NTIA-Report-80-40

Fading Statistics
on a 23 km Link
at 9.6 and 28.8 GHz

R. H. Ott

K. C. Allen

E. J. Violette

R. H. Espeland

M. C. Thompson, Jr.
A. R. Mitz

WY OF ¢,
W 04,

T

o
 “d &

Stargs of ¥

U.S. DEPARTMENT OF COMMERCE
Philip M. Klutznick, Secretary

W0 * Dey

ca . ;9*

Henry Geller, Assistant Secretary
for Communications and Information

June 1980







TABLE OF CONTENTS

ABSTRACT

INTRODUCTION

MEASUREMENT FACILITY

MULTIPATH FADING MECHANISMS

GROUND REFLECTIONS AND ATMOSPHERIC MULTIPATH
MULTIPATH OBSERVATIONS

CONCLUSIONS

BIBLIOGRAPHY

iii

10
32

35







Figure

7a

7b

LIST GF FIGURES

Instrumentation at BAO tower. At each level,
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thermometer attached to the vertical velocity
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Mean temperature is measured by a quartz ther-
mometer in an aspirated shield; dewpoint tempera-
ture is monitored by a cooled mirror hygrometer.
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file shown, and focusing at about 100 m above the
ground at Erie.

Effect of antenna size or gain on ground-reflected,
atmospheric induced multipath.

The classical radio hole. The dotted curve defines
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FADING STATISTICS ON A 23 km LINK AT 9.6 AND 28.8 GHz

R. H. Ott, K. C. Allen*, E. J. Violette, R. H. Espeland,
M. C. Thompson, Jr., and A. R. Mitz

An experimental study of atmospheric multipath on a
23 km link at 9.6 and 28.8 GHz near Boulder, Colorado, is
described. The preliminary observations were made for
three days in July 1979 when a strong inversion layer
was present, creating an elevated tropospheric duct. The
possible influence of antenna aperture size on atmo-
spheric multipath was investigated by observing fades
and enhancements on the 28.8 GHz carrier using a 10°
horn and a 1.2° parabolic dish. Continuous height-gain
observations were obtained using the 300 m. tower at
Erie, Colorado, as one end of the link. Meteorological
data at the tower were also recorded during observation
periods of the radio signal. '

Key Words: atmospheric multipath, fading, micro-
millimeter wave, refractivity structure
1. INTRODUCTION

Present interest in using high-speed digital transmission of
information has precipitated the need for understanding the mechan-
isms responsible for fading. This paper describes initial fading
data on a 22.8 km link from the Boulder Atmospheric Observatory
(BAO) at Erie, Colorado, to the U. S. Department of Commerce Radio
Building in Boulder, Colorado.

In order to characterize a radio channel, which has known coher-
ent bandwidth properties for no multipath, the amplitude and delay
of each of the multipath components needs to be measured. Techniques
for estimating the parameters in a channel characterized by three
paths or rays have been described in the literature. One technique
requires several thousand scans of the power spectrum. Each scan
consists of a power measurement at each of several frequenciés
separated sufficiently to define the passband and at the same time
of sufficient number to define the characteristics of the channel
within the passband. It appears that Rummler's method is well suited
for investigating the multipath phenomena produced by three-ray fades.
Unfortunately, instrumentation for making the power scans required was

not available at the time these observations were being performed.

*Boulder Experimental Studies Institute, Boulder, Colorado 80302.
The rest of the authors are with the U. S. Department of Commerce,
Natiqnal Telecommunications and Information Administratioh,
Institute for Telecommunication Sciences, Boulder, Colorado 80303.




However; spatial and temporal observations of fades at two harmoni-
cally related frequencies, did show interesting lobing, characteristic
of multipath. We hope to convince the reader this lobing resulted
from two or more rays reaching the receiver without suffering ground
reflections; i.e., purely atmospheric multipath. We claim that the
observed multipath was caused by trapping of the radio energy within
an elevated duct in the atmosphere formed by an inversion layer. We
will try to support this assertion on the basis of fading data from
three days in late July, 1979. The preliminary results presented in
this report suggest that the unique measurement facility may contribute
towards the understanding of atmospheric multipath and testing of the
3-ray model.

2. MEASUREMENT FACILITY

The BAO tower at Erie, located 25 km east of the Rockies on
gently rolling terrain, is a unique facility for calibrating meteoro-
logical instruments and remote sensors and for studying the planetary
boundary layer. The BAO is operated by the Wave Propagation Laboratory
(WPL) of the National Oceanic and Atmospheric Administration (NOAA),
U. S. Department of Commerce.

The central feature of the BAO is a 300 m tower. It is instru-
mented at eight fixed levels with fast-response anemometry and ther-
mometry for measuring both turbulent and mean properties of the
boundary-layer airflow. Instruments on each level also provide
humidity information. A two-man elevator inside the tower provides
access to the fixed instrumentation levels. A movable carriage on
the tower's southwest face, able to carry up to 1000 kg of equip-
ment, permits continuous profiling or fixed-level operation at any
desired height.

Acoustic echo sounders, opticql anemometry, and an array of
sensitive microbarographs complete the standard instrumentation (cf.
Figure 1). A computer in a van at the base of the tower now handles
the data acquisition. A calibration facility consisting of a small

wind tunnel and constant-temperature bath is also available.



Figure 1. Instrumentation at BAO tower. At each level, three-
axis sonic anemometers measure mean and turbulent wind
components. A fine platinum wire thermometer attached
to the vertical velocity probe measures the fluctuating
temperature. Mean temperature is measured by a quartz
thermometer in an aspirated shield; dewpoint temperature
is monitored by a cooled mirror hygrometer.

The path profile for the BAO-Radio Building path is shown in
Figure 2. A unique feature of the path is that even under conditions
where atmospheric refraction may cause a ground-reflected component,
this ray component may be blocked from reaching the antenna at the
Radio Building because of the knife-edge-like obstruction at Hoover
Hill. We will try to support this statement with observed data later
in the report.

Frequencies of 9.6 and 28.8 GHz were investigated. The approach
was to use a 100 MHz Voltage Controlled Crystal Oscillator (VCXO) to
drive a multiplier-amplifier to provide 11.4 mW (10.6 dBm) at 9.6
GHz. This signal was multiplied by three and used to injection lock
Varian Gunn effect diode source that provided 83 mW (19.2 dBm) at
28.8 GHz.

The two transmit antennas, located on the tower at Erie, were a
parabolic dish at 9.6 GHz having a 3-dB beamwidth of 4.8° and a
horn at 28.8 GHz having a 3-dB beamwidth of 10°. The three receive
antennas, located on the roof of wing 4 of the Radio Building at
Boulder, were a parabolic dish at 9.6 GHz having a 3-dB beamwidth of
1.7° and two antennas at 28.8 GHz, one parabolic dish having a 3-dB
beamwidth of 1.2° and a horn having a 3-dB beamwidth of 10°. The
two receive antennas were used at 28.8 GHz to investigate the effect
of antenna beamwidth on multipath fading.
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Path profile for link between Erie and Radio Building. The profile is
drawn using a true earth radius with a vertical exaggeration of 50 to 1.
The plot on the right shows one sample of the observed refractive index
profile at 0900 MDT, 26 July, 1979. Also shown is a ray trace using the
refractive index profile shown, and focusing at about 100 m above the
ground at Erie.



A link power budget is given by

P_ =10 log10 P, t Gp + Gp - 20 loglod(km) - 20 loglof(MHz)

R T R 1)
-LA - LT - LR - 32.45

where

LA = loss due to water vapor absorption (dB) (5% relative humidity)

LT = transmission line loss at transmitter (dB)

LR = transmission line loss at receiver (dB)

Pt = transmitted power (mW)

GT = transmitting antenna gain (dB)

Ggp = receiving antenna gain (dB)

d = path distance (km)

f = frequency (MHz).
The last term of equation (1) is the constant resulting from the
units for kilometers and megahertz and is given by 10 log10(3x105 km/
sec/16m%x10% MHz) = -32.45

At 9.6 GHz (1) gives

12

10.6 + 30.0 + 38.6 -27.2 -79.6 -0.2
0.5 -0.5 -32.45
= -61.2

PR(dBm)

At 28.8 GHz (1) gives for the parabolic receiving antenna

PR(dBm) = 19.2 + 26.2 + 42.1 -27.2 -89.2 -0.4 -2-2 -32.45
= -65.7

At 28.8 GHz (1) gives for the horn receiving antenna

I

PR(dBm) = 19.2 + 26.2 + 26.2 -27.2 -89.2 -0.4 -2-2 -32.45
-81.6

11

The signal-to-noise ratio (S/N) of the receiver, is determined by the

first stage rf mixer, and is given by

S/N = PR(dBw) - mixer conversion loss (dB) - 10 loglb(kTB) (2)

where
T (N, -1) 290°K
F =23
k =1.38 x 10 joules/degree
-5—
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and NF is the noise figure of the mixer. The bandwidth, B, was
2 kHz. At 9.6 GHz, Np = 10 dB and (2) gives

112

S/N -91.2 -10 + 161.4

60 dB.

e

At 28.8 GHz, B was 5 kHz and NF was 6 dB (Note, normally the noise
figure would be higher at the higher frequency, however, the quality
of the mixer was much better at 28.8 GHz than 9.6 GHz). For the

parabolic receiving antenna (2) gives

1K

S/N -95.7 -6 + 162.2

60.5 dB

e

and for the horn antenna at 28.8 GHz (2) gives

1

S/N -111.6 -6 + 162.2

44.6 dB

12

3. MULTIPATH FADING MECHANISMS

In this section some backgrouhd is given on the various
meteorological mechanisms affecting a radio wave. Much of the dis-
cussion in this section is given in a report by Hufford et al.
(1975 OT Tech. Memo 75-196, Radio propagation to the offshore extended
area, limited distribution) together with many examples. The number
of references that deal with this subject is so large we will not even
begin to try to list them all. We will, however, give in the biblio-
graphy some indication of those papers and reports that have been
helpful during this investigation. Under so-called "standard" condi-
tions the atmosphere is turbulent, well-mixed, and its refractive
index decreases rather uniformly with height above the earth's surface.
However, under certain meteorological conditions, layers are formed
in the atmosphere producing gradients in the refractive index
profile as a function of height. These layers may be caused by
differences in temperature or water vapor content. This gives rise
to the phenomena of multipath and radio holes.

When strong superrefraction occurs in an atmospheric layer,
radio waves are "trapped" or guided along the layer and the layer
is referred to as an atmospheric duct. The signal fading under such

circumstances is strongly dependent on the heights of the transmitter
and receiver.



When the atmospheric conditions produce reflections from an
elevated layer or when ground-reflections are present two or more
rays may reach the receiving terminal and interfere constructively
or destructively. In these cases the radiation pattern of the
receiving antenna together with its height and pointing may play a
critical role in the level of the received signal. The effect of
antenna aperture on atmospheric-induced ground-reflected multipath
is illustrated in Figure 3.

If the transmitter is above an atmospheric layer, a "radio
hole" may be observed. This phenomenon is a diffraction interference
mechanism much like knife-edge diffraction. Figure 4 shows an
illustration of a radio hole (from Hufford et al.) The importance
of layers in this paper leads us to adopt definitions of descriptive

terms for layer intensity as given in Table I.

Receiving Antenna Patterns

// Direct Ray
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Figure 3. Effect of antenna size or gain on ground-reflected,
atmospheric induced multipath.
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Figure 4. The classical radio hole. The dotted curve defines
the top of a ducting layer. No signal reaches an
observer in the shaded region.
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TABLE I
Descriptive terms for layer intensity (from Hufford et al.)

Vertical Gradient of Refractivity
Descriptive Term

N-units/km
Subrefractive > 0
Normal - 40
Superrefractive < - 80
Ducting < =157
Extreme ducting < =314

4. GROUND REFLECTIONS AND ATMOSPHERIC MULTIPATH

We will use the term "diffraction interference" in this report
to include the fades observed in radio holes as well as the enhance-
ments observed near ray caustics. The lobing of the signal when
observing atmospheric multipath can be caused by two or more rays inter-
ferring constructively or destructively or by a radio hole where the
ray density becomes small and the variation in field strength appears
like classical knife-edge diffraction. Figure 5 shows the path pro-
file and the lower half of the first Fresnel ellipse such that the
ellipse just grazes the ridge assuming an effective earth's radius of
4/3. For the geometry in Figure 5, the contribution from the direct
ray is 180° out of phase with the ray reflected from the top of the
ridge where the ellipse grazes the ridge. As the transmitter at the
BAO tower is lowered so that the line-of-sight (direct) ray just grazes
the ridge, the received signal will drop 6 dB below the free-space
value.

Also shown in Figure 5 are the 3-dB beamwidths for the trans-
mitting and receiving parabolic antennas. The transmitting and
receiving horn antennas illuminate practically all the ground between
the transmitter and receiver's terminals. However, Hoover Hill, in

Figure 5 must prohibit some ground reflected paths from reaching the
receiving antenna.
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Figure 5. The first Fresnel ellipse that just grazes the ridge occurs
for a transmitting antenna height of 110 m, 9.6 GHz and a
4/3 earth's radius. 3-dB beamwidths for parabolic trans-
mitting and receiving antennas also shown.




5. MULTIPATH OBSERVATIONS

Along with the three components of the wind, the BAO tower has
provisions for measuring the temperature and dew point temperature
at the heights 10, 20, 50, 100, 150, 200, 250, and 300 m above the
ground. One- or ten-minute samples are available. Using the observed
refractivity structure at 0900 MDT, July 26, 1979, Figure 2 shows a
ray trace from the Radio Building to Erie. Remember, the transmitter
was actually at Erie so the reader should think of placing the trans-
mitter about 100 m above the ground at the BAO tower (i.e., where the
rays coalesce) for the unobstructed direct ray to reach the receiver.
The refractivity structure shown in Figure 2 corresponds to a 10-
minute sample. The time required to make an ascent and descent was
about 6 minutes. The temporal stability of the refractive index
structure during these height gain runs was checked by sampling the
temperature and dew point temperatures at five l-minute intervals and
the results were nearly identical to the 10-minute samples. The
gradient in Figure 2 of -350 N-units/km is well within the definition
of an "extreme duct" in Table I. The refractivity structure at mid-
path may be different than at the BAO tower. Although information on
refractivity structure was not available at other points along the
path layering tends to be somewhat uniform over a region of this
size, and this assumption will be made for the purpose of this paper.
In the fading data which follows it may help the reader to recall the
ray trace in Figure 2 showing the possibility of caustics or radio holes.

Fading data is presented in two forms: 1) time series for the
received signal with the carriage at the BAO tower at a fixed height
of 217 m and 2) height-gain runs. Explanations for the fades or
enhancements are only conjectures at this point and much more research
is required before one can explain all the features in a particular
observed signal. An additional word of caution concerns the range of
fades with the tower at a fixed height. Our observations show fades
in the 5- to 10-dB range. These are probably associated with the
random motions of the atmosphere caused by turbulent eddies on the top
or bottom side of the tropospheric duct. They are not of the 20-dB
variety that cause severe outages in millimeter wave links. Large
fades at 25-30 dB were observed on the height-gain runs.

-10-



figure 6 shows time series for the received 9.6 GHz, 28.8 GHz
horn and 28.8 GHz dish signals starting at 1010 and ending at 1036,
July 26, 1979, with the carriage at a fixed height of 217 m. The
greatest variability (i.e., about 8 dB) in the signal occurred between
1025 and 1035.

In Figures 7a and 7b we show the scatter plot for this time
period. In Figures 6 and 7, the received signals have an absolute
calibration; i.e., 0-dB corresponds to the free-space signal strength.
It is rather curious that the 28.8 GHz horn signal never reached the
free-space value while the 28.8 GHz dish signal did. This is
opposite to what one would normally expect taking into consideration
the respective beamwidths. 1In Figure 7a, the correlation between the
28.8 GHz horn and dish signals is 0.58. Therefore about one-third
the variance in the 28.8 GHz horn signal is associated with the 28.8
GHz dish signal. Also, in Figure 7a, the received signals are seen
to be clustered into two sets. In order to study this effect in more
detail, we divided the two clusters in Figure 7a as shown in Figure 8.
The two clusters in Figure 8 represent unexpected results from a fad-
ing mechanism. The time series corresponding to Figure 8 is replotted
in Figure 9 where the cluster above the line in Figure 8 is shown
as a heavy trace and the one below the line as a light trace. The
dish signal in Figure 9 seemed to remain at a constant level (aside
from scintillations about the mean) while the horn signal increased
at about 1025. The division into two clusters was caused by a rela-
tively long term signal variation while the scatter (scintillation)
within each cluster was caused by the short term signal variation.
This would point to two different mechanisms being present. For
example turbulence plus ducting.

Recently, much of the concern with multipath degradation has
focused on a 3-ray model. Analysis of Bell Telephone Laboratory data
has shown that two of the paths have an extremely small delay (i.e.,
a small fraction of a bit duration but comparable with the period of
the carrier frequency) but tend to cancel each other leaving a signal
level determined by a third ray with a relatively long delay (i.e.,
comparable with the bit duration or several bit durations). A 3-ray
model for multipath is

T(t) =1+ a;(t)explif, ()] + a,(t)explif,(t)], (3)
_ll_
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Figure 7a. Scatter plot for 28.8 GHz horn and dish
signals on July 26, 1979, corresponding
to time series in Figure 6. The origin
corresponds to free space.
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to time series in Figure 6. The origin
corresponds to free space.
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Scatter plot for the 28.8 GHz horn and
dish signals for a subset of the time
period shown in Figure 7a. The scatter
plot is shown divided into two clusters,
to test a hypothesis.
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where r(t) is the received signal. When the signal is in the state

or cluster above the line in Figure 8, we hypothesize the 2nd two
multipath rays in (3) cancel and the horn and dish see the same signal.
When the signal is in the state or cluster below the line in Figure 8,
we hypothesize that the 3rd multipath component in (3); i.e., a,
arrives at an angle outside the 3-dB beamwidth of the 28.8 GHz dish
but within the 3-dB beamwidth of the 28.8 GHz horn antenna. Since

the 28.8 GHz dish signal in Figure 9 did not change state, we assume

that the 2nd multipath component in (3); i.e., a, is small. The

1

quantities 6, and 62 in (3) are the path differences between the

direct and Zid and 3rd multipath components and their variation may
be small compared to the electrical wavelength, which in our example
is approximately 1 cm. This may explain why the signal remains in a
particular state for relatively long periods of time. The model
in (3) also covers the possible case where a, and a, are nearly equal
in magnitude and el and 82 are 180° out of phase; and in addition,
the dish could receive the direct plus 2nd multipath component but
not the 3rd multipath component. This set of circumstances would
cause the 28.8 GHz dish signal to drop in going from one state to the
next while the 28.8 GHz horn signal would remain constant. The 3-ray
model for atmospheric multipath does not account for diffraction effects
associated with radio holes or antiholes. Diffraction effects need
to be examined using a full wave type of solution (Hufford, et al.,
1975).

In Figure 10 we show height-gain runs for the received signals
as the carriage made ascents and descents on the BAO tower from
0722 MST to 0737 MST, July 26, 1979. The signals in Figure 10 have
an absolute calibration; i.e., 0 dB corresponds to the free-space
signal level. The time for an ascent or descent was about 6 min.
The velocity of the carriage is about 0.58 m/sec. The height-gain
runs for ascent and descent in Figure 10 are offset 20 dB from one
another for clarity. First Fresnel zone clearance at Hoover Hill
occurs with the carriage about 110 m above the ground. The enhance-
ments in the fields as the carriage passed through this height can
be seen in Figure 10. The field 6 dB down from its free-space
value gives the location of optical grazing which is aboﬁt 90 m

above the ground. Figure 11 shows the first Fresnel zone with the
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transmitter at 80 m and the path profile drawn using a 4/3 effective
earths radius. The 28.8 GHz dish signal in the height range 80-110 m
appears somewhat too high above the free-space value. However, several
calibration checks failed to uncover any discrepancy. The fades and
enhancements at a height of about 170 m on ascent are the result of the
"extreme ducting" conditions that existed causing the fields to enhance
and fade on either side of this deep radio hole. Signal variations
with height of néarly 30 dB are observed in this height region. The
28.8 GHz signal went through 3 cycles of lobing while the 9.6 GHz signal
went through 1 cycle during the ascent through the 170 m height. The
location of this interference phenomena on descent seemed to occur at
about 180 m indicating some upward shift in the layer height as a func-
tion of time. The layer only has to move about 24 m to produce a half-
wavelength change in a multipath ray reflected at midpath at 28.8 GHz.
We claim the results in Figure 10 correspond to the existence of a
radio hole. On either side of the radio hole the field will enhance
corresponding to the wave diffracting energy around the edges of the
hole into the hole. 1In the hole itself the field is quite small. These
features fit the observations in the region where the duct exists (i.e.
100-200m in Figure 10). Also, the field will fall and rise at rates
which increase with frequency and this effect is observed in Figure 10
as well. 1In the radio hole the density of rays goes to zero.

In Figure 12, we show height-gain runs for the 9.6, 28.8 GHz
horn and 28.8 GHz dish signals at 1407 MDT on July 26, 1979. During
this time period when the atmosphere has returned to a well-mixed
condition, the signal strength has 5 dB variations caused by scatter-
ing from the turbulent eddies and large fades or enhancements were
not present. Figure 12 also shows the absence of multipath caused
by possible ground reflections and adds support to our claim of no
ground multipath.

Figures 13a and 13b show spatial correlation of the 28.8 GHz
horn and 28.8 GHz dish and 28.8 GHz dish and 9.6 GHz dish respective-
ly. These Figures correspond to the height-gain runs in Figure 10.
In Figure 13a, the 28.8 GHz horn and dish correlation is offset about
1 lag (3 m) horizontally. The offset in the maximum correlation from
zero lag in Figure 13a may correspond to a cross wind moving the
refractivity structure horizontally. The spatial correlation in
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Figure 1l3a gives some insight into antenna separation to be used in
space diversity. The spatial distance in Figure 13a from peak correla-
tion to minimum correlation is about 10 m. This would be an optimum
separation for vertical space diversity for this particular data set.

Figure 14 shows the height-gain runs for ascent and descent
starting at 0802:22 and ending at 0817:18 on 7/26/79. The 0 dB point
corresponds to the free-space signal strength. For carriage heights
greater than the height corresponding to the first Fresnel. zone
clearance of Hoover Hill (i.e., 110 m) the greatest signal variations
occurred in the height range 160 to 210 m. In this height-gain
region the 9.6 GHz and 28.8 GHz signals faded and enhanced at the
same heights indicating the duct was "cut-off" for the dominant mode
at 9.6 GHz but supported the higher-order mode in Figure 14 having
two full cycles of lobing. The gradient of refractive index in the
duct in Figure 10 was about =310 N-unit/km while the gradient in the
duct in Figure 14 was about -320 N-unit/km. Figures 15a and 15b show
the spatial correlation for the height-gain run in Figure 14.

Figure 16 shows the height-gain runs for ascent and descent
starting at 0830:10 and ending at 0850:46 on July 26, 1979. The
0 dB point corresponds to the free-space signal strength. In the
height range from about 115 m to 160 m on ascent, the 9.6 GHz signal
went through one-half cycle variation while the 28.8 GHz signal went
through about 3 half-cycle variations indicating the duct width
increased from its value for the height-gain run in Figure 14. The
conjecture is that from 0800 in Figure 14 to 0830 in Figure 16 the
characteristics of the duct changed sufficiently to cause the 9.6
GHz signal to go through one cycle of variation in the height range
115 to 160 m in Figure 16 as opposed to two cycles in Figure 14.

This also could have been caused by the duct width changing. Figures
l7a and 17b show the spatial correlations for the same time period as
Figure 1l6.

Figure 18 shows the height-gain runs for ascent and descent
starting at 0855:20 and ending at 0912:51 MST on July 26, 1979. The
0 dB point corresponds to the free-space signal strength. In the
height range from about 140 m to 170 m on ascent, the 9.6 GHz signal
went through one-half cycle variation while the 28.8 GHz signal went

through three half-cycles of variation. This would imply that the
-24-~
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duct geometry for this time period was comparable with that for the
height-gain run in‘Figures 17 and 10.

Figures 19a and 19b show the correlations for the time period
0857:22 to 0903:16 on July 26, 1979.

6. CONCLUSIONS

Examples are shown of multipath fading for both fixed trans-
mitter/recéiver locations and height-gain runs observed on a 23 km
path from the BAO tower in Erie, Colorado, to the Radio Building in
Boulder, Colorado. By comparing the received signal during time
periods when the atmosphere was in a normal condition with those
periods when the atmospheric structure produced a duct, we conjecture
that the fading was the result of atmospheric multipath and not
ground reflections. In particular, we believe we observed some
examples of "radio holes".

We believe these preliminary results are interesting from the
standpoint that the extremely short delays between the 1lst and 2nd
components in a 3-ray model for atmospheric multipath may be resolv-
able using the BAO tower at Erie and should contribute toward a better
understanding of the 3-ray model.

There is more research that must be performed before the possi-
bility of ground reflections can be discounted. This research should
take the form of 1) recording the refractivity structure with a finer
spatial resolution than the 50 m increments used in obtaining the
results in this report, 2) use Hufford's full wave solution for the
received signal as a function of height and make comparison with the
observed height-gain runs, 3) use Rummler's model for estimating the

parameters in a 3-ray model for the transfer function.
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Figure Bl. Time series for 9.1 GHz signal over 22.8 km path near Haswell in
E{9.1 GHz}=-13 dB?, o0?(9.1 GHz)

southeastern, Colorado, 3/8/66.
~126 dB?>. From Fig. 6, R. E. McGavin, H. T. Dougherty, C. B.

Emmanual, Microwave Diversity Over Irregular Terrain, ESSA Tm,
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Figure B2. Time series for 8.1 GHz signal over 50 km Boone-Fowler path, 8/2/79.

E{8.1 GHz} = -10 dB. 0?(8.1 GHz) = 9 dB?. From Fig. 7, W. J.
Hartman, D. Smith (1975), Tilting antennas to reduce line-of-sight
microwave link fading, Report No. FAA-RD-75-38, February, Prepared
for U. S. Dept. of Transportation, FAA, Systems Research and Develop-
ment Service, Washington, D. C. 20590.
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Figure B4. Time series for 19.1 and 25.4 GHz signals over 64 km path in Hawaii,

9/13/71. E{19.1 GHz} = -16 dB, 0?(19.1 GHz) = 9 dB?, E{25.4 GHz} =
-12 dB, o02(25.4 GHz) = 11.5 dB®?. From Fig. 6, M. C. Thompson, Jr.,
Lockett E. Wood, Harris B. Janes, Dean Smith, (1975), Phase and
Amplitude Scintillations in the 10 to 40 GHz Band, IEEE Trans. Ant.
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