Rate Video
in and Internetwork.” IEEE/ACM Trans. Networking, Vol. 7,
No. 2, pp. 202-215, April 1999.

[25] B. Teitelbaum, Editor, “QBone Architecture (v1.0).”
Document available at http://qbone.internet2.edu/.

[26] VQEG Home page, http://www-ext.crc.ca/vqeg/frames.html.

[27] ITU-T Recommendation J.143, "User requirements for
objective perceptual video quality measurements in digital
cable television,” Recommendations of the ITU,
Telecommunication Standardization Sector.

[28] The Windows Media Home page,
http://www.microsoft.com/windows/windowsmedia/.

[29] S. Wolf and M. H. Pinson, “Spatial-Temporal Distortion
Metrics for In-Service Quality Monitoring of Any Digital
Video System.” Proceedings of SPIE International
Symposium on Voice, Video, and Data Communications,
Boston, MA, September 11-22, 1999.

♣ Certain commercial equipment and software products are
identified in this paper to ensure completeness and accuracy in
describing the information presented. In no case does such
identification imply recommendation or endorsement by the
University of Pennsylvania or the National Telecommunications and
Information Administration, nor does it imply that the equipment or
software is necessarily the best available for this application.

