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ABSTRACT  
Over the past few years, there have been a number of proposals 
aimed at introducing different levels of service in the Internet.  One 
of the more recent proposals is the Differentiated Services (Diff-
Serv) architecture, and in this paper we explore how the policing 
actions and associated rate guarantees provided by the Expedited 
Forwarding (EF) translate into perceived benefits for applications 
that are the presumed users of such enhancements.  Specifically, 
we focus on video streaming applications that arguably have 
relatively strong service quality requirements, and which should, 
therefore, stand to benefit from the availability of some form of 
enhanced service. Our goal is to gain a better understanding of the 
relation that exists between application level quality measures and 
the selection of the network level parameters that govern the 
delivery of the guarantees that an EF based service would provide. 
Our investigation, which is experimental in nature, relies on a 
number of standard streaming video servers and clients that have 
been modified and instrumented to allow quantification of the 
perceived quality of the received video stream. Quality 
assessments are performed using a Video Quality Measurement 
tool based on the ANSI objective quality standard.  Measurements 
were made over both a local Diff-Serv testbed and across the 
QBone, a QoS enabled segment of the Internet2 infrastructure.  
The paper reports and analyzes the results of those measurements. 

1. Introduction  
As IP networks are being used to carry an ever-increasing 

range of traffic types, it has been argued that the associated 
diversity of service requirements calls for the introduction of 
service differentiation in the network.  A recent proposal in that 
direction is embodied in the Differentiated Services (Diff-Serv) 
architecture [1] that supports service differentiation by specifying a 
small number of different “behaviors” [12],[16] for the network 
when forwarding packets. Our general goal in this paper is to gain 
a better understanding of the relation that exists between the better 
network guarantees that such new capabilities are providing and 
the actual benefits that ensue as perceived by the applications that 
use them. Because this is obviously a broad topic with possibly as 

many different answers as there are applications, we narrow our 
investigation to a specific application, namely, streaming video.  
Video applications are gaining in popularity and have seen 
significant evolution over the past five years.  Early video 
transmissions over IP networks were mostly limited to content 
delivery that allowed users to download compressed videos in 
order to play them back locally. The disadvantage of having to 
wait for the download to complete before being able to start 
playing back a video as well as the desire to avoid storage, and 
ultimately duplication, of local copies, quickly led to the 
development of progressive download technologies that allow 
clients to watch the video as the content files are being 
downloaded. Several currently available video compression 
schemes were modified to enable progressive downloads: 
QuickTime™, VIVO™, VIDO™, and RealNetworks™ are 
examples of such schemes♣. 

One of the main challenges for these new technologies is to 
develop adaptive schemes capable of dealing with the uncertainty 
of network resource availability between clients and servers.  This 
has led to a number of approaches aimed at “dynamically” 
adjusting the rate of video delivery based on estimating the 
resources available between the server and the client.  The more 
basic schemes only allow users to select from several possible 
video qualities at the connection setup time, based on an initial 
estimate of the available bandwidth between the server and the 
client. Some of the more sophisticated and recent schemes, e.g., 
[23], include the ability to increase or decrease quality in real-time 
as available resources vary.  These advances not withstanding, the 
transmission of video over the Internet has remained somewhat 
hampered by the relative unpredictability of its quality, in 
particular when it comes to the delivery of high bit rate video 
streams.  As a result, video streaming has been identified by many 
as an application that stands to benefit most from the introduction 
of Differentiated Services. 

Our goal in this paper is not to argue for or against such a 
position. Instead, as stated earlier, we are interested in 
understanding how the network level mechanisms of Diff-Serv, 
and in particular their configuration, translate into better video 
quality for the users viewing them.  Specifically, we want to “plot” 
the evolution of video quality perceived by a user, as a function of 
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the various network level parameters, e.g., token rate and burst 
size, associated with the support of different types of network 
services.  Clearly, video quality will depend on a number of other 
factors, in particular the design of the server itself, which can 
heavily influence the outcome based on how well it takes 
advantage of the different services offered by the network.  Our 
perspective is, however, not that of a video server designer.  
Instead, we want to take the position of a typical user, one who 
relies on existing client and server technology and who is trying to 
determine how best to connect the two across a Diff-Serv enabled 
network.  In other words, the user has no or limited information 
about the internals of the video server and clients, and is primarily 
focused on selecting network parameters for its video connection 
in order to maximize video quality. Implicit here is the fact that 
there is a cost associated with network resources, so that the user 
has an incentive for understanding their relation to video quality, 
and achieving the best possible quality with the minimum amount 
of network resources. 

Despite its relatively simple formulation and the several 
restrictions we impose, e.g., servers and clients as “black boxes,” 
and Diff-Serv as the only network level mechanism we consider, 
achieving the stated goal of accurately evaluating the relation 
between network parameters and user level quality is not a simple 
task, as there are still many different aspects to consider and 
possible parameters to vary.  A first and critical dimension is to 
measure video quality, as users viewing the received video streams 
perceive it.  Clearly, network-level impairments such as packet 
losses or delay and the availability of resources such as bandwidth 
will play a role, and it is safe to say that video quality will improve 
as available bandwidth increases or as losses and delay decrease.  
However, this is a far cry from providing a precise and quantitative 
evaluation of the relation between them.  On one hand, 
characterizing the relation that exists between network parameters 
such as token bucket parameters and network performance, e.g., 
losses or delay, is a relatively well investigated area when it comes 
to video, and a number of works have provided guidelines on how 
to select parameters, e.g., [20][21][24] and how to measure 
network performance [11][22].  On the other hand, determining 
how these translate into different levels of video quality has 
received little attention.  As a result, one of this paper’s 
contributions is to provide a quantitative, even if still partial, 
answer to this question and to illustrate the use of objective video 
quality measurement tools in doing so.   

Another difficulty in accurately characterizing how “better” 
network services can improve user level perception of video 
quality is to perform such an evaluation in a reasonably realistic 
setting.  Because our investigation is experimental in nature, the 
approach we took to address this issue was to consider a relatively 
broad range of configurations and scenarios.  Specifically, we 
experimented with multiple types of video servers and clients, as 
well as several video clips and encoding schemes.  In addition, 
several different network configurations were employed, ranging 
from a Diff-Serv capable local testbed to video transmissions 
across the QBone [25], a wide area Diff-Serv enabled segment of 
the Internet2 Abilene network. 

 In the rest of this paper, we describe the experimental setup 
used for our investigation and report our findings regarding the 
relation that exists between network level quality and the resulting 
video quality as perceived by users.  The paper is structured as 
follows.  In Section 2, we provide background information on 
Differentiated Services, video server technology, and video quality 
measurement tools.  Because of constraints imposed by the 

testbeds over which we conducted our experiments, in particular 
the wide area testbed we had access to, our focus has mainly been 
on a service built on the Expedited Forwarding Per Hop Behavior 
(EF PHB). Section 3 is devoted to a description of the three main 
components of our experimental setup:  the video quality 
measurement tool, the setup we have developed in order to capture 
the video information we feed to the quality measurement tool, and 
the different network testbed configurations.  Results and their 
analyses that illustrate the relation and differences that exist 
between network level and user level quality measures are the 
topic of Section 4.   Finally, Section 5 summarizes our findings and 
concludes the paper. 

2. Background Material 
2.1 The Differentiated Services Architecture 

The Diff-Serv working group has put forth a number of 
specifications outlining not only the general architecture of the 
Diff-Serv approach [1] and the fields in the IP header available to 
support it [19], but also specifying two1 initial Per Hop Behaviors 
(PHBs) that are to be used to provide differentiated forwarding 
treatments in Diff-Serv enabled networks.  The basic premise of 
the Diff-Serv architecture is that complex flow level functions are 
performed at the network edge, and that core routers only support a 
few coarse classes or Behavior Aggregates (BAs).  The Diff-Serv 
architecture, therefore, relies on two distinct components:  flow 
classifiers and policers at the edges that are responsible for 
mapping incoming packets to the appropriate BA and marking 
them with the appropriate Diff-Serv Code Point (DSCP) [19], and 
various scheduling and buffer management mechanisms in the core 
that are responsible for implementing the different PHBs and 
mapping packets to PHBs based on their DSCP.  

Of most significance in the context of our investigation are 
the policing actions performed at the network edge and the 
parameters they involve.  Specifically, policers are used to impose 
limitations on the traffic entering the network marked with a given 
DSCP.  These limitations are typically enforced through a token 
bucket, e.g., [13][14], that controls both the rate and the burstiness 
of the traffic.  The token bucket parameters, i.e., token rate and 
token bucket depth, therefore play a major role in determining the 
level of service provided to a flow assigned to a given BA. In 
addition to the token bucket parameters, the policing actions 
applied to non-conformant packets, i.e., packets that arrive to find 
an empty token bucket2, are also expected to have a major impact 
on performance.  A complete investigation should, therefore, 
consider all possible combinations of these different factors to 
assess their relative effect on user level video quality.  Fortunately, 
the current specification of the two PHBs that have been defined 
somewhat limits the range of combinations that need to be 
considered. Specifically, the Expedited Forwarding (EF) PHB [16] 
essentially requires a small burst size, i.e., a token bucket depth of 
one or at most two Maximum Transmission Units (MTUs), and a 
policer that either drops or shapes non-conformant packets. 
Conversely, while the Assured Forwarding (AF) PHB [12] group 
allows for a wider range of burst sizes, it primarily calls for 
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terminology of RFC 2212, 2697, and 2698. 



  

policing actions that mark packets with different “colors” (DSCPs) 
depending on their level of non-conformance.  As mentioned 
earlier, our focus is on the EF PHB for which the main variables 
are the token rate and token bucket depth assigned to the stream 
and whether the policer shapes or drops non-conformant packets.  
Some preliminary experiments were conducted using the AF PHB 
that are not reported in this paper, as the results were heavily 
dependent on the level of cross traffic and its impact on the 
performance given to marked packets.  A comprehensive 
investigation of these issues calls for an altogether separate paper. 

2.2 Streaming Video Technologies 
New streaming technologies use special servers to deliver 

video content intelligently and adaptively to clients. This is 
accomplished through the use of a protocol between the server and 
its clients that allows continuous monitoring of the resources, e.g., 
bandwidth, available between them. Based on this information, the 
server can respond to network dynamics and deliver the content at 
a suitable data rate given the available bandwidth and the 
compression rate of the audio and video content.  

Existing servers rely on either standard, e.g., MPEG [18], or 
proprietary, e.g., Windows Media Technology™ (WMT) [28], 
media formats, and this affects the type of video clips they can 
stream.  

Standard servers such as MPEG streaming servers support 
either MPEG-1 or MPEG-2 encoded video with different rates and 
frame sizes. Often, large to medium scale servers are designed to 
deliver MPEG content types in broadband Intranet/Internet 
environments, i.e., environments where bandwidth is reasonably 
plentiful. Microsoft Netshow Theater™, 2netfx-ThunderCastIP™, 
and IBM Video Charger™ are examples of such servers with 
which we experimented.  These three servers are designed to 
deliver high quality full motion MPEG-1 or MPEG-2 digital video 
streams (up to 15 Mbps per stream) over IP networks. In our 
experiments, we noticed that even for constant rate encoding, all 
three servers generate reasonably bursty traffic, although with 
sizable differences in the magnitude of the burstiness.  This is not 
entirely unexpected in the context of video, but does have 
important implications for the network and the potential benefits of 
service differentiation.  The main contributor to the size of the 
bursts generated by each server appears to be the size of the 
(application level) datagrams they are configured to use.  In 
particular, the first two servers are configured to generate large 
datagrams that can be up to 16280 bytes long3, and which are then 
fragmented into smaller (1500-byte) packets by the IP stack on the 
server itself prior to their transmission on the network.  This results 
in the generation of relatively large bursts of back-to-back packets.  
In contrast, the Video Charger™ server allows smaller message 
sizes so that while some burstiness remained in the traffic it 
generated, it was significantly lower than with the other two.  
Because of their propensity to generate large intrinsic bursts, the 
first two servers did not perform very well in bandwidth-
constrained environments, and we found that their behavior in 
settings supporting service differentiation was of limited interest, 
i.e., mostly bi-modal with poor performance until sufficient (peak) 
bandwidth was allocated and nearly perfect performance thereafter.  
�                                                                       
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ThunderCastIP™ servers is actually proportional to the frame 
size and the MPEG encoding rate. 

As a result, our experiments with video servers using standard 
video formats were mostly limited to the Video Charger™ server.   

We also experimented with another server that exhibited 
similar burstiness characteristics, while relying on a proprietary 
data format.  Specifically, we experimented with a Windows Media 
Technologies™ server, which uses Microsoft Advanced Streaming 
Format (ASF) or Windows Media Video™ (WMV). ASF and 
WMV integrate and synchronize objects of different media types 
(audio, video, and data) optimized (encoded) for delivery over 
lossy networks. Both formats support multiple bandwidths within a 
single file. Media objects stored in the media files are encoded 
using a variety of encoders implemented by Microsoft media 
technologies. In addition, the server also supports reduced message 
size (UDP/TCP packet size) for its encoded content that can fit in a 
single packet.  This eliminates the previously mentioned problem 
of generating large bursts of back-to-back packets because of large 
messages being fragmented in many small packets prior to 
transmission.  

2.3 Video quality assessments 
Rating the (user level) quality of video streamed over IP 

networks is a difficult task, and there are no standard procedures 
one can simply apply to generate the desired quality measures.  As 
a result, the approach we took was to rely on methods that had 
been developed for video quality assessment in more traditional 
environments, i.e., television and video conferencing technologies, 
and then to adapt those techniques to our own environment.  This 
task was further complicated by the fact that standardized objective 
video quality assessment methods for digital video systems are a 
recent development (see [26] for details and pointers). Video 
quality assessment can be performed in either a subjective or an 
objective manner. Subjective quality tests typically require a group 
of viewers to watch short video clips of approximately 10 seconds 
in duration in a very controlled environment, and then rate this 
material. The most widely used methods for measuring the 
subjective quality of speech and video images have been 
standardized and recommended by the International 
Telecommunication Union (ITU), and the results are frequently 
expressed in terms of the ITU-T mean opinion score (MOS) (see 
[7] and [9]).   

Although subjective quality measurements reflect real human 
perception of the quality of a video stream, they involve a 
relatively complex and time-consuming process that is often not 
practical when a large number of configurations with varying 
parameters need to be assessed.  These limitations of subjective 
quality measurement methods prompted the development of 
alternative approaches, called “objective quality measurement 
methods,” that lend themselves more easily to automation and are 
capable of operating in less controlled environments. Objective 
quality measurement methods are based on computational models 
that combine a number of key video quality measures, and which 
are calibrated based on the correlation of the model scores to 
subjective scores for a number of pre-determined experiments. Just 
as with subjective methods, the various parameters that objective 
performance assessment tools can incorporate have been 
standardized by the American National Standards Institute (ANSI) 
(see [1]). In our experiments, we relied on an objective video 
quality measurement tool developed by the Institute for 
Telecommunication Sciences (ITS), which enabled us to evaluate 
the quality of a large number of combinations of video servers and 
formats and network configurations. In the next section, we 
provide additional details on both the video quality measurement 
tool and on the overall experimental setup that was used. 



  

3. Methodology and Experimental Setup 
The development of the various components required to carry 

out our video quality assessment experiments represented a 
significant fraction of the work, and several aspects turned out to 
be of independent interest.  In this section, we briefly describe the 
three main pieces of our experimental setup:  the video quality 
measurement tool, the network testbeds over which video was 
transmitted, and finally the video clips themselves, with their 
intrinsic properties.  

3.1 Video Quality Measurement Tool 
The tool and methodology that we adopted in our experiments 

are those developed by ITS, and which are based on the ANSI 
objective quality standards T1.801.03-1996 [1] as well as several 
more recently developed metrics [29]. The ITS Video Quality 
Measurement (VQM) software tool is based on a family of 
objective quality assessment methods called Feature Extraction or 
Reduced Reference [17], [27].  The approach is to rely on 
mathematical models to capture the major features of either 
individual frames (spatial features) or sequence of frames 
(temporal features) from both the received video stream and the 
reference video stream. The quality of a received series of video 
frames is then assessed by comparing the time histories of the 
received feature streams with the reference feature streams, and by 
combining multiple quality parameters so generated into an overall 
quality score. As mentioned earlier, the combination is performed 
so as to generate good agreement with the results of a number of 
previous subjective assessment experiments.  In summary, the ITS 
tool follows this method and performs the following three steps to 
generate quality-rating indices. 
� Extract quality features that characterize fundamental aspects 

of video quality (spatial detail, motion, color) from sequences of 
input and output video frames, 

� Compute perception-based video quality parameters by 
comparing the features of the received (output) video frames 
with the corresponding features of the original (input) video 
frames, and  

� Produce a composite quality score from the computed digital 
video quality parameters that is highly correlated with the 
subjective assessments of human viewer panels.  

A number of additions were needed in order to be able to use 
the VQM tool to assess the quality of video transmitted over an IP 
network.  This is because the tool was originally developed for 
television and video conferencing systems, where both the video 
formats and the content delivery mechanisms are completely 
different from those used to transmit video over IP networks. The 
tool runs on an IRIX™ platform and takes decoded 
(uncompressed) video as input in the YUV 4:2:2 [8] file format, 
which is a binary file format used by the ITU Video Quality 
Experts Group (VQEG) (this file format will henceforth be 
referred to as BigYUV, since all the YUV frames from a scene are 
stored in one large file). The main challenge for us was to generate 
an appropriately formatted input for the VQM tool, based on the 
received video streams after they were transmitted over the 
network.  This difficulty was compounded by the fact that because 
the processing involved is computationally intensive, the tool is 
typically unable to process received video streams in “real-time.”  
As a result, it is necessary to provide some intermediate storage of 
the received video prior to feeding them to the tool.  This 
introduced a number of additional problems.   

The first problem is that video streaming clients are typically 
built to only render contents on a screen and do not have the option 
of recording or saving the received video. As a result, it was 
necessary to add an intermediate step in which received video 
streams are saved to a file.  The quality measurement process could 
then be conducted offline, i.e., after the streaming process, by 
presenting the saved video frames to the VQM tool.  The second 
problem associated with storing the received video stream was that 
this additional step had to accurately preserve the perturbations, 
e.g., information regarding frame delays and drops, introduced by 
the various network configurations being tested. Finally, a third 
problem we encountered was caused by the fact that the tool, like 
most other objective assessment tools, was designed to handle 
relatively short duration video segments, e.g., on the order of 5 to 
10 seconds.  We wanted to experiment with longer video segments, 
e.g., between 75 and 150 seconds, to be able to consider video 
clips that would incorporate a broader and more representative 
range of scene types, and get a more realistic assessment of the 
overall impact of network configurations. As a result, some care 
had to be exercised when using the tool to process such extended 
segments.  In the rest of this section, we outline how we addressed 
these problems in developing our experimental setup. 
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3.1.1 Storing Received Video Frames to File 
We investigated a number of approaches for implementing the 

required intermediate video storage step, and ultimately settled on 
one that had the benefit of being readily portable, at least across 
the video clients we were using that all ran on the Microsoft 
Windows™ platform. Most of the multimedia clients built for the 
Windows™ platform are implemented using the Directshow™ 
architecture. Directshow™ controls and processes the playback of 
multimedia streams from local files or network servers. It enables 
the playback of compressed video and audio contents using a 
modular approach that divides the processing of multimedia 
objects into a set of stages known as filters. Filters are pluggable 
components connected to each other through “pins” that represent 
a logical point of connection for a unidirectional data stream 
flowing to/from the filter. A filter graph is composed of a 
collection of connected filters of different types used to process a 
specific media format. Applications use what is called a filter 
graph manager to assemble and connect the filter graph suitable 
for their media format, and for controlling the movement of data 
through the assembled graph. When an application starts rendering 
a piece of media content, the filter graph manager first selects a 
source filter capable of reading the media content, and then 
proceeds to select and connect subsequent filters based on the filter 
graph, the last filter being typically the rendering stage. An 
illustration of the structure of a typical filter graph is shown in 
Figure 1. 

Given the modular structure of the Directshow™ architecture, 
a natural approach for introducing the ability to store received 
video frames is to develop a filter performing the required storage 
operations, and to insert it at an appropriate location in the filter 



  

graph of video clients. The location we chose to insert our 
“storage” filter was after the video decoder in lieu of the renderer. 
The one disadvantage of such a choice is the storage requirement it 
implies, as video frames must be stored in an uncompressed 
BigYUV format.  However, our experience has been that this 
disadvantage was more than compensated for by a greater 
robustness and reliability across clients and media formats.  In 
addition to replacing the renderer filter by our new storage filter, 
another modification that had to be made to the original client filter 
graph was to ensure that the video decoder would produce an 
output in the desired BigYUV format. This was relatively easy 
since most decoders allow the application to select the output 
format they will generate.  
3.1.2 Capturing Network Dynamics Information 

The storage filter receives each frame, captures the relevant 
timing information that consists of its arrival time and target 
presentation time, and then saves the frame in a binary file and the 
timing information in a parallel ASCII file. The timing information 
will be used to create a modified set of frames that will be fed to 
the VQM tool, and that will emulate the impairments caused by 
network perturbations, as a user viewing frames being played out 
by the renderer would have perceived them.  Specifically, we want 
to capture in our quality assessment the effect of the techniques 
used by most renderers4 to compensate for lost or delayed frames.  
The most common and simplest technique is to keep repeating the 
last received frame until a new frame arrives. This is the approach 
we chose to emulate.  This was implemented using a simple PERL 
script that takes as input the initial file of stored received frames 
together with the associated statistics file created by the filter. 
From these inputs, the script produces a new file containing stored 
frames, but which now incorporates the repeated frames that a 
renderer would have generated while attempting to compensate for 
lost or delayed frames.  
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Figure 2. Handling of Lost or Delayed Frames. 

The mechanism on which the script relies is based on 
maintaining two time references associated with the presentation 
time and the arrival time, and by comparing them to determine 
when the playback buffer runs out of frames because of lost or 
delayed frames. This is achieved by maintaining an offset value 
representing the difference between the arrival and presentation 
times of frames. Frames that are early or on time have an arrival 
time less than their presentation time, and result in an increase of 
the offset value by an amount equal to their difference. In contrast, 
a late frame has an arrival time that is greater than its presentation 
�                                                                       
4 It is the renderer rather than the decoder that is often responsible 

for concealing the impairments caused by excessive delays or 
lost frames in the network. 

time, in which case this negative value is used to decrease the 
current offset value by a similar amount. The script updates the 
offset value for each received frame, and the resulting value is used 
to determine the state of the playback buffer as seen by the 
renderer. A positive offset value indicates that frames are available 
for rendering in the buffer, while a negative offset value 
corresponds to an empty playback buffer that would trigger the 
repetition of the previous frame by the renderer.  As a result, the 
script inserts copies of the previous frame in the output file it 
produces.  The number of copies that are inserted is a function of 
the offset value and the presentation and arrival times of the next 
available frames.  An illustration of the process implemented by 
the script is shown in Figure 2. 
3.1.3 Handling Extended Duration Video Clips 

As mentioned earlier, the VQM tool was originally designed 
to measure the quality of short (5 to 10 seconds) duration video 
segments, while we wanted to use longer (between 75 and 150 
seconds) video clips in our experiments. In order to use the VQM 
tool on those longer clips, we therefore had to divide them into 
smaller 10-second segments that were then fed to the tool one by 
one, and whose individual quality scores had to be combined. 
Applying this process raised two questions. The most significant 
one involved the calibration process that is used to remove 
systematic errors (i.e., gain, spatial shift, temporal shift) from the 
received video stream. A control file that performs both spatial and 
temporal calibration between the two sets of frames drives this 
calibration.  The second question concerned how to combine the 
scores obtained by short duration segments to produce a 
meaningful overall score for the extended duration video clip. 

We configured the tool to segment the stored video files into 
segments consisting of 300 frames each (10 seconds duration). The 
segmentation is done so that the first 100 frames of each segment 
overlap with the last 100 frames of the segment preceding it (see 
Figure 3). Note that the last 100 frames of the last segment and 
first 100 frames of the first segment do not overlap with other 
segments. The overlap of consecutive segments is used to provide 
sufficient margin to allow the temporal calibration mechanism of 
the tool to find the proper alignment between the original file and 
the received file.  This is achieved by setting the Alignment 
Uncertainty parameter specified in the control file of the tool to 
allow searching in this specified range. The quality estimation of a 
segment is then based on the next 100 frames following the 
alignment point identified by the temporal calibration mechanism. 
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Figure 3. Segmentation Process of the Stored Video File. 
In order to calculate the overall quality of an extended video 

clip, we simply averaged the quality estimates of all the individual 
segments. However, some care had to be exercised to deal with 
long (around 10 seconds or more) periods of degraded quality, 
which the temporal calibration process was not able to deal with 
even with its extended range. Specifically, segments for which the 
temporal calibration process did not succeed were assigned a 
default quality index of 1 that corresponds to the worst quality 
index assigned by the tool (the best quality index assigned by the 



  

tool is zero). Here, the term “quality index” refers to the quality 
estimate produced by the tool. 

3.2 Network Testbeds  
Quality assessments of received video clips were performed 

using two network testbeds.  One was a local testbed consisting of 
several Diff-Serv capable routers to which a video server and video 
clients were connected.  The ability to easily change the 
configuration of the local routers as well as the easy access to the 
video server facilitated the exploration of a relatively wide range of 
configurations.  However, it is clear that a local testbed cannot 
emulate all of the possible interactions that occur in actual 
networks.  In particular, while the policing actions of the token 
bucket are expected to be the dominant contributor to video 
quality, there are other factors that can influence token bucket 
operations and introduce additional perturbations to a video 
stream.  For example, interactions with cross traffic prior to 
reaching the router where policing actions are performed can 
impact the number of frames that are found non-conformant and, 
therefore, discarded (this jitter effect is well-known and was the 
motivation behind the introduction of cell delay variation tolerance 
in ATM [3]).  Similarly, the use of shapers5 as well as the traversal 
of multiple network hops can affect the end-to-end quality 
perceived by a video application.  As a result, it is desirable to 
carry out experiments over a broad range of configurations.  For 
that purpose, additional tests were conducted over the QBone; a 
wide-area testbed implemented across the Internet2 Abilene 
network that supports a service built on the EF PHB. The rest of 
this section is devoted to a brief overview of the two testbeds.   
3.2.1 Local Testbed  

The local testbed consists of three Diff-Serv enabled routers, 
three workstations, and several Ethernet hubs that were used for 
local connectivity. A sample configuration of the different testbed 
elements is shown below in Figure 4. Routers 1 and 2 are 
connected through a Frame Relay over High Speed Serial Interface 
(HSSI), which is a standard interface for high-speed (up to 52 
Mbps) serial connections over WAN links. The two routers are 
connected directly using a HSSI Null modem cable. The third 
router, router 3, is connected to router 2 using Frame Relay over 
V.35.  
3.2.1.1 Workstation Configurations 

The workstations used for the video server and for the video 
client are running the Microsoft Windows™ operating systems. A 
higher end system was allocated to the video client because the 
combination of real-time decoding of the received video streams 
and the storing of the resulting large volume of data on the hard 
disk proved to require significant resources. Specifically, with a 
frame size of 320x240 pixels, the size of a decoded frame in 
BigYUV format comes to 153.6 kbytes or 1.2 Mbits. Given a 
frame playout rate of 30 frames per second, this imposes some 
reasonably stringent speed constraints on the hard disk of the 
receiving client system (about 35.16 Mbps). 

�                                                                       
5 A shaper is a token bucket, which instead of simply dropping 

(policing) non-conformant packets, is configured to delay them 
until the earliest time at which they are deemed conformant. 
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Figure 4. Sample Configuration of the Local Testbed. 
In the local testbed, the video server that was used in our 

quality assessment experiments was the Microsoft Windows Media 
Technologies™ (WMT) server, which uses the Microsoft 
proprietary media streaming protocol called Microsoft Media 
Streaming™ (MMS). The protocol uses a TCP connection for 
sending and receiving media control commands, and a UDP or 
TCP connection for streaming the data.  

The Linux workstation shown on the left-hand side of Figure 
4 is running RedHat™ 6.0 and was configured to act as a router 
that was used to perform traffic shaping in some of our 
experiments. The use of a shaper prior to the router responsible for 
implementing the token bucket in charge of policing the video 
traffic was motivated by the relatively bursty characteristics of the 
traffic generated by the video server (see Section 4.2). 
3.2.1.2 Router Configurations 

The two major aspects of the router configurations are the 
parameters of the frame relay interfaces and the configuration of 
the policy component responsible for traffic policing.  
 

Frame Relay Interfaces Configuration 
Router # I/f # CIR Bc Be I/F Type 

FR 1 2*106 2*106 0 V.35 
2 

FR 0 2*106 2*106 0 HSSI 
1 FR 1 2*106 2*106 0 HSSI 

3 FR 1 2*106 2*106 0 V.35 

Table 1. Configurations of the Frame Relay Interfaces. 
The configuration of the frame relay interfaces on the three 

routers is given in Table 1, which specifies for each interface the 
values used for the three parameters required by frame relay: 
Committed Information Rate (CIR), Committed Burst Size (Bc), 
and Excess Burst Size (Be). The main purpose of the 
configurations used was to emulate a set of constant rate links 
connecting the different routers.  Note that all CIR values were less 
than the maximum transmission speed allowed over the V.35 
Interface (E1), which was the main bandwidth bottleneck of the 
system. 

Support for different levels of service was provided through a 
simple priority queue structure, with the high priority queue being 
assigned to traffic marked with the EF DSCP. 
Policy Configuration 

Diff-Serv policies were configured on routers 1 through 3.  A 
policy specifies a “profile” that identifies the packet to which the 
policy applies, and an action that determines the treatment that 
these packets are to receive.  At router 1, the profile specifies the 
source address of the video server and the destination address of 
the video client, which will then trigger the creation of a classifier 



  

entry at the router to extract the corresponding set of packets.   The 
output of the classifier is connected to a policer that is responsible 
for marking conformant packets with the EF DSCP (101100) and 
for forwarding them to the router’s high priority queue. The 
policer’s configuration information includes parameters such as 
token rate and token bucket depth, as well as the treatment of non-
conformant packets.  Given our focus on a service based on the EF 
PHB, the policer was configured to drop packets that it did not find 
conformant.  As mentioned earlier, this was meant to allow us to 
assess the impact that such “hard” policing actions had on the 
quality of the received video. In addition, the token bucket depth 
was typically set to two link MTUs in order to limit the size of the 
burst that was allowed to enter the network. The impact of 
dropping non-conformant packets was assessed with and without 
the Linux router performing a shaping function.  Policy 
specification at routers 2 and 3 was simpler, as it only amounted to 
classifying packets marked with the EF DSCP and forwarding 
them to the high priority queue at the router. 
3.2.2 QBone Testbed  

The QBone [25] is an inter-domain Diff-Serv testbed aimed at 
exploring the benefits of service differentiation on a wide area 
scale. QBone participants are considered to form Diff-Serv enabled 
domains that are in turn connected to the QBone, with which they 
agree on Service Level Specifications (SLS’s) that define how 
traffic is classified, policed, and forwarded at boundary nodes. The 
edge routers located at the ingress boundary nodes are responsible 
for enforcing SLS’s. The QBone currently offers one service, the 
QBone Premium service that is based on the simplex Abilene 
Premium Service (APS), which is built on the Expedited 
Forwarding (EF) PHB. The SLS for the service was in the form of 
a token bucket that specified peak rate and maximum burst size. At 
the time our experiments were carried out, the APS test program 
was in its early phase and the Abilene network was lightly loaded, 
so that except at boundary nodes, the APS service was 
implemented simply by means of over-provisioning. As of this 
writing, service support has been upgraded to also provide 
preferential forwarding treatment to EF packets within the Abilene 
backbone.  

Figure 5 provides an overview of the connectivity across the 
QBone between our local testbed and a remote site.  A video server 
(Video Charger) was located at the remote site and used to stream 
across the QBone different video clips to a video client located in 
the local testbed.  The packets generated by the server were pre-
marked as EF packets by the server and were policed at the border 
Cisco router of the remote site.  Policing was performed using 
Cisco’s Committed Access Rate6 (CAR), which was configured to 
drop packets that exceeded the APS profile. Experiments were 
conducted using various APS profiles with different token rates 
and token depth values, as shown in Section 4.1. 

�                                                                       
6 For a brief introduction to CAR, please refer to [10]. 
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Figure 5. Connectivity Configuration Across the QBone. 

3.3 Video Clip Properties 
Two video clips, called Lost and Dark in the rest of the paper, 

with different scene characteristics were used in our experiments.  
They were obtained from the trailers of two motion pictures, and 
were re-encoded using two different encoding formats (MPEG-1 
and WVM) and a variety of encoding parameters corresponding to 
different levels of video “quality.” The clips were uploaded to 
different servers and streamed to clients using a number of network 
service configurations, i.e., specifying different token bucket 
parameters. The MPEG-1 versions of the clips were used for 
experiments carried out over the QBone, and they were uploaded 
to the video charger server located at the remote site. The WVM 
format clips were used with the Windows media technologies 
server in our local testbed experiments. 
3.3.1 MPEG-1 Clips 

The two clips were encoded using a constant bit rate setup for 
three different rate values 1M, 1.5M, and 1.7M, and a fixed frame 
size of 320x240. The three rate values produced videos of different 
qualities but potentially better suited to different network 
configurations, i.e., token rates.  Note that the MPEG servers we 
used do not support multi-rate encoding, i.e., the ability to 
dynamically select a given video quality when multiple copies 
encoded at different rates are available.  As a result, and although 
we expect such a capability to be available in future MPEG 
servers, this means that once a given encoding has been selected, it 
is the only one used for the remainder of the experiment. The 
characteristics of the two clips are summarized in Table 2 and 
Figure 6. The table gives the characteristics of the encoding 
process and its output (the rate information is computed after every 
frame using the MPEG_stat tool), while Figure 6 displays rate 
information for what is actually transmitted to the network.  

As can be seen from both the table and the figure, although a 
constant rate encoding was used, the resulting output still exhibits 

significant variations, as illustrated through the differences 
between minimum, average, and maximum rate values in the table 

and the range of transmission rates found on the figure.  



  

Clip Lost 
Rate Information in bps Encoding 

rate 
Bytes read frames Length Avg. Frame size 

Max Avg. Min 
1.7M 15276442 2150 71.74 s 7101 bytes + 4 bits 2047496 1702659.43 128640 
1.5M 13453779 2150 71.74 s 6253 bytes + 6 bits 1835320 1499402.84 117976 
1M 8970075 2150 71.74 s 4168 bytes + 2 bits 1263464 999396.85 87744 

 
Clip Dark 

Rate Information in bps Encoding 
rate 

Bytes read frames Length Avg. Frame size 
Max Avg. Min 

1.7M 29975812 4219 140.77 s 7101 bytes + 2 bits 2038840 1702624.58 153152 
1.5M 26399218 4219 140.77 s 6253 bytes + 5 bits 1789408 1499371.64 139088 
1M 17600951 4219 140.77 s 4168 bytes + 1 bits 1155672 999378.16 97592 

Table 2. MPEG Encoding Properties of Clips Lost and Dark.
 Figure 6 also illustrates the impact of the differences in 

scenery between the two video clips, with the high motion content 
of the clip Dark translating into greater rate fluctuations (especially 
towards the end of the clip).  We expected those fluctuations to 
have some impact on the interactions between the policer used for 
different configurations and the resulting video quality. 
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Figure 6. Instantaneous Transmission Rates of MPEG-1 Clips 
for Different Encoding Rates. 

3.3.2 Windows Media Encoded Clips 
The properties of the two clips encoded using the Windows 

Media™ encoder are summarized in Table 3. The encoder allows 
the specification of several encoding parameters, including the 
desired bandwidth. However, the resulting encoding produced by 
selecting a given bandwidth value is not a constant rate encoding, 
and instead corresponds to a maximum bandwidth value. This can 
be seen by comparing the expected and average rates values in 
Table 3. Note that the WMV format supports the multi-rate 
encoding feature mentioned earlier, and we used it in some 
experiments. Note also that the encoder does not encode video-
only content, so that both audio and video had to be accounted for. 

In order to minimize the effect of the additional audio packets, we 
set the encoding rate for audio near zero.  

 
Lost Clip Dark Clip 
Session: 
Bytes encoded (total): 6936504 
Bit rate (expected): 1015.5 Kbps 
Bit rate (average): 771.7 Kbps 
Video [1015.4 Kbps]: 
Bytes encoded (total):6935380 
Bit rate (expected):1015.4 Kbps 
Bit rate (average):771.6 Kbps 
Frames per second (expected):30.0 
Frames per second (average):29.9 
Frames (total):2150 
Audio [0.1 Kbps]: 
Bytes encoded (total):1124 
Bit rate (expected):0.1 Kbps 
Bit rate (average):0.1 Kbps 
Samples (total):562 

Session: 
Bytes encoded (total):11976984 
Bit rate (expected):1015.6 Kbps 
Bit rate (average):680.5 Kbps 
Video [1015.5 Kbps]: 
Bytes encoded (total):11974782 
Bit rate (expected):1015.5 Kbps 
Bit rate (average):680.4 Kbps 
Frames per second (expected):30.0 
Frames per second (average):30.0 
Frames (total):4219 
Audio [0.1 Kbps]: 
Bytes encoded (total):2202 
Bit rate (expected):0.1 Kbps 
Bit rate (average):0.1 Kbps 
Samples (total):1101 

Table 3. Properties of Windows Media Encoded Clips. 

4. Results  
As mentioned in Section 2.2, we originally considered a 

number of different video servers but ultimately limited our 
experiments to only two types of servers:  The Video Charger™ 
server for experiments over the QBone and a Windows Media™ 
server for experiments over our local testbed.  Table 4 summarizes 
the different configurations used. 

As mentioned previously in Section 2.2, the main motivation 
for not including the other servers we initially considered was their 
relatively poor performance in the presence of the dropped packets 
induced by traffic policers. Recall that those servers rely on large 
datagrams for the transmission of video frames, and those 
datagrams were then fragmented into many smaller packets, so that 
the loss of even one packet at the policer would typically result in 
the loss of an entire datagram.  This problem was further 
compounded by the fact that a single datagram triggered the 
generation of many back-to-back packets, which resulted in several 
dropped packets at the policer because of the small token bucket 
depth used for EF traffic. In addition, policing losses together with 
the service guarantees provided to EF traffic appeared to somewhat 
confuse the adaptation mechanism of the servers.  Specifically, the 
fact that delivered packets experienced small delays seems to have 
been interpreted by the server as an indication that sufficient 
bandwidth was available. As a result, the adaptation mechanism 
reacted to the loss of packets (because of policing) by forcing the 
server to increase its data rate to make up for the losses. This in 
turn resulted in further packet losses followed by yet other rate 
increases until performance got so poor that the server would back 



 

down to very low transmission rates.  This cycle would repeat a 
number of times, until the client decided to break the connection, 
as it was deemed too unreliable. In short, traffic conditioning 
essentially misled the dynamic rate control approach of the servers, 
to the point of making them unusable unless the token rate was set 
to the maximum rate of the server.  

 Experiments on 
 QBone Local Testbed 

Video Server used Video Charger Windows Media Server 
Network protocol UDP TCP, UDP 

Contents Type MPEG1 WMV Format 
Contents properties Constant Bit 

rate 
Max bit rate is constant 

PHB tested EF 
Service parameters  Token rate, Bucket Depth 

Out of profile 
action 

Drop Drop (router 1) 
(Shape – Linux router) 

Table 4. Summary of Experimental Configurations. 
The main results of our experiments consist of the quality 

estimates generated by the VQM tool for the different 
configurations we tried. Before we proceed with the description 
and discussion of the results, it is important to note that there is 
some variability in the results themselves.  Specifically, for the 
same combination of video server, video client, and network 
parameters, it is possible to obtain slightly different quality 
estimates in consecutive runs of an experiment.  This is because 
many factors can affect the set of packets ultimately delivered to 
the client together with their timing.  For example, different load 
conditions at the server or variations in the level of interfering 
traffic through the local network connecting the server to the router 
performing policing, can all influence the set of packets that the 
policer will ultimately drop.  Those differences in lost packets will 
in turn affect the resulting quality of the video played out at the 
client. In particular, as seen in, say, in Figure 7 and Figure 8, it is 
quite possible for a small increase in token rate to yield a degraded 
video quality.  This is in part because depending on the types of 
scenes, the intrinsic rate of the video clip, and how the server 
reacts to a slight increase in token rate, the end-result need not 
always be fewer dropped frames. Such inherent issues not 
withstanding, we have tried to minimize such variations by 
eliminating most external interference sources, e.g., dedicated 
video server, absence of local interfering traffic, etc., so that the 
focus was on the impact of policing actions for different 
configurations.  Note that a few experiments on the local testbed 
did involve interfering cross-traffic, and the QBone experiments 
did not allow us to control the presence and absence of interfering 
traffic.  In all cases where we were able to compare the outcome of 
experiments with and without interfering traffic, only minor 
variations were observed that were primarily a reflection of how 
the different routers implemented the prioritization of EF traffic.  
In general, it is impossible to completely eliminate all sources of 
variation, and although results did not vary significantly when 
experiments were repeated, it is important to keep this in mind 
when interpreting the results.  In other words, general trends are 
clearly meaningful, but minor fluctuations in quality need not be. 

4.1 QBone Testbed Results 
Copies of the clips Dark and Lost encoded at the different 

rates identified in Section 3.3 were streamed through the QBone 
from a Video Charger server located at the remote site to a video 
client at the local site (see Figure 5). Streaming was done over 
UDP, as this was the only configurable option at the remote server 
when EF marking was also to be applied. Each clip was streamed 

through the network several times and for different choices of 
network service parameters (token rate and bucket depth).  Two 
(small) token bucket depth values were used, namely 3000 bytes 
and 4500 bytes, and for each the token rate value was varied from 
just below the average stream rate to a value for which the 
maximum video quality rating of 0 was achieved. This typically 
corresponded to the maximum rate of the video stream.  Initial 
results are shown in Figure 7 through Figure 9 for the Lost clip and 
in  Figure 10 through Figure 12 for the Dark clip.  Each figure has 
two sets of curves, one for each token bucket depth.  The two 
curves in each set correspond to the fraction of lost frames and the 
corresponding video quality rating produced by the VQM tool.  
For comparison purposes, those values are plotted against the same 
y-axis scale, while the x-axis corresponds to increasing token rate 
values.  Tables available from [2] provide more precise numerical 
values. Recall that a quality score of 1.0 is the worst possible7, 
while a score of 0.0 corresponds to the best possible video quality, 
i.e., identical to the quality of the original clip used as reference. 
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Figure 7. QBone Streaming (Lost clip/1.7Mbps encoding): 

Video Quality & Frame Loss vs Token Rate. 

 

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

1200 1400 1600 1800 2000 2200 
Token Rate 

Qu
al

ity
 In

de
x 

/ F
r

am
e 

lo
ss

 

Quality Index 
B=3000 
Frame Loss, 
B=3000 
Quality Index, 
B=4500 
Frame Loss, 
B=4500 

 
Figure 8. QBone Streaming (Lost clip/1.5 Mbps encoding): 

Video Quality & Frame Loss vs Token Rate. 

�                                                                       
7 Quality index scores may exceed 1.0 for extremely distorted 

video that falls outside the range of subjective assessments used 
to develop the VQM tool. 



 

In this first set of experiments, the quality of the received 
video was compared to that of the transmitted clip, i.e., the 
reference points were different for each encoding rate. The first set 
of experiments was performed to assess the quality degradations 
resulting from network impairments. In a latter set of experiments, 
the comparison was done with respect to the highest quality 
original clip, namely the clip corresponding to a 1.7 Mbps 
encoding rate, so as to assess the trade-off that exists between 
quality degradations imposed by the network and those due to the 
encoding itself.   
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Figure 9. QBone Streaming (Lost clip/1.0Mbps encoding): 
Video Quality & Frame Loss vs Token Rate. 
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Figure 10. QBone Streaming (Dark clip/1.7Mbps enc.): Video 

Quality & Frame Loss vs Token Rate. 
These first results show very similar behavior for the two 

clips, Lost and Dark, which appears to indicate that the different 
motion characteristics of their content do not significantly affect 
the basic relation that exists between video quality and network 
resources.  In other words, while video characteristics will clearly 
play a role in determining the absolute level of quality achievable 
given certain network resources, general trends should remain 
similar across different types of video clips.  For example, when 
comparing the results of, say, Figure 7 and  Figure 10, that 
correspond to the 1.7Mbps encoding rate versions of the Lost and 
Dark clips, respectively, we see that for a token bucket depth of 
3000 bytes and a token rate of 1.9 Mbps, both clips experience a 
similar frame loss of about 1%, but their respective quality 
measures differ, i.e., 0.19 versus 0.14.  However, despite those 
differences that are actually more pronounced for higher encoding 
rates, the general “shape” of the quality index curves are similar 
for the two clips. 

There are a number of initial conclusions one can draw based 
on the results obtained from this first set of experiments. The first 
and most interesting one is that the relation between video quality 
and network level performance improvements is highly non-linear.  
For example, we see that in some regions, improvements in frame 
losses hardly affect the quality of the received video that remains 
relatively poor until a cutoff point is reached.  Once this cutoff 
point is passed, video quality improves at a much faster pace than 
the corresponding improvements in frame loss.  The location of the 
cutoff point as well as the subsequent difference in slope between 
video quality and frame losses vary based on the encoding rate as 
well as the type of clip, but the behavior is consistent across all the 
experiments. 
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Figure 11. QBone Streaming (Dark clip/1.5Mbps enc.): Video 
Quality & Frame Loss vs Token Rate. 

In addition to this general conclusion, the experiments also 
provide more specific information in terms of the network 
“service” parameters required to ensure adequate video quality.  
The first observation is that setting the token rate value below the 
encoding rate is of no use at all.  This is not surprising given the 
dropping actions taken on non-conformant packets by the ingress 
policer. The token rate value needed to achieve good video quality, 
i.e., a score close to 0, depends on the token bucket depth.  We see 
that with a token bucket depth of 3000 bytes (2 Ethernet MTUs), 
the token rate has to be set to a value around or even above the 
maximum encoding rate of the clip (see Table 2 for rate values) in 
order to approach the desired quality score.  However, when the 
token bucket depth is increased to 4500 bytes, a token rate set to 
the average (constant) encoding rate is typically sufficient.  Note 
that this is despite the fact that the network level transmission rates 
of the video streams still exhibit significant variations (see Figure 
6).  Nevertheless, this points to the fact that a service built on the 
EF PHB may not be really suitable to the efficient transmission of 
streaming video, because of the constraint it imposes on the token 
bucket depth.  This is not a major surprise in itself, but the results 
of the experiments help quantify this behavior.  In particular, we 
see that although the token bucket depth needed is greater than the 
“typical” 2*MTUs often quoted for the EF PHB, it is not 
significantly larger, at least for video clips using constant bit rate 
encoding. This means that a minor relaxation on token bucket 
depth limits may make such a service more useful to video 
streaming applications.  Clearly, such relaxation needs to be 
weighed against its impact on delay and losses in the network, but 
depending on the intended use of the service, it may be worth 
considering. 
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Figure 12. QBone Streaming (Dark clip/1.0Mbps enc.): Video 

Quality & Frame Loss vs Token Rate. 
The next set of experiments carried out across the QBone 
attempted to answer the more general question of the relation 
between initial video quality and available network resources.  In 
other words, is it better to lose a relatively large number of packets 
from a high quality video stream, or is it better to loose fewer 
packets from a lower quality video.  The latter seems the 
intuitively natural answer, but we wanted a more quantitative 
assessment of this trade-off.  For that purpose, we conducted 
another set of experiments, using again the Lost and Dark video 
clips encoded at the three rate values of 1.0Mbps, 1.5Mbps, and 
1.7Mbps, and compared the quality of the received video to that of 
the highest quality 1.7Mbps version of the clip.  As before, the 
comparison was carried out for different values of the token rate.  
A token bucket depth of 3000 bytes was used for all the 
experiments.  The results are reported in  
Figure 13 and Figure 14 for the Dark and Lost clips, respectively. 
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Figure 13. Frame Loss and Relative (compared to 1.7Mbps 

version) Quality for Dark Clip. 
The results from the two figures essentially confirm our 

earlier intuition that one should select an encoding rate that is near 
but below the specified token rate.  This is clear from the data in 
the figures: as for all token rate values the best performing stream 
in terms of quality score is always the one with the closest 
encoding rate.  In other words, at least for the range of encoding 
rates available in our experiments, the basic rule of thumb to apply 
is to select the largest encoding rate that is less than the token rate.  

This seems to be primarily due to the fact that the impairments 
caused by packet losses have a much larger impact on video 
quality than the differences in raw video quality caused by 
different encoding rates. 
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Figure 14. Frame Loss and Relative (compared to 1.7Mbps 
version) Quality for Lost Clip. 

4.2 Local Testbed Results 
Experiments conducted in the local testbed were aimed at 
exploring the same set of issues as those that motivated the QBone 
experiments, but this time using a different video server and 
possibly more configurations because of the accessibility of the 
local equipment.  The motivation for using a different server was 
to determine the level of dependency of our initial conclusions on 
the specific characteristics of the video server we used.  The use of 
a different server at the remote site, which would have enabled us 
to carry this new set of experiments over the QBone, was not 
feasible due to logistics constraints.  As a result, this next set of 
experiments was conducted over the local testbed described in 
Section 3.2.1. The basic conclusion from these additional 
experiments is that most of the earlier findings remain essentially 
true.  In particular, the fact that frame loss is not an accurate 
predictor of video quality still holds. As before, in many cases 
small differences in frame loss resulted in large differences in 
video quality and vice-versa.  These behaviors are illustrated in 
Figure 15 and Figure 16, where we can again see areas of rate 
changes that yielded substantial reductions in frame losses without 
comparable improvements in video quality, as well as cases where 
a relatively small decrease in frame loss resulted in a significant 
improvement in video quality.   

Another behavior that was consistent with our observations 
from experiments over the QBone was the impact of increasing the 
token bucket depth.  As before, a small increase in the token 
bucket depth, i.e., from 3000 bytes to 4500 bytes, resulted in 
significant improvements in our ability to achieve nearly perfect 
video quality using a token rate value close to the encoding rate of 
the video stream itself.  However, despite those similarities, some 
differences were also observed. They reflected the impact of a 
different server technology as well as differences in the network 
configurations that were used, and it is worthwhile to briefly 
review them as well as their causes. 

The main difference is that much higher token rates were 
required in order to achieve nearly perfect video quality.  As a 
matter of fact, because our maximum token rate was limited by the 
speed of the V.35 link between routers 2 and 3 (about 2 Mbps), we 
could not exceed this value, which prevented us from achieving the 



 

ideal quality score of 0 when the token bucket depth was 3000 
bytes.  This was in spite of the fact that the “maximum” rate 
specified when encoding both clips was limited to about 1 Mbps 
(see Table 3). In other words, despite a token rate of about twice 
the maximum encoding rate, we were still not able to achieve the 
best quality level.  Note that increasing the token bucket depth to 
4500 bytes largely eliminates this difference. The main reason 
behind this behavior is the relatively bursty nature of the server’s 
output.  As a matter of fact, the main reason that the experimental 
results we report are limited to the 1 Mbps clip is that we were not 
able to achieve decent levels of quality at higher rates, at least not 
with the network configurations we were using.  This was 
observed even after switching over to TCP streaming and relying 
on shaping in the Linux router to which the server was connected.  
UDP streaming remained too bursty to allow meaningful 
experimentation in the network configurations we were 
considering.  TCP streaming, because of the intrinsic rate 
adaptation capability of TCP, resulted in a smoother traffic flow 
that produced better quality results.   
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Figure 15. Local Testbed Experiments (Lost clip at 1Mbps) – 
Quality and Frame Loss vs Token Rate. 

A related point worth emphasizing in this context is that the 
difference in video quality achieved by increasing the token bucket 
depth from 3000 bytes to 4500 bytes is much more substantial in 
this setting.  In other words, the benefits derived from allowing a 
slight increase in bucket size are much larger with this type of 
server and encoding, than when using constant rate encoding 
together with servers that attempt to pace their transmissions, as 
was the case for the QBone experiments.  This seems to add 
further support to considering slightly larger bucket sizes than the 
two MTUs limit that was originally mentioned for services built on 
the EF PHB. 

5. Conclusion 
In this paper, we have carried out an experimental 

investigation of the relation that exists between (user level) video 
quality and various network configurations embodying a service 
based on the Diff-Serv EF PHB.  The experiments considered 
different types of video clips, different encoding rates, different 
video servers, and evaluated the quality of received video streams 
transmitted over both local and wide area (QBone) testbeds for 
different settings of the token bucket associated with the “service” 
assigned to the stream.  The assessment of the quality of the 
received video was performed using an objective quality 
measurement tool that provides accurate estimates of video quality, 
as users perceive it.  The main focus was on the impact of the 

dropping actions performed by the policer on non-conformant 
packets. 

One of the findings of the investigation was to confirm that 
frame loss itself is not necessarily an accurate measure of video 
quality.  The evolution of the two is often decoupled, so that in 
some instances large increases in allocated rate do not translate 
into significant quality improvements, while in other cases, a small 
amount of additional bandwidth can yield a drastically better video 
quality.  This conclusion does not appear to significantly depend 
on the type of video used, but the exact relation between video 
quality and frame loss (or token rate) does depend on the type of 
server and encoding used.  In general, a token rate larger than the 
encoding used is needed in order to achieve high quality for the 
received video.  The required margin above the encoding rate is 
where the dependency on the server and encoding used comes in. 

Another interesting finding that emerged from our 
investigation is that a small increase of the token bucket depth used 
by the policer can translate into substantial improvements in the 
quality of the received video.  Allowing such an increase should 
clearly be weighed against the larger burstiness it will allow and its 
associated impact on frame losses and delays in the network.  
Specifically, a larger token bucket means that larger EF bursts can 
now enter the network. This can in turn contribute to the 
accumulation of larger bursts as the EF traffic traverses multiple 
hops, e.g., [4]. However, given the magnitude of the observed 
improvements and the relatively small increase in token bucket 
depth that is required, this may be an option worth considering 
when building services that will use the EF PHB.  Especially since 
increasing the potential burst size by one MTU (from two to three) 
is unlikely to contribute a significant increase in burstiness in the 
network, at least not for moderate EF loads. 
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Figure 16. Local Testbed Experiments (Lost clip at 1Mbps) – 
Quality and Frame Loss vs Token Rate. 
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