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[1] In this study we investigated the geometric optics (GO) approximation to the fields of
an infinitesimal electric dipole above a half plane for geometries typical of wireless indoor
communications. This inspection was motivated by efforts to establish a ray trace
model to characterize indoor radio propagation channels. Eight canonical geometries were
examined to isolate near-surface and near-field effects that are not accounted for in the GO
approximation. Common building materials and physical dimensions (i.e., antenna
separation and height) as small as 1 cm were investigated for frequencies up to 8 GHz.
Theoretical fields were calculated via numerical evaluation of Sommerfeld integrals
and compared to corresponding GO approximations. As expected, near-field and near-
surface (e.g., surface wave) mechanisms which invalidate GO were observed. Close to the
surface, an interesting interference pattern in the frequency domain was identified.
Mathematical manipulation showed that this so-called ‘‘pseudolateral wave’’ phenomenon
was caused by adjacent fields in the two media propagating at different speeds. Next,
we transformed the results to the time domain and used delay spread as a metric to
quantify GO error. We also show that the pseudolateral wave manifests itself in the time
domain as an additional pulse that arrives at a delay associated with the speed of a wave
traveling in the lossy media. INDEX TERMS: 0624 Electromagnetics: Guided waves; 0689

Electromagnetics: Wave propagation (4275); 0609 Electromagnetics: Antennas; 0619 Electromagnetics:

Electromagnetic theory; 0644 Electromagnetics: Numerical methods; KEYWORDS: geometric optics, indoor

propagation channel, propagation over dielectric half plane, Sommerfeld integral, numerical electrodynamics,

ray trace model

1. Introduction

[2] Ray tracing, based on the high-frequency geo-
metric optics (GO) assumption, is a common method
for approximating the transfer function of high-multi-
path radio channels. For indoor applications, however,
antennas are likely to be mounted close to a wall or
ceiling. Therefore the accuracy of conventional far-field
concepts (e.g., antenna patterns, Fresnel reflection coef-
ficients, and GO) are in question since antennas are

only a few centimeters from dielectric surfaces. The
intent of this article is to quantify the accuracy of GO
for geometries relevant to the indoor environment; a
more extensive presentation of this investigation is
given by Cotton et al. [2000].
[3] We focus on the classic problem, dipole radia-

tion above a lossy half-space, and consider the infin-
itesimal vertical electric dipole (VED) and x-aligned
infinitesimal horizontal electric dipole (HED) as sour-
ces. Granted, infinitesimal dipoles are an oversimpli-
fication of any realistic antenna, but our intent is to
analyze the limitations of geometric optics, not to
assess near-field complications for specific antennas.
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Infinitesimal dipoles were chosen because general
mathematical solutions as well as far-field approxima-
tions are well established. These equations provide a
means of isolating GO error by observing the funda-
mental behavior of fields radiated for typical indoor
geometries. In this study, we propose that GO is
inadequate for modeling those scenarios that produce
significant single-reflection error under practical fre-
quency and geometric constraints.
[4] This article is organized in the following manner:

First, the context is established with a brief summary of
indoor channel characterization. In section 3, Sommer-
feld’s classical integral formulation along with conven-
tional asymptotic expressions is given. Numerical
techniques to evaluate Sommerfeld integrals are given
in section 4, and frequency domain field strength results
are given in section 5. The frequency domain results are
transformed to a complex-baseband representation of the
channel transfer function in order to calculate the chan-
nel impulse response. A detailed explanation of the time
domain analyses is given in section 6, and corresponding
results are shown in section 7.

2. Channel Characterization

[5] The number of indoor wireless local area network
(WLAN) installations is growing; consequently, charac-
terization of the indoor propagation channel has
increased importance. This radio environment can be
characterized in either the frequency or time domain. For
a specific frequency band the channel transfer function is
modeled via field strength predictions. In contrast, time
domain modeling is based on the impulse response of the
channel.
[6] For digital communications the impulse response

is a quantity used to characterize the multipath prop-
agation environment. Propagation effects on a trans-
mitted signal are best described by a linear system
re-presentation

b tð Þ ¼
Zþ1

�1

a t � tð Þg t; tð Þdt; ð1Þ

where a(t) and b(t) are the symbol waveforms before and
after propagation through the channel, g(t, t) is the time-
variable impulse response of the propagation channel,
and t is the delay variable.
[7] Impulse response data are useful for the analysis

and simulation of digital transmission because they
quantify communication link degradation within a chan-
nel. More specifically, the delay spread tspr of a channel
impulse response is a measure of time dispersion due to

multipath and is defined as

tspr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiRþ1

�1
t� �tð Þ2 g t; tð Þj j2dt

Rþ1

�1
g t; tð Þj j2dt

vuuuuuut ; ð2Þ

where �t is the first moment or mean delay given by

�t ¼

Rþ1

�1
t g t; tð Þj j2dt

Rþ1

�1
g t; tð Þj j2dt

: ð3Þ

When calculating delay spread, measured values of
|g(t, t)|2 below a certain threshold are set to zero to
nullify noise contribution. Throughout this article a
threshold of �30 dB relative to the peak of the impulse is
used for all delay spread calculations.
[8] Delay spread relative to symbol duration quantifies

intersymbol interference. As a rule of thumb, small tspr
indicates little degradation, whereas if tspr is large, then
severe symbol distortion occurs. Historically, statistical
analyses were used to deal with the time-variant channel
[Bello and Nelin, 1963; Greenstein and Prabhu, 1979;
Jakes, 1979; Siller, 1984; Chuang, 1987; Devasirvat-
ham, 1987; Burr, 1996; Wittmann et al., 1997]. In this
article we are not interested in the time-variant nature of
the channel, denoted by the dependent variable t in
g(t, t), or statistical procedures to account for this nature.
Hence we treat the channel as deterministic and describe
it with a single impulse response.
[9] Various computational approaches are used to

approximate impulse response delay spread for indoor
applications; some examples include ray trace models
[Lawton and McGeehan, 1992, 1994; Schauback et al.,
1992; Seidel and Rappaport, 1992, 1994; Holt et al.,
1992; Honcharenko et al., 1992; Rappaport and Haw-
baker, 1992; Yang et al., 1993; Bronson et al., 1993;
Valenzuela, 1993;Kürner et al., 1994;Durgin et al., 1997;
Chen and Jeng, 1997; Torres et al., 1999], simplified-
decay models [Holloway et al., 1999], and full numerical
techniques (e.g., finite difference time domain) [Talbi and
Delisle, 1996; Lauer et al., 1995; Taflove, 1995; Kunz and
Luebbers, 1993]. The most popular of these techniques is
ray tracing, in which it is assumed that near-surface and
near-field effects are negligible and that Fresnel reflection
coefficients are valid.

3. Expressions for Radiation in Free Space

Over Ground

[10] In order to isolate errors associated with the GO
approximation for typical indoor scenarios, we focus on
a single reflection off a planar surface. The classic
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problem of infinitesimal dipole radiation above a ground
plane has been analyzed extensively [van der Pol, 1935;
Norton, 1937; Sommerfeld, 1964; Baños, 1966; Tyras,
1969; Maclean and Wu, 1993; Wait, 1998]. The geom-
etry and nomenclature are shown in Figure 1. Region 0 is
free space; the source dipole and receiver, regardless of
nature and orientation, are located in region 0 at heights
h and z above the boundary, respectively. Region 1 lies
beneath the surface; its material composition is defined
by its relative dielectric constant er and conductivity s.
All media are assumed to be isotropic, homogeneous,
and nonmagnetic.
[11] The general formulation of the two-media boun-

dary problem is based on the solution of Maxwell’s
equations subject to boundary conditions at the interface.
The differential form of Maxwell’s equations, assuming
exp(+jwt) harmonic time dependence for the fields, is

r 	 E ¼ �jwm0H; r 	 H ¼ Jþ jweE ; ð4Þ

where E is an electric field, H is a magnetic field, J is an
impressed current source, capital letters denote time-
harmonic fields (in contrast to time-instantaneous field
variables, which are in lowercase), and boldface denotes
a vector. The electric-type Hertz vector / is useful for
solving electromagnetic fields generated by a time-
harmonic electric current; fields are expressed in terms of
/ as

E ¼ k2����þr r 
����ð Þ; H ¼ jwer 	 ����: ð5Þ

The corresponding Helmholtz wave equation is given by

r2 þ k2
� �

���� ¼ � J

jw e
; ð6Þ

where k1
2 = w2m0(ere0 � js/w) defines the wave number

of medium 1. Boundary conditions enforce continuity of
tangential E and H components at the interface and allow
for a unique solution of /.

3.1. Sommerfeld Formulation

[12] The classic Sommerfeld formulation for a dipole
above a half plane is a general solution that contains
complex, highly oscillatory integrals. The expressions
were taken from Baños [1966] and are summarized in
sections 3.1.1–3.1.2.

3.1.1. Vertical Electric Dipole
[13] An infinitesimal vertical current element placed a

height h above the half plane produces a z-directed
component of the vector potential in regions 0 and 1.
For a VED, Pz(r, z) is independent of f and only the Ez,
Er, and Hf field components are radiated. Helmholtz
equations in both media must be satisfied, and boundary
conditions apply at the interface. Solution to the partial
differential equation is simplified via double Fourier
transform. Additionally, the specified geometry suggests
a transformation to cylindrical coordinates that introduces
a Bessel function into the integral solution. The resulting
Sommerfeld formulation for the vector potential in region
0 is

�z ¼
jwm0p
4pk20

G0 � G1 þ k21V
	 


; ð7Þ

where p is the dipole moment. The source and image
Green’s functions are defined as

G0 ¼ exp �jk0R0ð Þ
R0

¼
R1
0

exp �l h�zj j½ �
l

J0 xrð Þx dx ;

G1 ¼ exp �jk0R1ð Þ
R1

¼
R1
0

exp �l hþzð Þ½ �
l

J0 xrð Þx dx;

respectively, where J0(xr) is the Bessel function of the
first kind and order zero. The distances from the
observation point to the source and image are

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ z� hð Þ2

q
; R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ zþ hð Þ2

q
; ð9Þ

respectively. The Sommerfeld integral V is defined as

V ¼
Z1
0

2exp �l zþ hð Þ½ �
lk21 þ mk20

J0 xrð Þx dx; ð10Þ

and the functions l and m are given by

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k20

q
; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � k21

q
: ð11Þ

Equation (7) is concise but not optimal for numerical
evaluation given the electric properties of the reflecting
surfaces considered in this article. An alternative form

Figure 1. Parallel polarization geometry for electric
fields above a dielectric half-space. Perpendicular-
polarized electric fields are directed out of the page.

(8)
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was used by van der Pol [1935] and is given by

�z ¼
jwm0p
4pk20

G0 þ G1 � 2Q½ �; ð12Þ

where

Q ¼
Z1
0

mk20exp �l zþ hð Þ½ �
l lk21 þ mk20
� � J0 xrð Þx dx : ð13Þ

Under this convention the sum G0 + G1 represents the
situation when the ground is perfectly conducting and
the Sommerfeld integral Q represents a correction for the
lossy characteristics of ground. For the material proper-
ties considered, equation (12) significantly reduces the
magnitude of the integrand in equation (13) and
consequently improves the convergence and accuracy
of the numerical integration.
[14] Relevant field components are extracted from

equation (5) to form the following field expressions:

Ez ¼
jwm0p
4pk20

@2

@z2
þ k20

� 

G0 þ G1 � 2Qð Þ

� �
;

Er ¼
jwm0p
4pk20

@2

@r @z
G0 þ G1 � 2Qð Þ

� �
; ð14Þ

Hf ¼ p

4p
@

@r
G0 þ G1 � 2Qð Þ

� �
:

These general expressions were derived with no
assumptions regarding proximity, wavelength, or materi-
al composition; they account for the near-surface and
near-field effects we aim to observe.

3.1.2. Horizontal Electric Dipole
[15] In the case of an infinitesimal horizontal current

element placed a height h above the half plane in the x
direction, Baños [1966] employs the x and z components
of the electric Hertz vector (i.e., / = axPx + azPz). The z
components satisfy the homogeneous Helmholtz equa-
tion in each medium, and the x components satisfy the
inhomogeneous Helmholtz equation in region 0 and the
homogeneous Helmholtz equation in region 1. Applica-
tion of the boundary conditions at the interface gives
vector potential solutions for region 0 that are substituted
into equation (5) to give field expressions. Sommerfeld
formulations of the transverse electric (TE) field
components are

Ef ¼ jwm0p
4pk20

sinf
1

r
@

@r
G0 � G1 þ k20V
� ��

þ k20 G0 � G1 þ Uð Þ
�
;

Hz ¼ � p

4p
sinf

@

@r
G0 � G1 þ Uð Þ

� �
;

Hr ¼
p

4p
sinf

@

@z
G0 � G1 þ Uð Þ � 1

r
@W

@r

� �
;

and the transverse magnetic (TM) field components are

Ez ¼ � jwm0p
4pk20

cosf
@2

@z@r
G0 þ G1 � k21V
� �� �

;

Er ¼ � jwm0p
4pk20

cosf
@2

@r2
G0 � G1 þ k20V
� ��

þk20 G0 � G1 þ Uð Þ
�
;

Hf ¼ p

4p
cosf

@

@z
G0 � G1 þ Uð Þ � @2W

@r2

� �
;

Sommerfeld integrals U and W are defined by

U ¼
Z1
0

2exp �l zþ hð Þ½ �
l þ m

J0 xrð Þx dx ;

W ¼
Z1
0

2 l � mð Þexp �l zþ hð Þ½ �
k21 l þ k20m

J0 xrð Þx dx :

Note that if one were to compare the VED and HED
Sommerfeld formulations given in this article to the
corresponding expressions given by Baños [1966], then a
number of differences would be observed. These
differences are due to an opposite time convention and
rotation of the spatial coordinate axes. The opposite time
convention causes the opposite sign in the exponent ofG0

and G1. Rotation of the coordinate axes flips the leading
sign of many of the field equations, the sign in front of z in
numerous exponential exponents, and the sign of W.

3.2. Geometric Optics and Norton Surface

Wave Approximation

[16] Special cases exist where closed-form approxima-
tions are obtainable. Geometric optics is a far-field
approximation, and Norton surface wave terms may be
used to approximate surface wave effects.

3.2.1. Vertical Electric Dipole
[17] If the observation point is in the far field of the

source, then the approximations to fields resulting from a
vertical electric dipole above a half plane are given by

Ez 
 � jk0p

4p

ffiffiffiffiffi
m0
e0

r
sin2qdG0 þ Gksin

2qrG1

	
þ 1� Gk
� �

F wð Þsin2qrG1�;

(16)

(15)

(17)
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Er 

jk0p

4p

ffiffiffiffiffi
m0
e0

r
sinqdcosqdG0 þ GksinqrcosqrG1

	
� 1� Gk
� �

D0F wð ÞsinqrG1�;

Hf 
 jk0p

4p
sinqdG0 þ GksinqrG1

	
þ 1� Gk
� �

F wð ÞsinqrG1



;

where qd and qr are shown in Figure 1. The first two
terms make up the GO approximation, which involves
the Fresnel reflection coefficient Gk. The third term is
Norton’s surface wave approximation, which was
obtained from a high-refractivity, far-field approximation
to V [Norton, 1937]. The Norton term incorporates an
attenuation function given by

F wð Þ ¼ 1�
ffiffiffiffiffiffiffi
pw

p
e�w erfc j

ffiffiffiffi
w

p� �
: ð19Þ

For a homogeneous half-space the remaining variables
are defined as

w ¼ � jk0R0

2sin2qr
cosqr þ D0ð Þ2;

D0 ¼
k0

k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0

k1

� 
2

sin2qr

s
:

ð20Þ

Norton surface wave terms are valid only when k0R0 � 1
and |k1| > |k0| because of assumptions made when
deriving equations (18), (19), and (20).

3.2.2. Horizontal Electric Dipole
[18] For observation points in the far field of a hori-

zontal dipole above a homogeneous half plane, the TE
fields are given by

Ef 
 jk0p

4p

ffiffiffiffiffi
m0
e0

r
sinf G0 þ G?G1 þ 1� G?ð ÞF qð ÞG1½ �;

Hz 

jk0p

4p
sinf sinqdG0 þ G?sinqrG1½

þ 1� G?ð ÞF qð ÞsinqrG1�;

Hr 
 � jk0p

4p
sinf cosqdG0 þ G?cosqrG1½

� 1� G?ð ÞF qð Þd0G1�;

and the TM components in the far field are given by

Ez 

jk0p

4p

ffiffiffiffiffi
m0
e0

r
cosf sinqdcosqdG0 � GksinqrcosqrG1

	
þ 1� Gk
� �

F wð ÞD0sinqrG1�;

Er 
 � jk0p

4p

ffiffiffiffiffi
m0
e0

r
cosf cos2qdG0 � Gkcos

2qrG1

	
� 1� Gk
� �

F wð ÞD2
0G1�;

Hf 
 � jk0p

4p
cosf cosqdG0 � GkcosqrG1

h
þ 1� Gk

� �
F wð ÞD0G1

i
;

where qd and qr are shown in Figure 1, the sum of the
first two terms is the geometric optics approximation,
and the third term is the Norton surface wave term. For a
homogeneous half-space the remaining variables are
defined as

q ¼ � jk0R0

2sin2qr
cosqr þ d0ð Þ2;

d0 ¼
k1

k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k0

k1

� 
2

sin2qr

s
:

Similar to the VED case, the Norton surface wave terms
are valid only when k0R0 � 1 and |k1| > |k0|. Section
3.2.3 provides a summary of Fresnel reflection coeffi-
cients to complete the far-field formulation of the fields
radiated by infinitesimal dipoles above a half-space.

3.2.3. Fresnel Reflection Coefficients
[19] Detailed derivations for the expressions given in

this section may be found in standard electromagnetic
texts, such as that by Johnk [1988]. Electric field polar-
ization is defined relative to the plane of incidence,
which contains the normal to the reflecting surface and
the incident propagation vector. Parallel polarized elec-
tric fields lie in the plane of incidence, and perpendicular
polarized fields are orthogonal. The E field Fresnel
reflection coefficients at a plane boundary are

Gk ¼
h0cosqi � h1cosqt
h0cosqi þ h1cosqt

; G? ¼ h1cosqi � h0cosqt
h1cosqi þ h0cosqt

;

ð24Þ

where the transmitted angle and intrinsic wave impe-
dance of region 1 are complex and defined as

sinqt ¼
h1
h0

sinqi; h1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m0
ere0 � js=w

r
; ð25Þ

respectively.

4. Numerical Integration Techniques

[20] To evaluate the accuracy of GO, we analyze near-
field interaction and propagation effects near the inter-
face. General solutions for fields radiated by a VED or an

(22)(18)

(21)

(23)
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x-aligned HED are obtained via numerical evaluation of
Sommerfeld integrals. In this section, relevant numer-
ical techniques are discussed; further details are given
by Lytle and Lager [1974], Johnson and Dudley [1983],
Press et al. [1986], Mosig [1989], and Michalski
[1998].

4.1. Romberg Quadrature

[21] Romberg integration is an effective means of
integrating well-behaved integrands over a finite range
of integration. It uses Neville’s algorithm to extrapolate
the error from previous predictions and subtracts off that
error to give a higher-order approximation [Press et al.,
1986].

4.2. Weighted-Averages Method

[22] The weighted-averages method is a useful numer-
ical technique for integrating functions that are periodic
yet convergent over a semi-infinite integration range.
Sommerfeld integrals are inherently oscillatory and
slowly convergent because of the presence of Bessel
functions. We begin our discussion of the weighted-
averages method with the integration then summation
technique [Michalski, 1998], where the integral is
expressed as a limit of a sequence of partial sums

S ¼
Z1
x�1

X xð Þ dx ¼
Z1
x�1

c xð ÞJu xrð Þx dx

¼ lim
N!1

XN
n¼0

Zxn
xn�1

c xð ÞJu xrð Þx dx¼ lim
N!1

SN : ð26Þ

Note that the Sommerfeld integrand X was split into its
characteristic factors (i.e., c, Jv, and x). The lower
integration limit, x�1, is chosen to ensure that no
singularities exist in the Sommerfeld tail X(|Rx| >
|x�1|). The sequence SN approaches S slowly, and the
error or remainder complies with the following expres-
sion:

rN ¼ SN � S ¼ �
Z1
xN

c xð ÞJu xrð Þx dx

� wN

X1
n¼0

cnx�n
N N ! 1; ð27Þ

where wN are remainder estimates specific to c(x). Series
acceleration methods are based on the idea that
information contained in the sequence of partial sums,
S0, S1, . . ., SN, is extracted and utilized in a way that is
more efficient than conventional combination techni-
ques. If the weight, WN, is associated with SN, then a
general combination formula is

S0N ¼ WNSN þWNþ1SNþ1

WN þWNþ1

¼ S þWNrN þWNþ1rNþ1

WN þWNþ1

¼ S þ r0N : ð28Þ

The second expression shows that if

aN � WNþ1

WN

¼ � rN

rNþ1

; ð29Þ

then the remainder r0N of the transformed sequence will
be nullified. The difficulty is determining rN from its
asymptotic estimates. Careful scrutiny leads to the
generalized weighted-averages algorithm, given as

S
‘þ1ð Þ
N ¼

S
‘ð Þ
N þ a ‘ð Þ

N S
‘ð Þ
Nþ1

1þ a ‘ð Þ
N

N � 0 and ‘ � 0; ð30Þ

where parenthesized superscripts denote transformation
order and aN

(‘) is formulated in section 4.3 for the
integrands under consideration. Equation (30) is a
recursive scheme that produces S

0
(‘) as the best

approximation to S, given the partial sums S0, S1, . . .,
S‘, and accelerates the convergence.

4.3. Numerical Evaluation of 2Q/k0
2, U, V, and W

[23] Efficient numerical integration of the integrals
associated with dipole radiation above a half plane are
now considered. Table 1 summarizes the necessary
Sommerfeld integrals, and Figure 2 illustrates the com-
mon traits among each of the integrands in the complex
plane. Derivatives were pulled inside the integrals, and
each resulting Sommerfeld integrand X contains Bessel
functions, exponential terms, branch cuts, and possible
poles. These factors make analytic solutions unlikely but
provide a commonality which allows for a single numer-
ical integration scheme to evaluate all of the integrals. In
this approach the real-axis integration path is partitioned,
and specific numerical integration techniques are used
according to the integrand behavior in each subinterval.
[24] Poles may cause strong variations in the integrand,

such as those associated with V and W at

xpole ¼
�k0k1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 þ k21

p : ð31Þ

These poles are located in the fourth quadrant on the
complex plane just below the real axis and R(xpole) � k0
as well as in the second quadrant symmetric about the
origin. It was confirmed that they have negligible effect
on the real-axis integration path for the electric properties
considered.
[25] To avoid branch cuts, the integration path was

partitioned into the three subintervals [0, k0], [k0, k0
ffiffiffiffi
er

p
]

and [k0
ffiffiffiffi
er

p
, 1]. Different techniques were used accord-
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ing to specific difficulties encountered in each subin-
terval. In the first subinterval, change of variables x =
k0 cosu removed the discontinuity in the derivative at k0,
resulting in

Zk0
0

X xð Þ dx ¼
Zp=2
0

X k0 cosuð Þk0sinu du: ð32Þ

Change in variable x = k0 coshv removed the disconti-
nuity at k0 in the second subinterval, giving

Zk0 ffiffiffi
er

p

k0

X xð Þdx ¼
ZArccosh

ffiffiffi
er

p

0

X k0cosh vð Þk0sinh v dv: ð33Þ

The integrands in equations (32) and (33) are well
behaved and converge when numerically integrated with
Romberg quadrature.

[26] The semi-infinite subinterval was chosen to begin
at x�1 = k0

ffiffiffiffi
er

p
because all singularities, poles, and branch

points on the right half of the complex plane lie either on
or to the left of the line defined by < xð Þ ¼ k0

ffiffiffiffi
er

p
. Change

in variable was not necessary, and the generalized
weighted-averages algorithm was used to numerically
integrate the Sommerfeld integral tail. Breakpoints were
chosen at xN ¼ k0

ffiffiffiffi
er

p þ Np=r, based on the half-period
of the Bessel function p/r, and weights were chosen
according to the analytical form of the remainder esti-
mates, given by

wN ¼ �1ð ÞNþ1

xb�1=2
N

exp �Np zþ hð Þ
r

� �
: ð34Þ

[27] A detailed derivation of equation (34) was given
by Michalski [1998]. This equation is based on the
asymptotic behavior of the Sommerfeld integrand, which

Table 1. Sommerfeld Integrands and Asymptotic Coefficients

Sommerfeld Sommerfeld Integrand X Asymptotic

2Q

k20

2m exp �l zþ hð Þ½ �
l k20 mþ k21 l
� � J0 xrð Þx 1

@2

@z2
2Q

k20

� 

2l m exp �l zþ hð Þ½ �

k20 mþ k21 l
J0 xrð Þx �1

@2

@z @r
2Q

k20

� 

2m exp �l zþ hð Þ½ �

k20 mþ k21 l
J1 xrð Þx2 �1

@

@r
2Q

k20

� 

� 2m exp �l zþ hð Þ½ �

l k20 mþ k21 l
� � J1 xrð Þx2 0

@2V

@z @r
2l exp �l zþ hð Þ½ �

k20mþ k21 l
J1 xrð Þx2 �1

@V

@r
� 2 exp �l zþ hð Þ½ �

k20mþ k21 l
J1 xrð Þx2 0

@2V

@r2
2 exp �l zþ hð Þ½ �

k20mþ k21 l

J1 xrð Þ
r

� x J0 xrð Þ
� �

x2 0, �1

U 2 exp �l zþ hð Þ½ �
l þ m

J0 xrð Þx 1

@U

@z
� 2l exp �l zþ hð Þ½ �

l þ m
J0 xrð Þx 0

@U

@r
� 2 exp �l zþ hð Þ½ �

l þ m
J1 xrð Þx2 0

@W

@r
� 2 l � mð Þ exp �l zþ hð Þ½ �

k20mþ k21 l
J1 xrð Þx2 �1

@2W

@r2
2 l � mð Þ exp �l zþ hð Þ½ �

k20mþ k21 l

J1 xrð Þ
r

� x J0 xrð Þ
� �

x2 �1, �2
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is characterized by the asymptotic coefficient b (given in
Table 1) and the expressions

f xð Þ � exp �x zþ hð Þ½ �
xb

C þ O x�1
� �	 


;

Ju xrð Þ �

ffiffiffiffiffiffiffiffi
2

pxr

s
cos xr� u

p
2
� p

4

� �
;

where C is a constant. Applying equation (34) to equat-
ions (27) and (29) gives

a ‘ð Þ
N ¼ exp

p zþ hð Þ
r

� �
xNþ1

xN

� 
b�1=2þ‘;

ð36Þ

which completes the weighted-averages formulation
given by equation (30).

5. Frequency Domain Results

[28] In this section, field strength results and corre-
sponding GO errors are illustrated in the frequency
domain. Frequencies ranging from 10 to 8000 MHz
(i.e., 30 � l � 0.0375 m) were chosen to encompass
the industrial, scientific, and medical (ISM) bands at
902–928 MHz, 2.4000–2.4835 GHz, and 5.725–5.850
GHz where unlicensed wireless local area network prod-
ucts operate [LaMaire et al., 1996].
[29] In order for the theoretical received signals to

embody the channel transfer function, we simulate a

flat-frequency transmitted spectrum by defining the elec-
tric dipole moment as

p ¼ j
4p
wm0

: ð37Þ

Depending on the type and orientation of the receive
antenna, one or some combination of the field compo-
nents will be the dominant coupling mechanism.
Orientation, radiation pattern, and efficiencies of the
receive antenna are fairly arbitrary and only clutter the
field effects we wish to observe. We examine each field
component at the observation point separately in order to
generalize the results and allow for various receive
antenna polarizations to be easily realized.
[30] Throughout this article, superscripts (i.e., Ez

S, Ez
GO,

Ez
GO+N) and colors (i.e., green, red, blue) are used to

distinguish between Sommerfeld, GO, and GO with Nor-
ton term results. Note that in many plots the curves are
indistinguishable because they lie on top of one another.

5.1. Conductivity Variation to Demonstrate

Two-Ray Behavior

[31] Electric properties are defined by the conductivity
and relative dielectric constant of the lossy half-space;
geometry is specified by height above the interface and
horizontal separation. In this section, we consider
{s} = {0.00195, 0.195, 19.5, 1950} S/m, er = 5, and
{h, z, r} = {1, 1, 10}m in order tominimize the effect of the
null in the radiation pattern of the VED source and to
ideally illustrate the nature of the two-ray model. Figure 3
presents the Sommerfeld solution and the GO approxima-
tion to Ez field strength radiated by a VED for this
geometry.
[32] As the electrical conductivity gets large, the Fres-

nel reflection coefficients approach plus or minus unity
and the field expressions approach the sum of the source
and image Green’s functions G0 + G1. This produces a
two-ray cancellation effect, where equally spaced nulls
occur according to the difference in path lengths, DR =
R1 � R0. At lower conductivities the reflected wave is
less influential because the Fresnel reflection coefficient
decreases in magnitude and shifts in phase, thus flat-
tening the cancellation behavior and shifting the nulls in
frequency.
[33] For practical purposes we limit the scope of the

remainder of this analysis to reflecting surfaces made of
concrete. Although the electric properties of concrete
vary with frequency [Halabe et al., 1993], we assume
that frequency-independent parameters (i.e., er = 5 and
s = 0.00195 S/m) will provide representative results.

5.2. Position Variation to Isolate Near-Surface

and Near-Field Effects

[34] In this section, we position the source and obser-
vation points to isolate near-surface and near-field

Figure 2. Sommerfeld poles and branch points in
complex plane.

(35)
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effects. Figures 4 and 5 illustrate fields radiated by a
VED above a half plane, Figures 6 and 7 isolate the TE
waves of an x-aligned HED by limiting the observation
points to f = 90�, and Figures 8 and 9 isolate the TM
waves of an x-aligned HED by limiting the observation
points to f = 0�.
[35] For infinitesimal electric dipoles, simulations show

that near-field effects are substantially reduced for r > 1 m
excluding the Er component of the HED-TM case; hence
we isolate near-surface effects by holding the horizontal
separation constant at 5 m and simultaneously reducing
the source and observation heights: {(h, z, r)} = {(10, 10,
5), (1, 1, 5), (0.1, 0.1, 5), (0.01, 0.01, 5)} m. Figures 4, 6,
and 8 demonstrate surface effects on field strength.

[36] It will be shown in section 7.1 that for an
infinitesimal electric dipole above a concrete half plane,
surface effects are significantly reduced when h � 10 m
and z � 10 m. Therefore we isolate near-field effects by
holding the source and observation points at a constant
height of 10 m and reducing the horizontal separation:
{(h, z, r)} = {(10, 10, 10), (10, 10, 1), (10, 10, 0.1), (10,
10, 0.01)} m. Figures 5, 7, and 9 illustrate near-field
effects in the frequency domain.
5.2.1. Surface Wave
[37] Norton surface wave terms provide a means to

isolate surface wave effects (observe blue curves in
Figures 4, 6, and 8). Near the interface, deviation from
geometric optics due to surface wave propagation peaks

Figure 3. Electric field strength (z component) for a VED above a half-space (z = h = 1 m, r = 10
m, er = 5) at various conductivities. See color version of this figure at back of this issue.
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Figure 4. Near-surface effects on field strength of a VED above a concrete half-space. See color
version of this figure at back of this issue.

Figure 5. Near-field effects on field strength of a VED above a concrete half-space. See color
version of this figure at back of this issue.
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Figure 6. Near-surface effects on TE field strength of an x-aligned HED above a concrete half-
space. Observation points are restricted to f = 90�. See color version of this figure at back of this
issue.

Figure 7. Near-field effects on TE field strength of an x-aligned HED above a concrete half-space.
Observation points are restricted to f = 90�. See color version of this figure at back of this issue.
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Figure 8. Near-surface effects on TM field strength of an x-aligned HED above a concrete half-
space. Observation points are restricted to f = 0�. See color version of this figure at back of this
issue.

Figure 9. Near-field effects on TM field strength of an x-aligned HED above a concrete half-
space. Observation points are restricted to f = 0�. See color version of this figure at back of this
issue.
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near zero hertz (i.e., DC) and decreases continuously with
increasing frequency. As expected, surface wave propa-
gation is more influential in fields radiated by VED and in
TM fields radiated by HED. In comparison to the more
general Sommerfeld solution, GO plus Norton term
approximations seem adequate for predicting the radiation
of a VED above a half plane; significant discrepancies,
however, appear in the HED case where oscillations are
observed and when near-field effects are influential.

5.2.2. Pseudolateral Wave
[38] Sommerfeld results in Figure 6 show strong oscil-

lations in the TE fields radiated by an x-aligned HED
over a wide range of frequencies when the source and
observation point are near the interface (i.e., h � 0.1 m
and z � 0.1 m). With reference to Kuester and Chang
[1979], alternative expressions for U, V, and W are
provided to help explain this oscillation.
[39] Notice that the HED-TE fields in equation (15) are

strongly influenced by the integral U. Rationalization of
the denominator in U and use of the integral representa-
tion of G1 in equation (8) allows for it to be rewritten as

U ¼ 2

k21 � k20

@2G1

@z2
�
Z1
0

m exp �l zþ hð Þ½ �J0 xrð Þx dx

2
4

3
5:

ð38Þ
If we add and subtract 1 within the integrand and make
use of

Z1
0

mJ0 xrð Þx dx ¼ @2

@z2
exp �jk1R1½ �

R1

����
z¼h¼0

; ð39Þ

then U can be expressed as

U ¼ 2

k21 � k20

"
@2G1

@z2
� @2

@z2
exp �jk1R1ð Þ

R1

����
z¼h¼0

�
Z1
0

mfexp½�l zþ hð Þ �1� gJ0 xrð Þx dx
#

ð40Þ

Close to the interface the integral term is relatively small,
and the first two terms depict two waves traveling
adjacent to one another but at different speeds due to the
different propagation media. The two waves destruc-
tively interfere when �k0R1 
 �k1R1 + 2pn, where n is
an integer. For the material properties chosen and R1 = 5m
the interference occurs approximately every 48.5 MHz,
which agrees with the oscillation observed. The inter-
ference caused by the adjacent fields dies off quickly as
the source and observation point are moved away from
the surface. This suggests near-field excitation for
generating this phenomenon, which we call a pseudo-
lateral wave for reasons made clear below.

[40] By the same motivation an alternative form of the
Sommerfeld integral V is derived. Add and subtract 1
within the integrand in equation (10). The denominator
of V cannot be rationalized as with U, but the integral
identity

Zk1=k0
k0=k1

v dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x2pole

� �
v2 � x2pole

r ¼ k41 � k40
k1k0

1

k21 l þ k20m

ð41Þ

allows for integration by parts, which produces two
additive exponential terms. Finally, change in variable
and identification of the integral form of the incomplete
Hankel function, given by

H
1ð Þ

0 k1=k0; xrð Þ ¼ 2

jp

Zk1=k0
0

exp jxr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p du; ð42Þ

completes the derivation and yields

V ¼ 2k1k0

k41 � k40

k1

k0

exp �jk1rð Þ
r

� k0

k1

exp �jk0rð Þ
r

�

�p
2
xpole H

1ð Þ
0 k1

 
k0; xpoler

� �
� H

1ð Þ
0 k0=k1; xpoler
� �h i!

þ
Z1
0

2 exp �l zþ hð Þ½ � � 1f g
lk21 þ mk20

J0 xrð Þx dx ; ð43Þ

where the positive form of equation (31) is used for xpole.
Values for incomplete Hankel functions may be attained
via numerical expansion. For completeness the useful
relation

W ¼ � @

@z
2G1 � k20 þ k21

� �
V

	 

ð44Þ

expresses the last Sommerfeld integral W in terms of V.
[41] The leading terms of equations (40) and (43) show

evidence of a pseudolateral wave, which originates in the
less dense media and propagates along the surface (inside
the dielectric). This phenomenon resembles the lateral
wave that has application in geophysical exploration of
the lithosphere [King et al., 1986] and propagation model-
ing in highly vegetated environments [Li et al., 1998].
Lateral waves are excited along a boundary between two
media by a source either at the interface or in the dense
medium and travel atop the interface in the less dense
medium. Lateral and pseudolateral waves are illustrated in
Figure 10.
[42] To highlight the surface and pseudolateral waves

near the surface, field strength and GO error were
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assigned colors and plotted versus frequency and hori-
zontal separation in Figure 11. It displays Sommerfeld
solutions for copolarized fields (e.g., |Ez

S| for VED),
residual errors (e.g., kEz

S| � |Ez
GOk), and dashed curves

representing the R0 = 10l contour. For the chosen geom-
etry (i.e., h = z = 0.01 m) the VED excites significant
surface wave effects for frequencies approaching 5 GHz.
Comparatively, HED-TE fields demonstrate weaker sur-
face wave effects; hence the subtle oscillations due to the
pseudolateral wave can be observed. In section 7, time
domain results will also illustrate the pseudolateral wave
with a pulse arrival time corresponding towave velocity of
the dense media.

5.2.3. Near-Field Effects on the Direct Ray
[43] Electromagnetic fields in the near-field region

were computed via numerical evaluation of Sommer-
feld integrals and compared to GO approximations in

Figure 10. Pseudolateral versus lateral wave propaga-
tion scenarios.

Figure 11. (a and b) Sommerfeld field strength and (c and d) GO residual error versus frequency
and horizontal separation for a dipole above a concrete half-space (h = z = 0.01 m). Figures 11a and
11c show surface wave effects, and Figures 11b and 11d show pseudolateral wave effects. See color
version of this figure at back of this issue.
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Figures 5, 7, and 9. Note that Norton surface wave
approximations are not included in these plots because
they are valid only in the far-field region. As separation
decreases to r < l, the direct ray is observed in the
near field of the source, and field components influ-
enced by the direct ray (i.e., Ez and Hf for VED and
Ef and Hz for HED-TE) demonstrate deviation from
the GO approximation at low frequencies due to near-
field effects. At h = z = 10 m the reflected ray travels
well into the far field of the source before being
reflected and observed; consequently, field components
influenced by the reflected ray and not the direct ray
(i.e., Er for VED, Hr for HED-TE, and Ez and Hf for
HED-TM) show little near-field error.
[44] In Figures 8 and 9 the Er component of the HED-

TM radiated field displays an oscillatory deviation from
the GO plus Norton term approximation when locations
are many wavelengths from the interface and from each
other. The general expressions for fields of the direct ray
in spherical coordinates are

Er ¼
p

2pR2
0

ffiffiffiffiffi
m0
e0

r
cosqd 1þ 1

jk0R0

� �
exp �jk0R0ð Þ;

Eq ¼
jk0p

4pR0

ffiffiffiffiffi
m0
e0

r
sinqd 1þ 1

jk0R0

� 1

k0R0ð Þ2

" #
exp �jk0R0ð Þ;

Hf¼
jp

4pR0

sinqd 1þ 1

jk0R0

� �
exp �jk0R0ð Þ: ð45Þ

Notice that Er is strictly a near- and intermediate-field
expression with an exp(�jk0R0) phase dependence that is
not accounted for in the geometric optics expressions.
For the HED-TM case, if qd = 0�, then Er is equivalent to
the direct ray of Er in equation (22) and near-field
influence is maximized in the null of the antenna pattern
because the cosqd factor is equal to 1. The oscillatory
deviation, mentioned at the top of the paragraph, occurs
because the near-field direct ray is comparable in
magnitude to the reflected ray. Further discussion is
given section 7, where the event is more intuitive.

6. Time Domain Analysis

[45] Field strength plots in the frequency domain are
descriptive, but the practical significance of the results
can be difficult to interpret. Of more importance to the
digital communications engineer is how the errors trans-
late to the time domain. In order to assess the practical
significance of GO error for indoor scenarios we com-
pute the delay spread of the channel impulse response.
This section provides a detailed explanation of the time
domain analyses used in this article.
[46] Digital signals are typically transmitted by some

type of carrier modulation. The transmitted signal is

limited in bandwidth to an interval of frequencies cen-
tered around the carrier or center frequency (i.e., wc =
2pfc) and must be real-valued in the time domain in order
to have a physical interpretation; consequently, it is
complex-conjugate symmetric about DC in the frequency
domain. For mathematical convenience with no loss in
generality the passband signal may be expressed as a
complex-baseband representation. This is accomplished
by first filtering out the negative frequencies to produce
an analytic signal and then shifting the analytic signal
down to baseband. In the time domain the real and
imaginary parts of the analytic signal are a Hilbert
transform pair. A pictorial representation of real-time,
analytic, and complex-baseband signals is given in
Figure 12, and more extensive discussions are given by
Bedrosian [1962] and Vakman [1998].
[47] We seek an expression for the magnitude of the

impulse response |g(t, t)| in terms of electric and mag-
netic field variables in order to compute delay spread via
equations (2) and (3). The impulse response of the
channel can be given by

g t; tð Þ ¼ v 
 eðt; tÞ;
hðt; tÞ;

�
ð46Þ

where v is a unit direction vector corresponding to the
receive antenna. The complex-baseband representation

Figure 12. Signal representations.
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of the applicable vector field components, e(t, t) and
h(t, t), is given by

e t; tð Þ ¼ FT�1 E t;w þ wcð Þ� w þ wcð Þ½ �;

h t; tð Þ ¼ FT�1 H t;w þ wcð Þ� w þ wcð Þ½ �; ð47Þ

where FT�1 is the inverse Fourier transform operator, t
is the transform variable, and L(w) is a scalar window
function that filters out negative frequencies and defines
the pulse shape of the signal. For this study a Hamming
window was used for L(w). Note that band limiting the
signal introduces artifacts into the analysis (e.g., finite
pulse width and sidelobes associated with the window
shape).

7. Time Domain Results

[48] Impulse responses for an ultrawideband (i.e.,
BW = 660 MHz) signal centered at 900 MHz (i.e.,
lc = 0.33 m) are given in Figures 13–18; the eight
geometries are the same as those used in the frequency
domain analysis. The astute reader will justifiably balk
at the idea of a 900-MHz dipole with a 73% emission
bandwidth. Keep in mind, however, that this is an
analytical investigation where decisions are made to
focus on fundamental electromagnetic behavior. The
wide bandwidth was chosen to enhance the near-surface
and near-field effects for identification purposes. Delay
spread was calculated for each impulse response in
order to quantify discrepancies between the different
models.

7.1. Near-Surface Effects

[49] Near-surface effects are best observed at h = z =
0.01 m in Figures 13, 15, and 17. The blue curve (i.e.,
GO plus Norton term) isolates surface wave effects. In
the frequency domain the surface wave causes an
increase in field strength concentrated at DC; in the time
domain this corresponds to time-dispersed energy, which
raises the pulse sidelobes. Also, the surface wave has an
exp(�jk0R1) phase dependence; hence an additional
surface wave pulse arrives at the same delay as the
reflected ray.
[50] The green curve (i.e., Sommerfeld solution) dem-

onstrates a delayed pulse near 37 ns due to the pseudo-
lateral wave phenomenon. A wave propagating 5 m
through concrete at (em0)

�1/2 
 1.34 	 108 m/s arrives
at the observation point with a 37.4 ns delay; this
statement supports the mathematical pseudolateral wave
description in section 5.2.
[51] Figure 19 illustrates delay spread (from the Som-

merfeld solution) and percentage delay spread error
(associated with the GO approximation) as a function
of bandwidth and center frequency for scenarios identical
to those in Figure 11 restricted to r = 5 m. Notice that

although the pseudolateral wave (from HED-TM excita-
tion) was relatively weaker than the surface wave (from
VED excitation), it can have a more significant effect on
delay spread.

7.2. Near-Field Effects

[52] As shown in Figures 14, 16, and 18, the reactive
nature of the near field dominates for r � 0.1 m. This is
expected, as the separation is well within a carrier
wavelength. When the direct ray is observed in the near
field, GO error increases because the near-field direct-
pulse energy is dispersed over time.
[53] As discussed in section 5.2.3, an interesting event

occurs when the observation point lies directly in the null
of the x-aligned antenna pattern (see HED-TM results in
Figures 17 and 18). The transverse field components
(i.e., ez and hf) corresponding to the direct pulse are
attenuated because of the orientation of the dipole. The
radial component (i.e., er) corresponding to the direct
ray, however, is influential because of near- and inter-
mediate-field propagation. For this case the presence of
the near-field direct ray causes unacceptable error in the
GO delay spread approximation.

8. Conclusion

[54] In this article, the error associated with GO
predictions for indoor propagation models was eval-
uated. Our conclusions were based on results from the
classical problem of infinitesimal dipoles above a lossy
half-space. Exact (i.e., Sommerfeld) and approximate
(i.e., GO and GO plus Norton surface wave term)
formulations for infinitesimal dipole sources were sum-
marized, and numerical schemes for evaluating the
complex integrals in the Sommerfeld formulation were
given. Eight canonical geometries were chosen to isolate
individual propagation effects on relevant field compo-
nents. Simulation scenarios were limited to the material
properties of concrete and physical dimensions up to 10
m and as small as 1 cm. Results were given in both the
frequency and time domains.
[55] As expected, GO predictions agreed with the

numerical approximations to Sommerfeld integrals when
the source and observation points were multiple wave-
lengths above the surface and multiple wavelengths
apart. However, when the antennas were brought close
to the surface and close together, classic surface wave
and near-field effects were observed. An additional
propagation mechanism we call the pseudolateral wave
was identified.
[56] A summary of observations follows. The follow-

ing surface wave observations were made: (1) Surface
wave effects peak at DC and decrease sharply with
increasing frequency; in the time domain this translates
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Figure 14. Near-field effects on impulse responses of a VED above a concrete half-space.
Legends display Sommerfeld (green) and GO (red) estimates to delay spread. See color version of
this figure at back of this issue.

Figure 13. Near-surface effects on impulse responses of a VED above a concrete half-space.
Legends display Sommerfeld (green), GO plus Norton term (blue), and GO (red) estimates to delay
spread. See color version of this figure at back of this issue.
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Figure 16. Near-field effects on impulse responses of an x-aligned HED (TE, f = 90�) above a
concrete half-space. Legends display Sommerfeld (green) and GO (red) estimates to delay spread.
See color version of this figure at back of this issue.

Figure 15. Near-surface effects on impulse responses of an x-aligned HED (TE, f = 90�) above a
concrete half-space. Legends display Sommerfeld (green), GO plus Norton term (blue), and GO
(red) estimates to delay spread. See color version of this figure at back of this issue.

1 - 18 COTTON ET AL.: GEOMETRIC OPTICS INVESTIGATION



Figure 18. Near-field effects on impulse responses of an x-aligned HED (TM, f = 0�) above a
concrete half-space. Legends display Sommerfeld (green) and GO (red) estimates to delay spread.
See color version of this figure at back of this issue.

Figure 17. Near-surface effects on impulse responses of an x-aligned HED (TM, f = 0�) above a
concrete half-space. Legends display Sommerfeld (green), GO plus Norton term (blue), and GO
(red) estimates to delay spread. See color version of this figure at back of this issue.
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to time-dispersed energy. (2) Surface waves also have a
exp(�jk0R1) phase dependency that arrives at the
reflected-ray delay. (3) Surface wave propagation is more
influential in VED and HED-TM fields than in HED-TE
fields.
[57] The following pseudolateral wave observations

were made: (1) Pseudolateral waves propagate inside
the lossy medium at the corresponding wave velocity. (2)
Pseudolateral wave propagation is more influential under
weak surface wave conditions. (3) Observed pseudo-
lateral waves were weaker than surface waves but can
cause more significant effects on delay spread.
[58] The following near-field observations were made:

(1) Near-field effects peak at DC and decrease sharply

with increasing frequency; this corresponds to dispersing
the energy in the time domain. (2) Near-field error
depends on the individual propagation paths and field
components. (3) Near-field effects are significant for
radial fields observed in the null of the dipole antenna
pattern at observation points many wavelengths away.
[59] Conditions which cause the GO approximation to

be invalid were demonstrated; these conditions depend on
the antenna types and position, the material composition
of the reflecting surface, the operational frequency band,
etc. General expressions for infinitesimal electric dipoles
above a half-space have been provided to improve the
accuracy of GO predictions by accounting for surface
wave and near-field effects. More specifically, the GO

Figure 19. (a and b) Delay spread and (c and d) percent error versus bandwidth and center
frequency for dipoles above a concrete half-space (h = z = 0.01 m, r = 5 m). Figures 19a and 19c
show surface wave effects, and Figures 19b and 19d show pseudolateral wave effects. See color
version of this figure at back of this issue.
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approximation may be complemented by the Norton
surface wave terms in equations (18), (21), and (22)
and by the near-field terms in equation (45) to model
the direct ray. These expressions, however, apply only to
infinitesimal dipoles above a dielectric half-space. Care
should be taken when modeling actual antennas and
finite-thick reflection surfaces.
[60] As demonstrated, pseudolateral wave effects can

be severe. The leading terms of equations (40) and (43)
show evidence of the pseudolateral wave; these equa-
tions, however, are cumbersome and require numerous
derivatives and substitutions in order to acquire field
equations. A more mathematically rigorous derivation is
necessary in order to provide a closed-form asymptotic
approximation to the pseudolateral wave.

[61] Acknowledgments. The authors thank George A. Huf-
ford, J. Randy Hoffman, Paul McKenna, and Robert J. Achatz
for insights shared.
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Figure 3. Electric field strength (z component) for a VED above a half-space (z = h = 1 m, r =
10 m, er = 5) at various conductivities.

1 - 9

COTTON ET AL.: GEOMETRIC OPTICS INVESTIGATION



Figure 4. Near-surface effects on field strength of a VED above a concrete half-space.

Figure 5. Near-field effects on field strength of a VED above a concrete half-space.
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Figure 6. Near-surface effects on TE field strength of an x-aligned HED above a concrete half-
space. Observation points are restricted to f = 90�.

Figure 7. Near-field effects on TE field strength of an x-aligned HED above a concrete half-space.
Observation points are restricted to f = 90�.
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Figure 8. Near-surface effects on TM field strength of an x-aligned HED above a concrete half-
space. Observation points are restricted to f = 0�.

Figure 9. Near-field effects on TM field strength of an x-aligned HED above a concrete half-
space. Observation points are restricted to f = 0�.
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Figure 11. (a and b) Sommerfeld field strength and (c and d) GO residual error versus frequency
and horizontal separation for a dipole above a concrete half-space (h = z = 0.01 m). Figures 11a and
11c show surface wave effects, and Figures 11b and 11d show pseudolateral wave effects.
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Figure 13. Near-surface effects on impulse responses of a VED above a concrete half-space.
Legends display Sommerfeld (green), GO plus Norton term (blue), and GO (red) estimates to delay
spread.

Figure 14. Near-field effects on impulse responses of a VED above a concrete half-space.
Legends display Sommerfeld (green) and GO (red) estimates to delay spread.
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Figure 15. Near-surface effects on impulse responses of an x-aligned HED (TE, f = 90�) above a
concrete half-space. Legends display Sommerfeld (green), GO plus Norton term (blue), and GO
(red) estimates to delay spread.

Figure 16. Near-field effects on impulse responses of an x-aligned HED (TE, f = 90�) above a
concrete half-space. Legends display Sommerfeld (green) and GO (red) estimates to delay spread.
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Figure 17. Near-surface effects on impulse responses of an x-aligned HED (TM, f = 0�) above a
concrete half-space. Legends display Sommerfeld (green), GO plus Norton term (blue), and GO
(red) estimates to delay spread.

Figure 18. Near-field effects on impulse responses of an x-aligned HED (TM, f = 0�) above a
concrete half-space. Legends display Sommerfeld (green) and GO (red) estimates to delay spread.
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Figure 19. (a and b) Delay spread and (c and d) percent error versus bandwidth and center
frequency for dipoles above a concrete half-space (h = z = 0.01 m, r = 5 m). Figures 19a and 19c
show surface wave effects, and Figures 19b and 19d show pseudolateral wave effects.
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