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FOREWORD

The Integrated Propagation System (IPS) is a computerized propagation
‘prediction model that was used to calculate the propagation loss values in
this document. The methods in the IPS model predict the median value of radio
wave propagation loss at far field distances over a spherical earth for the
line-of-sight modes of surface wave, free space, and multipath; and for the
beyond~-line—of-sight modes of smooth earth diffraction and tropospheric
" scatter.  The. program: includes routines: that automatically select the
; appropriatekpropagation mode,. based on input parameters and path geométry.
JThe IPS model was deﬁeloped using propagation methods described in CCIR Study
- Group:S, 'Volume V. 'entitled Propagation in a Non-Ionized Media. = The

 fundamental propagation methodologies used in the TIPS and Ground Wave
Propagation (GRWAVE) (see CCIR Report 714) models are similar except the IPS
,model includes the tropospheric forward scatter mode,. The foliowing is a list
of refereﬁce CCIR " Study Group V documents that describe the propagation

- methods incorporated in the IPS model:

Recommendation 310 - Definitions of Terms. Relating to Propagation in the

Tropquhere
,Récomﬁéndatiqn 341 ; TheyCdncept of Transmission Loss for Radio Links
Recommendétion 369k?— Referéncg Atmogphere for Refraction
‘Reéomhendétioﬁ 453 - (The~F§fmﬁlé for RédiofRefractive Index
Recqmmendatibn 525 - Calculation‘of Free Space Attenuation
Recommendation 526 - Propagation by Diffraction

Recommendation 527 - Electrical Characteristics of the Surface of the
Earth

iv



Recommendation 530

Report

Report

Report

Report

Report

Report

Report

229

238

563

714

717

719

878

Propagation Data Required for Design of
Tropospheric-Scatter Trans—Horizon Radio Relay

Systems and Earth-Space Telecommunication Systems

Electrical Characteristics of the Surface of the
Earth

Propagation Data Required for Trans-Horizon Radio-

Relay Systems

Radiometeorological Data

Groundwave Propagation in an Exponential Atmosphere
World Atlas of Ground Conductivities

Attenuation by Atmospheric Gases

Special Features of the Concept of Transmission

Loss in the Ground-Wave Propagation Case
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ABSTRACT

This handbook is intended to assist in manual analysis techniques that
must be used when an automated analysis is not possible, It provides
estimates of radio wave propagation loss between transmitting and receiving
antennas above the assumed smooth-earth surface that were calculated using the
Integrated Propagation System (IPS) computer model. For many cases involving
electromagnetic compatibility analysis, the curves of predicted transmission
loss in this report may be used to estimate the transmission loss of the
desired and undesired signals. These loss values are given in dB as BASIC
MEDIAN TRANSMISSION LOSS for antennas with effective heightsa up. to 5000
meters, operating in the 100 to 10,000 MHz frequency range, over land or sea,
at great circle earth surface distances up to 1000 kilometers. This handbook
is an initial document intended to be supplemented with additional curves that

will be provided on an ongoing basis.
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SECTION 1
INTRODUCTION

BACKGROUND

The National Telecommunications and Information Administration (NTIA) is
responsible for managing the radio spectrum allocated to the U,S. Federal
Government . Part of NTIA's responsibility is to: "...establish policies
concerning spectrum assignment, allocation and use, and provide the wvarious
Departments and agencies with guidance to assure that their conduct of
telecommunications activities 1is consistent with these policies"” (Department
of Commerce, 1983). In support of these requirements, NTIA periodically
develops aids to assist in spectrum engineering and analysis techniques. This
handbook provides estimates of radio wave far field propagation loss between
transmitting and receiving antennas above the assumed smooth surface of the
earth using the Integrated Propagation System (IPS) computer model. The
objective of this handbook is to assist in manual analysis techniques that
must be used when an automated analysis is not possible, This handbook is an
initial document intended to be supplemented with additional curves that will

be provided on an ongoing basis.
SCOPE

The curves in this handbook provide estimates of radio wave propagation
loss between transmitter and receiver terminals elevated above the assumed
smooth surface of the earth.. The Integrated Propagation System (IPS) computer
model was used to calculate or predict all transmission loss values (NTIS,
1983) (Frazier, 1963). These IPS predictions were automatically plotted using
a graphics program and a computer-controlled plotter. The values are given in
dB, as BASIC MEDIAN TRANSMISSION L0OSS. This terminology is used to specify
that the transmitting and receiving antennas are assumed to be isotropic and
that the predicted loss is the median value (50%) of a large distribution of
measured radio wave transmission losses, in dB. An 1isotropic antenna is a

theoretical point source that radiates equally in all directions.




The BASIC MEDIAN TRANSMISSION LOSS estimates are for antennas, up to 5000
meters in height, operating in the 100-10,000 MHz frequency range over
great—-circle earth-surface distances up to 1000 kilometers, The antenna
heights are "effective antenna heights” above the smooth surface of the
earth, Effective antenna heights are discussed in detail later. All
estimates are based on vertically polarized transmissions over a homogeneous
earth surface, having electrical parameters of either sea water or average
land., Sea water is typical of ocean water, having a high salt content that
results in a good conducting surface along the transmission path. Average
land is assumed to have a moisture content that results in a conductivity
characteristic of soil that 1s neither too moist nor too dry. The
conductivity and relative permittivity (dielectric constant) of sea water and

average land in this report are given below in TABLE 1.
TABLE 1

PATH SURFACE ELECTRICAL PARAMETERS

SURFACE CONDUCTIVITY RELATIVE PERMITTIVITY
Sea water 4,64 mhos/meter 81
Average Land 0,005 mhos/meter 15

Transmission paths are assumed to be over a smooth spherical earth with
an effective earth radius to compensate for ray bending at low-to-medium
antenna elevations. An exponential reference atmospheric model was used to

compensate for ray bending at high antenna elevations.

The transmission loss curves are intended to be used in estimating the
signal level (field strength or power density) received at a given antenna,
The curves are based on propagation modes that provide a median (50 percent)
probability of occurrence. In an interference situation, there is at least
one undesired, or interference signal, that is present at the receiver
antenna along with the desired signal, The included transmission loss curves
may be used for estimating transmission loss for both the desired and

undesired signals.,



Effects of terrain roughness, mixed path surfaces, vegetation, fading
relative to the median loss, and tropospheric ducting are not included in the
transmission loss curves. References are given for methods and data that may
be used to estimate these effects relative to the transmission loss in this

handbook.,

Figure 1 illustrates the association between smooth-earth-path geometry
and the propagation modes represented by the ﬁransmission loss curves, The
lower part of Figure 1 shows the profile geometry of a smooth—earth path
between two antennas. The upper part of Figure 1 shows the transmission loss
relative to the path profile given in the lower part of the figure. On the
profile, the antennas are separated by a distance that is equal to the
smooth—earth radio line-—-of-sight (L0S) distance. This is the maximum distance
at which the radio waves will be unobstructed by the curved surface of the
earth for the specified antenna heights. The radio LOS distance is greater
than the optical LOS distance on earth, in a normal atmosphere for the
specified antenna heights. Figure 1 shows that the maximum path distance
where the free-space loss is less than the swooth earth loss for specified
antenna heights is actually less than the radio LOS distance, The curve in
the upper part of Figure 1 shows that, ét short distances, the transmission
loss 1is due to free space or multipath, and at 1long distances, the
transmission loss is due to diffraction or tropospheric scatter., At path
lengths less than the maximum free-space-loss distance, reflections from the
smooth earth may cause multipath fading as indicated in Figure 1. The smooth
earth curves in this handbook follow the peak envelope of the multipath lobes
and thus, the transmission loss at short distances is shown to be slightly

less than the free—space loss.

BASIC MEDIAN TRANSMISSION LOSS CURVES

The basic transmission loss curves are plotted on standardized format
graphs as shown in Figure 2, All the curves are done on two-cycle semilog
graph paper, with the ordinate giving basic median transmission loss, in dB,
and the abscissa giving the great—-circle distance, in kilometers, along the
surface of the earth between the transmitter and receiver antenna sites.
There are two transmission loss curves on each graph, The straight line on

each graph is the Free—Space Transmission Loss. This is the loss determined

-3~
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by the given frequency and distance in free space, which does not include the
effects of the earth or of antenna heights, The other curve gives the

Smooth-Earth Transmission Loss. This loss includes the effects of a smooth

spherical earth and is the value that should be used for the frequency,
distance, and effective antenna heights given. All the figures in this
handbook have a standardized and abbreviated summary of the parameters under
the figure, These standardized abbreviations of the parameters include the
transmission frequency, in MHz; one antenna height (hl)’ in meters; the other
antenna height (hz), in meters; V,P. for vertical polarization; and the path
surface type (sea water and or land). Note that the path transmission loss
will be the same regardless of which antenna is identified as the transmitter

or receiver,

For the actual transmission loss curves (see Figures A-l1 through A-~132 in
APPENDIX A), there are two smooth earth transmission loss curves, one for land
and one for sea water., There are a number of figures where the land and sea

water curves are identical and thus, appear as a single curve for both,.

To obtain values of transmission loss from the curves in APPENDIX A for
frequency, antenna heights, and path surface that are different from those on
the curves, but within the range of parameter values on the curves, an
interpolation procedure should be used to estimate an intermediate value

between the curves.

EFFECTIVE ANTENNA HEIGHTS

An effective antenna height is the structural antenna height that is
increased to take 1into account the average terrain elevation along the
transmission path, The effective antenna height 1is never less than the
structural antenna height. The input antenna heights to the IPS model must be
the effective antenna heights., = Therefore, in order to utilize transmission
loss values from the curves, the antenna heights on the curves must be
representative of the effective antenna heights for the user's transmission

path.

Figures 3 and 4 are illustrated examples of effective antenna heights and
the transmission loss prediction errors that could result from using incorrect

effective heights. Figure 3 shows two different transmission path geometries

-6
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although both have structural antenna heights of 50 meters at each end of the
path; Path A has the 50-meter structural antennas located on local terrain
elevations of 500 meters, while the average terrain elevation along the path
- for. the left antenna site is 60 meters, and for the right antenna, the average

elevation is 20 meters. For this example, these average terrain elevations of

'ﬁi,60 km and 20 km are determined for the terrain along the path from 2 km to

.77 10 km from each antenna. For the left antenna, the center of radiation is 550

meters above sea level and 490 meters above the average terrain at that end of
the path. Similarly, the right antenna height is 550 meters above sea level

' and 530”meters above the average terrain elevation at that end of the path.

byidehe effectlve antenna heights for the upper path are. thus, 490 meters and 530

‘ mete 1‘.'S .

Path B has the same SO—meter structural antennas located on a. smoothr

- earth surface (plateau) that is 500 meters above sea level. For this path, no

'terrain adjustments are necessary, since the structural antenna heights are
the effeCtive antenna heights. This 1s because the average terrain elevation
- along the path is equal to each’ site elevation. Thus,. for Path.B the

':transmission loss will be the same as 1f the SO-meter antennas were placed at

"77jtsea level (assuming atmospheric refractiv1ty changes are negligible).

Figure 4 has transmission« 1oss curves that correspond to Path A.kand
Path B shown in Figure 3., The Path A curve is for effective antenna heights
'of«490‘meters and 530 wmeters, and the Path B curve is for effective heights of
B SO'nEters" and 50 m@ters. The loss differences between the two -curves on

‘7vFigure 4 are ~solely due - to the differences in the effective ‘antenna heights

'5jfused in the IPS smooth earth model. As shown in Figure 4, for a transmission

d'path distance of 50 km; the transmission loss difference between the curves  is
22.4 dB. At a distance of 150 km, the loss difference is 45.5 dB. The
22.4 dB and 45,5 dB' differences represent the prediction error that would
result for the paths in Figure 3 if the,effective antenna heights used in the

IPS computer model do not represent the path geometry.,.




SECTION 2
APPLICATIONS
GENERAL

Transmiseion yloss is onlyf one parameter in the equation to determine
received signal level in, and system performance of, a telecommunication
link,. It is important to know the relationship of transmission loss to other
‘ fparameters such és,' transmitter“power, antenna gaiﬁs, and interference
criteria.‘sTo demonStrate this relationship, a summary of the system coupling
equation and,the important parameters are given in the following;section for
simple system models.. A;samplefproblem is given to illustrate the application

of the transmission loss curves in the solution of an interference problem.

The simplest'System‘model for evaluating electromagnetic compatibility
(EMC) is one that. represents standard deterministic prediction equations for
the desired and undesired signals at the receiver input (CCIR, 1983). The

desired signal at the receiver input is determined by Equation 1.

Sy(dBm) = 5;(dBm) + G(dBi) + G,(dB1) - L(dB) N G)
where:
'ffsrﬁﬁe¥t desired signal at the receiver input
3‘ ffSTQf=H desired signal from the transmitter s
‘ ;fﬂwai%?‘desired transmitter antenna gain (typlcally mainbeam, o
o gain) L :
' Gp - = receiver antenna gain :
L = basic transmission loss for desired signal path

 (the median loss (50%) should be used here).:

A simple evaloation would be>to compute SIN‘and compare this value with a
performance threshold.. 1If the level of Sty exceeds the threshold, then a
level of'acoeptable desired signal performance is available. The signal could
also be readily converted to a signal-to-noise ratio (S/N) since, in Equation

2:

~10-



(S/N)IN(dB) = SIN(dBm) - NIN(dBm) (2)

where:

signal-to-noise ratio at the receiver input

N

N - equivalent input noise power

and all other terms are previously defined. An identical analysis can also be
performed for the interfering signal in terms of the input power or the input
interference-to-noise ratio (I/N). The evaluation of I/N is often employed in

"EMC analyses.

The: undesired signal at the receiver iInput is given similarly by

Equation 3.
IIN(dBm) =<IT(dBm) + GTl(dBi) + GRl(dBi) - LI(dB) | (3)

where:
Iy = undesired receiver input power
IT = undesired transmitter signal power
GTl ='undesireditransmitter antenna gain (mainbeam or
sidelobes)
_Gki‘=-receiver antenna gain in direction of interference
LI = basic transmission loss for undesired signal path,
(a 10% to 50% loss should be used here)

The next logical stepvin increasing the complexity of the calculations
would be to compute (S/I)IN and compare this to a performance threshold to
determine if the level of performance is acceptable or not acceptable, The

(S/I)IN is given by Equation 4.

~11-




(8/1) [ (dB) = S  (dBm) - I, (dBm) (4)

and the criteria are:
(8/1)qy (dB) > (S8/I)py (dB) acceptable performance
(8/T) 1y (dB) < (S/I)py (dB) unacceptable performance
where:
(S/I)TH = desired-to—~undesired performance threshold criteria
(see CCIR Report 526 for typical performance
criteria)

and all other terms are previously defined.

Example Problem

To demonstrate application of the transmission 1loss curves in this
handbook, the curves are used in the solution of an example telecommunications
. problen, This example problem. involves a mobile station receiving two
cochannel virtually polarized FM signals simultaneously; one desired signal
and - one- undesired signal. The objective 1is to determine whether the
interference to the mobile station receiver 1is acceptable, The following

parameters are known for the telecommunications systemé.

~12~



Parameter Base Statiomn
(desired signal transmitter)
Sp = 100 watts Base station transmitter output power
hp = 10 meters Base station effective antenna height
Gp = 8 dBi Base station antenna gain'
Mobile Station
(desired signal receiver)
hR = 1 meter Mobile station effective antenna height
Gp = 0 dBi Mobile station antenna gain
NIN = =128 dBm Mobile station input noise level
(S/N)IN = 15 dB Mobile station input signal-to-noise ratio
(8/T)qg = 7 dB Mobile station criteria for FM to FM marginal performance
Interfering Station
(undesired signal transmitter)
Iy = 15 watts Interfering station's transmitter output power
hy = 50 meters Interfering station's effective antenna height
Gpy = 7 dB1 Interfering station's antenna gain

The distance between the base station and a specific location of the

mobile station is known to be 60 km over a land path, Since the terrain is

smooth along the path, the smooth—-earth transmission loss curves in APPENDIX A

may be. used to estimate the propagation loss. The basic median transmission

loss between the base station and the mobile station is determined, using the

-13-




curve for 1land in Figure A-127, to be L(b) = 171 dB for hp = hy; = 1m,
hT = h2 = 10 m, and £ = 100 MHz at a distance of 60 km. The level of desired
signal at the dinput to the mobile station can now be determined wusing

Equation 1,

Syy(dBm) = ST(dBm) + Gp(dBi) + Gp(dBi) - L(dB)
Syy(dBm) 50+ 8 + 0 - 171

The (S/N)y at the mobile receiver is determined using Equation 2,

(S/N)IN(dB) = SIN(dBm) - NIN(dBm)
= =113 - (~128)
(8/M)py(dB) = 15

The distance between an interfering station and the specific location of
the mobile station is known to be 53 km over a smooth land path, The
ﬁropagation loss between the interfering station and the mobile station is
thus determined, using the curve for 1land in TFigure A-128, to be
LI(dB) = 153 dB for hp = hl =1lmwm, hp-= h2 =50 m, and f = 100 MHz at a

distance of 53 km,

The level of the undesired signal at the input to the mobile station is

determined using Equation 3.

T;y(dBm) = Ip(dBm) + Gp (dBi) + Gp (dBi) = L (dB)
= 42 + 7 + 0 - 153

[

The desired-signal-to-interference-signal ratio at the mobile receiver

input is determined using Equation 4.

(8/1)1y(dB) = Syy(dBm) - I (dBm)
-113 - (-104)
-9

1]

(S/1)y(dB)

“14=



The calculated value of (S/I)IN(dB) = =9 i  compared to the

desired-to-undesired performance threshold criteria (S/I)TH = +7,
(S/1)x(dB) = =9 < + 7 = (S/1)y(dB)
Since the calculated value of (S/I)IN is less than the threshold value of
(S/I)TH, an unacceptable interference situation exists between the interfering

station and the mobile station.

PROPAGATION EQUATIONS AND CONVERSIONS

Equations are gilven to compute the power density and field strength
produced by a transmitter in free space (i.e., a region in which there are no
substances to reflect, absorb, refract, or otherwise affect the radio
waves), Then the equation is given for computing the power available at the
terminals of a receiving antenna that is illuminated by the transmitting
antenna. The parameter "basic free-—space transmission loss” (Lbfs) is
introduced to allow this received power to be computed with a compact formula

(CCIR, 1982b),

These equations are followed by expressions that can be used when the
path between the transmitter and receiver (or observation point) is not in

free space. The parameter "basic transmission loss” (Lb) is introduced to

allow convenient calculations for these general-environment problems.

FREE SPACE EQUATIONS

Power Density in Free Space

Assume that p(watts) is input to an antenna that is 100 percent efficient
and radiates 1isotropically. Consider observation points at a distance of
r(meters) from the transmitter. The power density at these points is now the
power per unit area flowing through a spherical shell of radius r with a
center at the transmitting antenna. At any point on this sphere, the power

density Pd(W/mz), is determined by Equation 5.
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Pt(W)

P.(Wn") = ——5— (5)
d 4wr2(m)
where:
P4 = power density
P, = the power delivered to the transmitting antenna
T = distance

and, where r is in statute miles (there are 1609 meters in one statute mile):

P_(W) _
Pd(W/mz) =t % 30.73x 1072 (5a)

" (mi)

If the problem input parameters remain as now stated, but the desired

output is in dB above 1 mW/m2 (i.e., dBm/mz), then:

5 Pd(mW/mz)
Pd(dBm/m ) = 10 log — (5b)

r~(m)

or, for statute miles:

P (W) )
10 log|——— x 30.73 x 10 %% 10°
r (mi)

10 log P.(W) - 20 log r(mi) + 10 log (30.73 x 107%)
10 log Pt(W) -~ 20 log r(mi) - 45.12

1

and, the transmitted power is expressed in dBm (i.e., dB above 1 mW):

P.(dBm) = 10 log P .(mW) = 10 log Pt(W) + 30 (5e)

~16—



so that:

P;(dBm/m®) = P_(dBm) - 20 log r(mi) - 75.12 (5d)
but generally:
Pd(dBm/mz) = Pt(dBm) - 20 log r (units) - K (5e)

where:

K = a constant dependent on the unit of measurement used to
express r (see TABLE 2) and all other terms are

previously defined,

TABLE 2
CONSTANTS FOR EQUATIONS

Units of r Ky Ky
Statute miles 75.12 36.58
Nautical miles 76.34 37.80
Kilometers 70,99 32.45
Feet 0.67 -37.87
Meters 10.99 -27.55

Received Power in Free Space

The  effective aperture (Ae) of an antenna is defined by:
T
a,(m) = —— (6)

where:

P. =the power delivered to a matched load at the terminals

of the receiving antenna

-17-




This aperture is computed by:

2
_ g (numeric)Ai(m)
fe(m) = bm (6a)

where:

the power gain of the antenna expressed as a ratio relative

09
i

to the gain of an isotropic antenna that is 100 percent

efficient

>
]

the wavelength of the radiation

For an isotropic antenna that is 100 percent efficient, g = 1 and:

2
_A(m)”
Ae(m) == (6b)

and all terms are previously defined, A formula for the power received by
such an antenna in free space can be obtained by adding Equations 5 and 6b to

Equation 6. The result is:

brr(m

| 2
P_(W) = B (W/m)PA ()7 = PC(W)[_Mm) )] o

Here, A and r have the same units, and P. and P have the same nonlogarithmic
units (e.g., watts, milliwatts, etc.). If the problem is specified in terms

of frequency (f) rather than wavelength, then one can substitute:

300

A(meters) = m?)- (7
into the preceding equation and obtain:
569.9Pt
P_= (8)

r (f(MHz) x r(meters))2

where P. and P, are in- the same nonlogarithmic units,

If the transmitted power and received power are expressed in the same

logarithmic units (e.g., dBm or dBW), then the proper equation can be obtained

-18-



by taking the logarithm (base 10) of each side of this equation  and
multiplying the results by 10. Thus:

P. = P. = 20 log f(MHz) - 20 log r(meters) + 27,55 » (8a)

~This can be adapted to other units (e.g., when r is in statute miles):

. P, =P, - 20 log f(MHz) - 20 log r(miles) -~ 36.58 (8b)

Equation 8b is frequently written as:
Pr= P = Lpgs . | | (9
‘where the basic free space transmission loss (Lbfs) is given by:
‘: Lygg = 20 log r(units) + 20 log f(MHz) + Ky, (10)

where values for K, appear in TABLE 2 for differenﬁ units of r, the slant
- range (CCIR, 1982¢c). o Sl

The preceding equations for received power are for lossless (i.e., 100
pefcent ~efficient) isotropic antennas at both ends of the link. If the
transmitting antenna is not like this, then the power density (Pd) in front of
:thevreceiving‘antenna changes to:
} Pthv: )

d (11)

4wr2

- where Gt and Gr are the transmitter and receiver antenna gains, respectively,
relative to a lossless isotropic antenna (dimensionless units). If the
receiving antenna 1is not lossless or 1isotropic, its effective aperture f{is

given by Equation 6a. Inserting Equations 11 and 6a into Equation 6 yields:

P =P GG I 212 | (12)
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In logarithmic units (and allowing use of f instead of A):

Pr(dBW) = Pt(dBW) + Gt(dBi) + Gf(dBi) - 20 log r(miles)
- 20 log f(MHz) - 36,58 (13)
U?;ﬁhere‘e
,Gt(d3if = 10 log G,
G.(dBi) = 10 log G,
‘,dBilé decibels. above the galn of lossless (100 percent efficient)

' isotropic antenna.

 NOTE: Some manufacturers specify gain relative to a lossless 1/2 A

"j?dipele,k rather than relative to an isotropic antenna. In this case, add

: *eff 2 15 dB to the manufacturers' values before ublng them in Equatlon 13.

Comblnlng Equatlons 10 and 13 ylelds the equation for power available at

~f the:termina1s of the receiving antenna when the transmission medium is free

. space:

ﬁ?}(dBw) ='P£,(dBw) + Gt(agi)-; cr‘(dei) = Ly (dB) (14)

_ EQUATIONS USED WHEN THE ANTENNAS ARE NOT IN FREE SPACE

A General Equation for Received Power

” fﬁEqﬁaeieﬁk14;eeeoeﬁte‘fef‘the 1/(bnr?) spreading loss in free space, a
e Fregien free: from reflecting, absorbing or refracting materials. The terms G
- and’ Gt are receiver. and transmitter antenna gains, respectively, in dBi.

- These terms also account for losses within the antennas due to the lack of 100

- percent radiation efficiency.

: There may be other losses between the outputs of the transmitter and the
transmitting antenna. These can be ohmic losses (e,g., in transmission lineé,

- wave guides or anteunna couplers). Mismatch losses can also occur. Similar
llosses may- exist Dbetween the receiving antenna and the input to the

receiver, Also, there may be differences in the polarization of transmitting

=20~



and receiving antennas. To account for these losses when calculating the
power at the input terminals of the reciever (Pr)’ Equation 14 should be
modified to read:

P =P+ G + G, = Ly ~ (OTHER LOSSES) (15)

where Pt is the powér*available at the output of the transmitter.

In many cases, the space between the two antennas will contain
atmospheric effects (e.g., rain) or irregular earth obstructions (e.g., hills
~and mountains).v’ Thus, the basic free space transmission loss (Lyc.) will
frequentiy hot be appropriate. Instead, the more gehérélABasic transmission
‘-lossv(Lbf is needed. The received power equation becomes: : k

'Pi”='Pt + G + G -1y, - (OTHER LOSSES) ’vfﬂ . (16)

A Genefal’Equation for Power'Dénsity

“An equation for predicting power density 1n a non-free space enviroument
can be obtained by entering Equations 16 and 6a into Equatlon 6 and solving

for Pd. - The result is:
,,PdﬂdBm/m') = P_(dBm) + G_ - L + 20 log (f(MHz))

j-j38@54-4 (Lossesvbetweéﬁ the transmitter , (17

_output and the transmitting antenna).'

‘COMPUTING THE ELECTRIC FIELD STRENGTH

If the engineer/analyst needs to know the electric field strength at a
-point in space, it may be computed from the power density. In the far field

" of the transmitting antenna, these quantities are related by:

EZ(V/m,brms)
n

:Pa(W/mZ,.avg) = (18)
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where:

rms

electric field strength

the impedance of free space = 120mQ or =377Q

root mean square.

TABLE 3 is a set of conversion equations for a variety of units.

‘fTABLE 3

'  CONVERSION OF POWER DENSITY TO ELECTRIC FIELD STRENGTH

NOTES: 1)

2)

= .61l x

= 20 log E

Pavg + 115.8

L2
(Erms)
376.99

rms

= E.__ - 115.8

rms

= rms electric field

Transmitter duty

+ 4,24

E in

'E in V/m, P

E pg in dBuV/m, P

 kP“~ in
P s in

P in

strength,

average power density.

cycle effects must be

dBm/mz, Eims

dBn/n?, E_

taken

ian/m2
in dBm/m2

g‘in dBm/m2

in V/m 

. in dBuV/m

into account

independently, as must all nonsinusoidal waveforms.

All relations: apply ohly in‘ the far field.
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SECTION 3
TERMINOLOGY

SUPPLEMENTARY DEFINITIONS

In using some references, analysts come across other terms that are used
in the calculation of received power., To aid in correlating these with the

terms used in this section, some of the more common terms are defined below.

Antenna Factor., This is 10 log of the square of the ratio of the

electric field intensity (V/m) at the antenna to the terminal voltage (V).

Antenna gain can be computed from the antenna factor using Equation 19,
G =20 log f - A - 30 ) (19)

where G is the gain in 4B, and Ag is the antenna factor in dB.
Transmission Loss., This is 10 l°g10 of the ratlo of the power input to

the transmitting antenna to the power available from the receiving antenna.

If it is designated as loss (L) in dB, it can be related to Ly through:

L=Ly -G -G, (20

MODIFICATIONS TO THE SMOOTH-EARTH MEDIAN TRANSMISSION LOSS

Modifications of the smooth—earth transmission loss from. terrain
. roughness, mixed path surface, foliage, rain, and long—term time-dependent
power fading must be determined from other sources and added to the
smooth—-earth transmission loss predictions obtained using the methods in this
handbook.. Comments on the effects of these phenomena, relative to the
smooth-earth  transmission loss, are given below along with appropriate

references.

Terrain roughmess along the transmission path can produce transmission

loss variations above and below the median loss. Generally, the loss will
increase over rough terrain for beyond-the-horizon paths relative to the same
distance over a smooth earth. Line-of-sight transmission over rough terrain

can produce short term multiple reflections that are referred to as multipath
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or fast fading,. Multipath is characterized by rapid variations about the
median loss from a 3 dB improvement to a deep fade of 30 dB or more of the
~ signal., References for the effects of multipath and rough-earth effects are
- (Rice, 1966), (Powell, 1983), (NTIS, 1983), (CCIR, 1982d), and (Weissberger,
1982).

Mizxed path surface transmission can be significantly different than
transmission over a path having uniform electrical characteristics, A typical
mixed path would be from a ship at sea to an inland station. Propagation
: characteristics could change abruptly at the land-sea boundary. This

’jephenomenon is important for low antennas at frequencies below about 160 MHz.

J\e References for the effects of mixed path propagation are (Millingtom, 1949),

~ and (Weissberger, 1982).

Foliage attenuatiom must be considered when either antenna is very near,

or emersed in, trees or other foliage. Determining the effects of foliage on
the propagating signal requires detailed knowledge of the environment.
Although in some cases, foliage may improve the signal prepagation, the usual
effect 'is 1increased attenuation relative to the median} References for
foliage attenuation are (Saxton, 1955), (Kinase, 1969), (J & B, 1966),
(Weissberger, 1982), and (CCIR, 1982d).

Rain attenuation becomes important for transmissions at frequencies in

the 10-30 GHz range.  This phenomenon produces the largest variations in
signal phase and amplitude on earth-space line-of-sight paths, References for
the effects of rain attenuation are (Crane, 1979), (CCIR, 1982e),and
(Weissberger, 1982).

Time-dependent power fading (1ong term) must be considered for

propagation over beyond-the-horizon paths. . This phenomenon causes variations
relative to the median 1loss due to large-scale slow changes in the
atmosphere, It is a function of time of day, time of year, and geographic
location. The transmission loss curves in this handbook provide estimates of
the median loss (50%) of log normal distribution of transmission losses. The
variation about this median for any other percentile (10%, 90%, etc.) can be
estimated using an emperical model for long-term time-dependent power fading
given in the references below. As an example, for a given propagation path,
~the transmission loss for a 10% probability may be 10 to 15 dB less than the
median loss (50%). Also, for a 90% probability, the loss may be 30 dB more

YA



than the median loss. The method and data to estimate long-term
time~-dependent power fading are well documented in (Rice, 1966), (Weissberger,
1982), (NTIS, 1983), and (Powell, 1983).

Tropospheric ducting is a significant anomalous propagation mode for

frequencies above 100 MHz. The probability of occurrence of tropospheric
ducting typically is less than about ten percent of the time. The ducting
mode usually 1is not a reliable or continuous mode of propagation. Ducting
occurs as the result of atmospheric stratification that is found typically in
coastal regions. Tropospheric ducting can produce unusually high signal
levels relative to the median value. Estimates of the worldwide probability
of occurence of tropospheric ducting and the resultant signal enhancement from

ducting may be determined using (CCIR, 1982a) and (Ortenburger, 1978).
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APPENDIX A
CURVES OF BASIC MEDIAN TRANSMISSION LOSS

This appendix contains curves of Basic Median Transmission Loss in dB for
frequencies of 100 MHz, 1,000 MHz, and 10,000 MHz., Estimates of transmission
loss for frequencies between 100 MHz and 10,000 MHz may be determined by
interpolation between the curves., TABLE A-]l is included to help locate the

transmission loss curve for a particular combination of frequency and antenna

heights.
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TABLE A-1:

LIST OF TRANSMISSION LOSS FIGURES

"CURVES OF BASIC MEDTIAN TRANSMISSION LOSS

f(MHz) h,(m) 10 50 100 200 500 1K 2K 5K
hl(m)
100 1 A-127 A~128 A-1 A-2 A-3 A-4 A-5 A-6
10 A-129 A~-130 A-131 A~7 A-8 A-9 A-10 A-11
50 A-12 A-13 A-14 A-15 A-16 A-17 A-18
100 A-19 A-20 A-21 A-22 A-23 A-24
200 A-25 A-26 A-27 A-28 A-29
500 A-30 A-31 A-32 A-33
1K A-34 A-35 A-36
2K A-37 A-38
5K A-39
1000 1 A~132 A-40 A-41 A-42 A-43 A-44 A-45 A-46
10 A-47 A-48 A-49 A-50 A-51 A-52 A-53 A-54
50 A-55 A-56 A-57 A-58 A-59 A-60 A-61
100 A-62 A-63 A-64 A-65 A~66 A-67
200 A-68 A-69 A-70 A-71 A-72
500 A-73 A-74 A-75 A-76
1K A-77 A-78 A-79
2K A-80 A-81
5K A-82
10000 1 A-83 A-84 A~85 A-86 A~-87 A-88 A~89 A-90
10 A-91 A-92 A-93 A-94 A-95 A-96 A~-97 A-98
50 A-99 A-100 A-101 A-102 A-103 A-104 A-105
100 A-106 A-107 A-108 A-109 A-110 A-111
200 A~-112 A-113 A-114 A~115 A-116
500 A-117 A-118 A-119 A-120
1K A-121 A-122 A-123
2K A-124 A-125
5K ' A-126
Example: f(MHz) = hl(m) = 200 meters, hz(m) = 1K meters, curves in Figure A-27.
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