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A METHOD OF BIVARIATE INTERPOLATION AND
SMOOTH SURFACE FITTING FOR VALUES GIVEN
AT IRREGULARLY DISTRIBUTED POINTS

Hiroshi Akima #*

Abstract -— A method of bivariate interpolation and
smooth surface fitting is developed for z values given at points
irregularly distributed in the x-y plane. The interpolating func-
tion is a fifth-degree polynomial in x and y defined in each trian-
gular cell which has projections of three data points in the x-y
plane as its vertexes. Each polynomial is determined by the
given values of z and estimated values of partial derivatives at
the vertexes of the triangle. Procedures for dividing the x-y
plane into a number of triangles, for estimating partial deriva-
tives at each data point, and for determining the polynomial in
each triangle are described. A simple example of the application
of the proposed method is shown. User information and Fortran
listings are given on a computer subprogram package that imple-

ments the proposed method.

Key Words and Phrases -— Bivariate interpolation, interpolation,

partial derivative, polynomial, smooth surface fitting.

* The author is with the Institute for Telecommunication Sciences,
Office of Telecommunications, U.S. Department of Commerce,
Boulder, Colorado 80302,



1. INTRODUCTION

In a previous study (Akima, 1974a,b), we developed a method of
bivariate interpolation and smooth surface fitting. The method was de-
signed in such a way that the resulting surface would pass through all
the given data points. Adopting local procedures, it successfully sup-
pressed undulations in the resulting surface which are very likely to
appear in surfaces fitted by other methods. Like many other methods,
however, this method also has a serious drawback. Applicability is
restricted to cases where the values of the function are given at rec-
tangular grid points in a plane; i.e., the values of z = z(x,y) must be
given as zij = z(xi,yj) in the x-y plane, wherei =1, 2, ..., n, and

i=1,2, ..., n This restriction prevents application to cases where

Y'
collection of data at rectangular grid points is impossible or otherwise

impractical.

The subject of the present study is bivariate interpolation and
smooth surface fitting in the general case where the values of the func-
tion are given at irregularly distributed points in a plane; i.e., the
case where the z values are given as z; = z(xi,yi), wherei=1, 2, ...,
n. Despite potentially wide applicability of a method of bivariate inter-
polation and smooth surface fitting for irregularly distributed points,

studies for developing such a method have not been active in the past.

Two types of approaches are possible; one using a single global
function, and the other based on a collection of local functions. In the
former approach, the procedure ofter becomes too complicated to
manage as the number of given data points increases. Moreover, the
resulting surface from the former sometimes exhibits excessive un-
dulations. For these reasons, only the latter approach is considered

in the present study.



Bengtsson and Nordbeck (1964) suggested a method based on par-
titioning the x-y plane into a number of triangles (each triangle having
projections of three data points in the x-y plane as its vertexes) and on
fitting a plane to the surface in each triangle. Obviously, the resulting
surface is not smooth on the sides of the triangles although it is con-
tinuous. In addition, their suggestion for partitioning so that the sum
of the lengths of the sides of these triangles be minimized is too com-

plicated to implement.

Shepard (1968) suggested a method based on weighted averages
of the given z values. The basic weighting function is the square of the
reciprocal of the distance between the projection of each data point and
that of the point at which interpolation is to be performed. The actual
weighting function is an improvement of this basic weighting function in
that the actual function corresponding to a distant data point vanishes.
Through this improvement the originally global procedures in this
method became local. This method has several desirable properties.
It takes into account the ''shadowing' of the influence of a data point by
a nearer one in the same direction. It yields reasonable slopes at the
given data points. However, it fails to produce a plane when all the
given data points lie in a slanted plane; this property is considered to

be a serious drawback.

In conjunction with variational problems containing second-order
derivatives, Zlamal (1968) discussed an approximation procedure using
fifth-degree polynomials in x and y over triangular regions in the x-y
plane. To determine the coefficients of the polynomial for each tri-
angle, he uses, in addition to the z values and the first and second
partial derivatives (i.e., 2., 2

y 2 and ZYY) at the three ver-

v’ Zxx? Zxy’

texes of the triangle, three partial derivatives, each differentiated in

the direction normal to one of the three sides of the triangle at the



midpoint of the side in question. The theory was generalized to

(4m + 1)st-degree polynomials for functions m-times continuously dif-
ferentiable on a closed triangular domain by Zenisek (1970). Although
a comprehensive interpolation method is not suggested in their papers,

their papers were instrumental in stimulating portions of the ideas

developed here.

In the present study, we develop and propose a method of bivari-
ate interpolation and smooth surface fitting that is applicable to z
values given at irregularly distributed points in the x-y plane. As in
the method for rectangular grid points developed in the previous study
(Akima, 1974 a,b), the interpolating function used in the method pro-
posed in the present study is also a smooth function; i.e., the inter-
polating function and its first-order partial derivatives are continuous.
The proposed method is also based on local procedures. The surface
resulting from the proposed method will pass through all the given

data points.

In this report, the proposed method is outlined in section 2,
with some mathematical details in Appendix A. A simple example
that illustrates the application of the proposed method is shown in
section 3. Some pertinent remarks are addressed in section 4. In
Appendix B, user information and Fortran listings are given on the
IDBVIP/IDSFFT subprogram package that implements the proposed
method.



2. DESCRIPTION OF THE METHOD

In this method the x~y plane is divided into a number of triangu-
lar cells; each having projections of three data points in the plane as
its vertexes, and a bivariate fifth-degree polynomial in x and y is ap-

plied to each triangular cell.

For a unique partitioning of the plane, the x-y plane is divided
into triangles by the following steps. First, determine the nearest
pair of data points and draw a line segment between the points. Next,
find the nearest pair of data points among the remaining pairs and draw
a line segment between these points if the line segment to be drawn
does not cross any other line segment already drawn. Repeat the

second step until all possible pairs are exhausted.

The z value in a triangle is interpolated with a bivariate fifth-

degree polynomial in x and y, i.e.,
_ j k 1
z(x,y) = z: > U XY - (1)

The coefficients of the polynomial are determined by the given z values
at the three vertexes of the triangle and the estimated values of partial

derivatives 2y, 2 xy? and zyy at the vertexes, together with the

y? Zxx? 2
imposed condition that the partial derivative of z by the variable meas-
ured in the direction perpendicular to each side of the triangle be a
polynomial of degree three, at most, in the variable measured along
the side. The procedure for interpolation in a triangle including de-
termination of the coefficients of the polynomial is described in detail
in Appendix A. Smoothness of the interpolated values and therefore

smoothness of the resulting surface along each side of the triangle is

proved also in the Appendix.



Procedures for estimating the five partial derivatives locally at
each data point are not unique. The derivatives could be determined
as partial derivatives of a second-degree polynomial in x and y that
coincides with the given z values at six data points consisting of five
data points thé projections of which are nearest to the projection of the
data point in question and the data point itself. This procedure is a
bivariate extension of the one used in the univariate osculatory inter-
polation (Ackland, 1915). Adoption of this procedure has an advantage
that, when z is a second-degree polynomial in x and y, the method
yields exact results. As will be shown in section 3, however, this

procedure sometimes yields very unreasonable results.

We will take a different approach and estimate the partial deriv-
atives in two steps; i.e., the first-order derivatives in the first step
and the second-order derivatives in the second step. To estimate the
first-order partial derivatives at data point P0 we use several addi-
tional data points Pi (i=1, 2, ..., nn) the projections of which are
nearest to the projection of P0 selected from all data points other than

P We take two data points P; and Pj out of the n, points and con-

0.
struct the vector product of POPi and POPj; i.e., a vector that is

perpendicular to both POPi and POPj with the right-hand rule and has

s

a magnitude equal to the area of the parallelogram formed by POPi

0
product always points upward (i.e., the z component of the vector

and P Pj . We take P, and Pj in such a way that the resulting vector

product is always positive). We construct vector products for all

possible combinations of POPi and P_OF‘] (i#j) and take a vector sum
of all the vector products thus constructed. Then, we assume that the
first-order partial derivatives z, and zY at PO are estimated as those
of a plane that is normal to the resultant vector sum thus composed.

Note that, when n = 2, the estimated z, and zY are equal to the partial



derivatives of a plane that passes through Po, Pl’ and PZ' Also note

that, when n, = 3 and the projection of P, in the x-y plane lies inside

0
the triangle formed by the projections of Pl’ PZ’ and P3, the esti-
mated z, and z_ are equal to the partial derivatives of a plane that

passes through Pl’ Pz, and P3.

In the second step, we apply the procedure of 'partial differen-
tiation" described in the preceding paragraph to the estimated z,
values at Pi (i=0,1, 2, ..., nn) and obtain estimates of z,, = (zx)x

and z, We repeat the same procedure for the esti-

v = (zx)Y at PO'
mated Zy values and obtain estimates of Zyy = (zy)x and ZYY = (zy)y'
We adopt a simple arithmetic mean of two zxy values thus estimated

as our estimate for zxy at Po.

The selection of n is again not unique. Obviously, n  cannot
be less than 2. Also, it must be less than the total number of data
points. Other than those, there seems to exist no theory that dic-
tates a definite value for n . The best we can say is that, based on
the example to be shown in section 3 and on some others, we recom-

mend a number between 3 and 5 (inclusive) for n .



3. APPLICATIONS

Using a simple example taken from the previous study (Akima,
1974 a,b), we illustrate the application of the proposed method. We
take a quarter of the surface shown in the example in the previous
study and sample 50 data points from the surface randomly. The
coordinate values of the sampled data points are shown in table 1.
Knowing from the physical nature of the phenomenon that z(x,y) is a
single~valued smooth function of x and y, we try to interpolate the z

values and to fit a smooth surface to the given data points.

Figure 1 depicts contour maps of the surfaces resulting from the
30 data points with asterisks in table 1, while figure 2, from all the 50
data points in the table. In these contour maps, projections of the
data points are marked with encircled points. In each figure, the ori-
ginal surface from which the data points were sampled is shown in (a).
The surface fitted with piecewise planes (i.e., the surface consisting
of a number of pieces of planes, each applicable to one triangle) is
shown in (b). Of course, such a surface is continuous but not smooth.
The surface fitted by the method that estimates the partial derivatives
with a second-degree polynomial is shown in (c). The surfaces fitted
by the proposed method using three, four, and five additional data
points for estimation of partial derivatives at each data point are shown
in (d), (e), and (f), respectively. In drawing these contour maps, the
z values were interpolated by their respective methods at the nodes of
a grid consisting of 100 by 80 squares; in each square, the z values

were interpolated linearly.

Figures 1 and 2 indicate that the proposed method yields reason-
able results although these results might not necessarily be satisfac-

tory for some applications. In these figures very little difference is



Table 1.

An example set of data points.

(Thirty points with asterisks are used in figure 1,
while all 50 points are used in figure 2.)

1 %5 Yi Zj X5 Yi Zj
1 % 11,16 1,24 22.15 26 3.22 16.78 39.93
2 % 24,20 16,23 2.83 27 * 0,00 0,00 58,20
3 12.85 3,06 22.11 28 * 9,66 20.00 4.73
4 % 19,85 10.72 7.97 29 2.56 3,02 50.55
5 % 10.35 4,11 22,33 30 % 5,22 14.66 40.36
6 24.67 2.40 10.25 31 % 11,77 10.47 13,62
7 % 19,72 1,39 16,83 32 17.25 19.57  6.43
8 15,91 7.74 15.30 33 % 15,10 17.19 12,57
9 % 0,00 20.00 34.60 34 * 25,00 3.87 8,74
10 * 20.87 20.00 5,74 35 12,13 10.79 13.71
11 6.71  6.26 30.97 36 * 25,00 0,00 12,00
12 3.45 12.78 41,24 37  22.33  6.21 10.25
13 % 19,99 4,62 14,72 38 11,52 8.53 15.74
14 14.26 17.87 10.74 39 % 14,59 8.71 14,81
15 # 10.28 15.16 21,59 40 * 15,20 0.00 21,60
16 » 4.51 20.00 15,61 41 7.54 10.69 19,31
17 17.43 3,46 18,60 42 *% 5,23 10.72 26.50
18 22.80 12.39 5,47 43  17.32 13.78 12.11
19 = 0,00 4,48 61,77 44 * 2,14 15,03 53,10
20 7.58 1.98 29,87 45 * 0.51 8,37 49,43
21 * 16,70 19.65 6.31 46 22.69 19.63 3,25
22 * 6.08 4,58 35,74 47 % 25,00 20.00 0.60
23 1.99 5.60 51,81 48 5.47 17.13 28.63
24 * 25,00 11.87 4.40 49 * 21.67 14.36 5.52
25 * 14,90 3,12 21,70 50 * 3.31 0,13 44,08




Figure 1. Contour maps for the surfaces fitted to 30 data points
given with asterisks in table 1.
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Figure 2. Contour maps for the surfaces fitted to 50 data points
given in table 1.
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exhibited in the resulting surfaces due to the difference in the number
of data points used for the estimation of partial derivatives in the pro-
posed method. Figures 1(c) and 2(c) demonstrate a peculiar idiosyn-
cracy of the method based on second-degree polynomials; more data

points yield a much worse result in this example.

Decision as to whether or not the proposed method is applicable
to a particular problem rests on each prospective user of the method.
The examples given here are expected to aid one in making such a
decision. Comparison of (d), (e), or (f) fitted by the proposed method
with (a) the original surface or (b) the piecewise-plane surface in each
figure should be helpful for such a decision. Also, comparison of
figures 1 and 2 gives one some idea on the dependence of the resulting
surfaces upon the total number of data points and the complexity of

original surfaces.

12



4. CONCLUDING REMARKS

We have described a method of bivariate interpolation and smooth

surface fi'tting that is applicable when z values are given at points irre-

gularly distributed in an x-y plane. For proper application of the

method, the following remarks seem pertinent:

(1)

(ii)

(iii)

(iv)

(v)

(vi)

The method does not smooth the data. In other words, the
resulting surface passes through all the given points if the
method is applied to smooth surface fitting. Therefore, the
method is applicable only when the precise z values are
given or when the errors are negligible.

As is true for any method of interpolation, the accuracy of
interpolation cannot be guaranteed, unless the method in
question haé been checked in advance against precise values
or a functional form.

The result of the method is invariant under a rotation of the
x-y coordinate system.

The method is linear. In other words, if z(xi,yi) =
a.z'(xi,yi) + bz"(xi,yi) for all i, the interpolated values
satisfy z(x,y) = az'(x,y) + bz'"(x,y), where a and b are
arbitrary real constants.

The method gives exact results when z(x,y) represents a
plane; i.e., z(x,y) =a,,+ta,,x + ag v where 300’ 210°

00 10

and a,, are arbitrary real constants.

01
The method requires only straightforward procedures. No
problem concerning computational stability or convergence

exists in the application of the method.

A computer subprogram package that implements the proposed

method is described in Appendix B.

13
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APPENDIX A

INTERPOLATION IN A TRIANGLE

Assuming that the plane is divided into a number of triangles, we
describe a procedure for interpolating values of a function in each tri-
angle. The primary emphasis is on the smoothness of the interpolated
values not only inside of the triangle but also on the side of it; i.e.,
the interpolated values in a triangle must smoothly connect with those

values in an adjacent triangle on the common side of two triangles.

Basic Assumptions.

Using a two-dimensional Cartesian coordinate system with x and
y axes, we describe the basic assumptions as follows:
(i) The value of the function at point (x,y) in a triangle is inter-

polated by a bivariate fifth-degree polynomial in x and y; i.e.,

5 5-j ,
2(x,y) = ), E:qjkayk. (A-1)
j:o k=

Note that there are 21 coefficients to be determined.
(ii) The values of the function and its first-order and second-

order partial derivatives (i.e., z, z_, 2z and

x? %y xy’

zyy) are given at each vertex of the triangle. This assump-

tion yields 18 independent conditions.

s Z s Z

XX

(iii) The partial derivative of the function differentiated in the
direction perpendicular to each side of the triangle is a
polynomial of degree three, at most, in the variable meas-
ured in the direction of the side of the triangle. In other
words, when the coordinate system is transformed to another

Cartesian system, which we call the s-t system, in such a

15



way that the s axis is parallel to each of the side of the
triangle, the bivariate polynomial in s and t representing

the z values must satisfy

ztssss = (A-Z)

Since a triangle has three sides, this assumption yields

three additional conditions.
The purpose of the third assumption is two-fold. This assumption adds
three independent conditions to the 18 conditions dictated by the second
assumption and, thus, enables one to determine the 21 coefficients of
the polynomial. It also assures smoothness of interpolated values as

described in the following paragraph.

We will prove smoothness of the interpolated values and therefore
smoothness of the resulting surface along the side of the triangle. Since
the coordinate transformation between the x-y system and the s-t sys-

s Z._.s Z_., and z at each vertex

x? 2y Zxx Zxy vy
and Z4t at the same

tem is linear, the values of z
uniquely determine the values of Zgs Zys Zggs Zgto
vertex, each of the latter as a linear combination of the former. Then,

the z, Zg, and zg values at two vertexes uniquely determine a fifth-

s
degree polynomial in s for z on the side between these vertexes. Since
two fifth degree polynomials in x and y representing z values in two
triangles that share the common side are reduced to fifth-degree poly-
nomials in s on the side, these two polynomials in x and y coincide with
each other on the common side. This proves continuity of the interpo-
lated z values along a side of a triangle. Similarly, the values of z;
and zg = (zt)s at two vertexes uniquely determine a third-degree poly-
nomial in s for z; on the side. Since the polynomial representing z, is

assumed to be third degree at most with respect to s, two polynomials

representing z; in two triangles that share the common side also

16



coincide with each other on the side. This proves continuity of z, and

thus smoothnes s of z along the side of the triangle.

Coordinate System Associated With the Triangle.

We denote the vertexes of the triangle by V,, VZ’ and V3 in a
counter-clockwise order, and their respective coordinates in the x-y
Cartesian coordinate system by (xl,yl), (XZ’YZ)’ and (x3,y3), as
shown in figure A-1(a). We introduce a new coordinate system asso-
ciated with the triangle, where the vertexes are represented by (0,0),
(1,0), and (0,1) as shown in figure A-1(b). We call this new system

the u-v system.

The coordinate transformation between the x-y system and the

u-v system is represented by

Xx=au+bv+x

1)
0 (A-3)
y=cut+dv+ Yo *
where
S i B
b=x3 =%
C=Y, =V,
2 1 (A-4)
d=y; -V,
o " %1
YO = Yl .
The inverse relation is
u=[ d(x-x;5) -bly-yy)l/(ad - bc),
(A-5)

v = [-c(x-xo) + a(y-yo)] /(ad - bc).

17
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(a) x-y system.

(e) s-t system-3.

Figure A-1. Various coordinate systems.
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The partial derivatives in the x-y system are transformed to the

u-v system by

zZ =azx+cz

u y’

z, = bzx + sz ,

Zyu = al z ot Zaczxy + c? Zyy (A-6)
Zyy = abz_ +(ad+ bc)zxy+ cdzyy ,

Z,y = bzzxx + Zbdzxy+ dzzyy .

Since this coordinate transformation is linear, the interpolating

polynomial (A-1) is transformed to

5 5-j
ik
z(u,v)zZ _;_ p.. wve . (A-7)
e e i

Since it is the p coefficients that are determined directly, as shown
later, and are used for interpolating z values, it is unnecessary to re-

late the p coefficients to the q coefficients used in (A-1).

The partial derivatives of z(u, v) in the u-v system are expressed

by
2, I 1 x
o) = 30 3 iyl e,
j=1 k=0
4 5-j 1
z (u,v) = E kpku-]vk- s
j=0 k=1
5 5-j )
- i s -
Zyul(Wws V) = JZZ k_OJ(J l)pjku vE, (A-8)
4 5-j 1 .
z, (W V) = E JkpJk wt vkl
j=1 k=1

19



3 5-j

_ - j k=2
zW(u,v) = JZO kz—;k(k l)pjku v

We denote the lengths of the unit vectors in the u-v system (i.e.,

the lengths of sides V1V2 and V1V3) by Lu and Lv’ respectively, and

the angle between the u and v axes by v They are given by

L =a2+c2,

u
L, = b% +d%, (4-9)
_ -1 -1
Oy = tan~"*(d/b) - tan""(c/a) ,

where a, b, c, and d are constants given in (A-4).

Implementation of the Third Assumption.

We represent the third assumption (A-2) in the u-v system and
derive useful equations for determining the coefficients of the polyno-
mial. We do this for three cases corresponding to the three sides of

the triangle.

First, we consider the case where the s axis is parallel to side
VIVZ, as shown in figure A-1(c). The coordinate transformation

between the u-v system and the s-t system is expressed by

u = [(sin 6,,) (s - sg) = (cos 6,,) (t -tg)] /(Lu sin ouv) 5
(A-10)
v = (t -to) / (L, sin 6,.) ,
where Lu’ Lv’ and Buv are constants given in (A-9). Partial deriva-

tives with respect to s and t are expressed by

9 1 9o

ds L, ou’ (
A-11

3 cos 6, 3 1 5 )

ot =~ Ly sin 0,1 du  Lysing , ov '’

20



respectively. From (A-2), (A-7), and (A-11), we obtain
Lup41 -5L cos BuvPsg = 0. (A-12)
Ne;ct, we consider the case where the s axis is parallel to side

V1V3, as shown in figure A-1(d). The coordinate transformation is

expressed by

u= - (t-tO) / (L, sin 0,y) o
(A-13)
v = [(sin Buv) (s - so) + (cos 0,,)(t -to)] / (Ly sin g, ) .
Partial derivatives are expressed by
- - 1
ds L, ov’
(A-14)
2 .1, hw 5
ot L,sin6,, du L _sin 6, dv °
Then, from (A-2), (A-7), and (A-14), we obtain
0. | (A-15)

va14 - 5L, cos euvpos =

Next, we consider the third case where the s axis is parallel to

side V2V3, as shown in figure A-1(e). The coordinate transformation

is expressed by

u =A(s-so)+ B(t-to) ,

(A-16)
v = C(s-so)+D(t-t0) ,
where
A = sin(fyy - 6,6) /(Lysing,,),
B = - cos( Ouv - ous) / (Lu sin ouv) ,
C = siné /(LV sing,.) , (A-17)

D = cos ous /(LV sin Buv) ’

21



bys = tan'l[(d-c)/(b-a)] - tan-l(c /a).

The f,s constant is the angle between the s and the u axes. The a, b,
c, and d constants are given in (A-4), and Lu’ Lv’ and ouv are given

in (A-9). Partial derivatives with respect to s and t are expressed by

O _ A9 ., ~20.
5 - “ant G55
(A-18)
Q__pd o
8t_B8u+D8v'

From (A-2), (A-7), and (A-18), we obtain
4 3 2
5A%Bp., + A (4BC+AD)p41 +A°C(3 BC+2AD)p32

2 3 4 _
+ AC (2BC+3AD)p23+C (BC+4AD)p14+5C DPOS—O.

(A-19)

Equations (A-12), (A~15), and (A-19) are the results of imple-
mentation of the third assumption (A-2) in the u-v coordinate system.

They are used for determining the coefficients of the polynomial (A-7).

Determination of the Coefficients of the Polynomial.

Obviously, we can determine the coefficients of the lower -power
terms by letting u = 0 and v= 0 and by inserting the values of z, z,

z , and z,, at V1 (i,e., u=0and v =0) in (A-7) and (A-8).

v’ Zuu’ Zuv
The results are

p01 = ZV(O,O) ’
(A-20)
Pyp = zuu(0,0) /2,
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P1y = Zuy(0:0) s

Py, = Zyy(0:0) /2 .

Next, letting u = 1 and v = 0 and inserting the values of z, z.»

and z, at V2 (i.e., u=1and v = 0) in (A-7) and the first and the third

equations in (A-8), we obtain the following three equations:

z(1,0) - Poo ~ P10 "~ Pyo ¢
3p30t 4Pyt 5Pg0 =2,(1,0)-p g -2P,, s

6Py + 12p, + 20p 0 = 2,,(1,0) - 2p, .

Solving these equations with respect to P3o2 Pype and Pgo» we obtain

Py = [202(1,0) - Szu(l’o) + zuu(l’o) - ZOpoo- 12p10- 6P20]/2,
p40=_152(1’0)+7zu(1,0)-zuu(1,0)+15p00+8P10+3PZO:
Psg = [122(1,0) - 62 (1,0) + 2,(1,0) - 12pyg - 6Pyq - 2PZO]/Z'

(A-21)

Since Poo’ Pio° and P, are already determined by (A-20), we can cal-
culate P3q> Pyp? and Pg from (A-21).

Similarly, using the values of z, z_, and Zy at V3 (i.e., u=0

v’
and v = 1) and working with (A-7) and the second and the last equations

in (A-8), we obtain

Pg3 = [202(0,1) - 82,(0,1) + z,,(0,1) - ZOpOO- 12p01 - 6p02]/2,
Pog = - 152(0,1) + 72,(0,1) = 2, (0,1) + 15 Poo * 8Ppy + 3P,

= 0 - = = -
Pos [122(0,1) - 62,(0,1) + 2 (0,1) 12p00 6pOl zPOZ]/z.

(A-22)
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With p50 and po5 determined, we can determine p41 and P14
from (A-12) and (A-15), respectively. The results are

5 LV cos euv

Py1 = 7T P
41 Ly 50

(A-23)

5 Lu cos euv

Pla Ly Posg -

Next, we use the values of z, and Zuv at V2 (i.e., u=1 and

v = 0) with the second and the fourth equations in (A-8) and obtain

le + P31 Zv(l,O) = p01 = p].]. = p41 ’
ZPZI + 3P31 = zuv(lio) = Pll = 4p41 .

Solving these equations, we obtain

3Zv(1,0)"zuv(130)-3p01-2p11+ p41,

p
21 (A-24)

1]

P3; -sz(1,0)+zuv(1,0)+2P01+ Py1 =~ 2Py -

Similarly, using the values of z, and z,, at V3 (i.e., u=0 and

v = 1) with the first and the fourth equations in (A-8), we obtain

P,, = 32z,0,1) -2z (0,1)-3p . -2p .+ P,
12 u uv 10 11 14
(A-25)
Py3 = - Zzu(O,l) + qu(O,l) + Zplo + Pyy - Zpl4 .
Equation (A-19) is rewritten as
where
g, =A°C(3BC +2AD),
2
g2=AC (2BC +3AD), (A-27)
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4 3
h1 ==-5A Bp50 A (4BC+AD)p41

-c3(Bc +4AD)p, - SC4Dp05 ,

with A, B, C, and D defined by (A-17). From the value of Zyy at V2

and the last equation in (A-8), we obtain

h (A-28)

Pa2 T P32 =0y

where
h2 = (1/2)zw(1,0) - po2 =Py, - (A-29)

Similarly, from the value of z,, at V3 and the third equation in (A-8),

we obtain

h (A-30)

P,y t Py3 =05

where
hy = (1/2)2,(0,1) = p, - B, - (A-31)

Solving (A-26), (A-28), and (A-30) with respect to Py, Pyys and P,3»

we obtain

Py, = (glh2 + g2h3 - hl)/(gl + gz) ’

= h (A-32)

2 " P

Py3 = B3 =Py,

with g1 85 hl’ hZ’ and h, given by (A-27), (A-29), and (A-31).

3

Step-by-Step Description of the Procedure.

In summary, the coefficients of the polynomial are determined

by the following steps:

(i) Determine a, b, c, and d (coefficients for coordinate trans-

formation) from (A-4).
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(ii)

(iii)

(iv)

(v)

(vi)

(vii)

value

(i)

(ii)

Calculate partial derivatives z, Z ay? and z,, from

(A-6).

Calculate Lu’ Lv’ and euv (constants associated with the u-v

v! Zyu? Z

coordinate system) from (A-9).

Calculate A, B, C, and D (coefficients for another coordinate
transformation) from (A-17).

Determine 18 coefficients of the polynomial from (A-20),
(A-21), (A-22), (A-23), (A-24), and (A-25) -- in this order.
Calculate gy 8, hl’ hZ’ and ]13 from (A-27), (A-29), and
(A-31).

Determine the remaining three coefficients from (A-32).

For a given point (x,y) in the triangle, one can interpolate the =z
by the following steps:

Transform x and y to u and v by (A-5) with necessary coeffi-
cients given by (A-4).

Evaluate the polynomial for z(u, v) given in (A-7).

Although some equations lock complicated, the procedure de-

scribed here is straightforward. It can easily be implemented as a

computer subroutine.
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APPENDIX B

COMPUTER SUBPROGRAM PACKAGE

User information and Fortran listings of the IDBVIP/IDSFFT
subprogram package are given in this appendix. This package imple-
ments the method of bivariate interpolation and smooth surface fitting
for irregularly distributed data points, described in section 2 of this

report. It is written in ANST Standard Fortran (ANSI, 1966).

The package consists i a block -iata subprogram and the follow-
ing six subroutines; i.e., ‘DBVIF? iT'"GEOM, IDLCTN, IDPDRYV,
IDPTIP, and IDSFFT. 7Two suizroutines, IDBVIP and IDSFFT, are the
master subroutines of the package, and each interfaces with the usex.
The remaining four subroutines are common supporting subroutines
called by IDBVIP and IDSFFT. The IDBVIP subroutine performs bi-
variate interpolation for irregularly distributed data points; it estimates
the z values at the specified points in the x-y plane. The IDSFFT sub-
routine performs smooth surface fitting; it estimates the z values at the
specified rectangular grid points in the x-y plane and generates a

doubly-dimensioned array containing these estimated values.

The package includes three common blocks; i.e., IDGM, IDNN,
and IDPI, Including these common areas, the package occupies approx-

imately 3200 locations on the CDC-6600 computer.

When the user wishes to call either IDBVIP or IDSFFT subroutine
repeatedly with identical data as parts of input data in two consecutive
calls, he can save computation times considerably by specifying an ap-
propriate mode of computation. (This mode is specified with the MD

parameter in the call statements to be described later. )
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User information on IDBVIP and that of IDSFFT will follow. This

information is followed by Fortran listings of the seven subprograms -—

six subroutines listed in alphabetical order, followed by the block-data

subprogram.

The IDBVIP Subroutine.

This subroutine performs bivariate interpolation when the pro-

jections of the data points in the x-y plane are irregularly distributed

in the plane.

This subroutine is called by the following statement:

CALL

IDBVIP(MD,NDP,XD, YD, ZD, WK, NIP,XI,YI, ZI)

In this call statement, the input parameters are

MD =

NDP =

YD =

ZD =

WK =

NIP =

mode of computation (must be 1, 2, or 3),

1 for new XD-YD,

2 for old XD-YD, new XI-YI,

3 for old XD-YD, old XI-YI,

number of data points (must be 4 or greater),

array of dimension NDP containing the x coordinates
of the data points,

array of dimension NDP containing the y coordinates
of the data points,

array of dimension NDP containing the z coordinates
of the data points,

array of dimension (2 * NDP + NNP +5) % NDP + NIP

to be used internally as a work area,

number of points to be interpolated at (must be 1 or

greater),
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XI = array of dimension NIP containing the x coordinates
of the points to be interpolated at,
YI -= array of dimension NIP containing the y coordinates

of the points to be interpolated at,

where NNP is the number of additional data points used for estimating

partial derivatives at each data point. The output parameter is

21 = array of dimension NIP, where the z coordinates

of the interpolated points will be stored.

The LUN constant in the data initialization statement is the logical
unit number of the standard output unit and is, therefore, system de-
pendent. The user must enter an appropriate number into LUN before

compiling this subroutine.

The value of NNP must be given through the IDNN common block.
NNP must be 2 or greater, but smaller than NDP. In the subprogram

package listed below, it is set to 4. The user can change it by declaring
COMMON/IDNN/NNP

in his calling program and by assigning a number of his choice to NNP

with an arithmetic assignment statement before the call to IDBVIP,

The call to this subroutine with MD = 2 must be preceded by an-
other call to this subroutine with the same NDP value and with the same
contents of the XD and YD arrays. The call with MD = 3 must be pre-
ceded by another call with the same NDP and NIP values and with the
same contents of the XD, YD, XI, and YI arrays. Between the call
with MD = 2 or 3 and its preceding call, the WK array should not be

disturbed.

Table B-1 (p. 32) shows the approximate computation times re-

quired on the CDC-6600 computer.
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The IDSFFT Subroutine.

This subroutine performs smooth surface fitting when the pro-
jections of the data points in the x-y plane are irregularly distributed

in the plane.
This subroutine is called by the following statement:
CALL IDSFFT (MD,NDP,XD, YD, ZD. WK, NXI,NYI, XI, YI, ZI)
In this call statement, the input parameters are

MD = mode of computation (must be 1, 2, or 3),

1 for new XD-YD,
2 for old XD-YD, new XI-YI,
3 for old XD-YD, old XI-YI,

NDP = number of data points (must be 4 or greater),

XD = array of dimension NDP containing the x coordinates
of the data points,

YD = array of dimension NDP containing the y coordinates
of the data points,

ZD = array of dimension NDP containing the z coordinates
of the data points,

WK = array of dimension (2% NDP+NNP+5)* NDP + NXI*NYI
to be used internally as a work area,

NXI = number of output grid points in the x coordinate
(must be 1 or greater),

NYI = number of output grid points in the y coordinate
(must be 1 or greater),

XI = array of dimension NXI containing the x coordinates
of the output grid points,

YI = array of dimension NYI containing the y coordinates

of the output grid points,
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where NNP is the number of additional data points used for estimating

partial derivatives at each data point. The output parameter is

Z1 = doubly-dimensioned array of dimension (NXI, NYI),
where the interpolated z values at the output grid

points will be stored.

The LUN constant in the data initialization statement is the logical
unit number of the standard output unit and is, therefore, system de-
pendent., The user must enter an appropriate number into LUN before

compiling this subroutine.

The value of NNP must be given through the IDNN common block,
NNP must be 2 or greater, but smaller than NDP. In the subprogram

package listed below, it is set to 4. The user can change it by declaring
COMMON/IDNN/NNP

in his calling program and by assigning a number of his choice to NNP
with an arithmetic assignment statement before the call to this sub-

routine,

The call to this subroutine with MD = 2 must be preceded by an-
other call to this subroutine with the same NDP value and with the same
contents of the XD and YD arrays. The call with MD = 3 must be pre-
ceded by another call with the same NDP, NXI, and NYI values and
with the same contents of the XD, YD, XI, and YI arrays. Between
the call with MD = 2 or 3 and its preceding call, the WK array should

not be disturbed.

Table B-2 (p. 32) shows the approximate computation times re-

quired on the CDC-6600 computer.
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Table B-1. Approximate computation times required for the
' IDBVIP subroutine on the CDC-6600 computeér.

Time (seconds)
NDP NIP
MD=1 MD=2 MD=3
10 0.40 0.03 0.02
20 100 0. 50 0.12 0.06
1000 1.4 1.0 0.35
10 1.3 0.04 0.03
30 100 1.5 0.16 0.07
1000 2.7 1.4 0.50
10 6.6 0.05 0.04
50 100 6.8 0.24 0.10
1000 8.8 2.2 0.70

Table B-2. Approximate computation times required for the
IDSFFT subroutine on the CDC-6600 computer.

Time (seconds)
NDP NXI*NYI =
MD =1 MD=2 MD =3
1111 0.50 0.12 0,07
20 33 %33 1.1 0.70 0. 40
101101 5.8 5.4 3.4
11%11 1.5 0.16 0.08
30 33 %33 2.1 0.85 0.41
101 %101 7.3 6.0 3.5
11%11 6.8 0,22 0.11
50 33%33 7.8 1,2 0.50
101 %101 14,0 7.3 3.7
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SUBROUTINE IDBVIP(MDsNDPsXDsYDsZDsWKsNIPsXIsYIs21])
C THIS SUBROUTINE PERFORMS BIVARIATE INTERPOLATION WHEN THF PRO-
C JECTIONS OF THE DATA POINTS IN THE X-Y PLANE ARE IRREGULARLY
C DISTRIBUTED IN THE PLANE.
C THE INPUT PARAMETERS ARE

c D = MODE OF COMPUTATION (MUST BE 1s 2s OR 13)»

C = 1 FOR NEW XND-YD»

C = 2 FOR OLD XDP-YD» MEW XI-YI,

C = 3 FOR OLD XD-YDs OLD XI-=YI»

C NDP = NUMBER OF DATA POINTS (MUST BF 4 OR GRFATER)»

d XD = ARRAY OF DIMENSION NDP STORINMG THE X COORDINATES
d OF THE DATA POINTS»

d YD = ARRAY OF DIMENSION NDP STORING THE Y COORDINATES
d OF THE DATA PNINTS»

C ZD = ARRAY OF DIMENSION NDP STORING THE Z COORDINATES
c OF THE DATA POINTS»

d WK = ARRAY OF DIMENSION (2*NDP+NNP+5)%*NDP+NIP

C TO BE USED AS A WORK AREA»

d NIP = NUMBER OF INTERPOLATED POINTS

C (MUST BE 1 OR GREATER)»

c XI = ARRAY OF DIMENSION ‘NIP STORIMG THE X COORDINATES
C OF THE INTERPOLATED POINTS,

d YI = ARRAY OF DIMENSION NIP STORIMG THE Y COORDINATES
C OF THE INTERPOLATED POINTS,

C WHERE NNP IS THE NUMBER OF ADDITIONAL DATA POINTS USED FOR
C ESTIMATING PARTIAL DERIVATIVES AT EACH DATA POINT. THF VALUE
C OF NNP MUST BE GIVEN THROUGH THE IDNN COMMON. NNP MUST BE 2
C OR GREATERs BUT SMALLER THAN NDPe.
C THE OUTPUT PARAMETER 1S
C Z1 = ARRAY OF DIMENSION NIPs WHERF THE Z COORDINATES
C OF THE INTERPOLATED POINTS ARE TO BE DISPLAYED.
C THE LUN CONSTANT IN THE DATA INITIALIZATION STATEMENT IS THE
C LOGICAL UNIT NUMBER OF THE STANDARD OUTPUT UNIT AND IS»
C THEREFOREs SYSTEM DEPENDENT.
C DECLARATION STATEMENTS
DIMENSION XD(10)»YD(10)+2D0(10)sWK(1000) s
1 XI(10)sYI(10)»21(10)
COMMON/ IDNN/NNP
COMMON/INDGM/NDPCsNNPCsNT sNL
COMMON/ IDPI/NCF» ICF
EQUIVALENCE (FNDPOsNDPO) » (FNDPPVsNDPPV)»

1 (FNNPO sNNPO) » (FNNPPVsNNPPV) »
2 (FNIPOSNIPO)» (FNIPPVsNIPPV ),
3 (FNTsNT)» (FNLsNL)

DATA LUN/6/
C SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES. (ALL MD)

10 MDO=MD
NDPO=NDP
NDPC=NDPO
NIPO=NIP
NNPO=NNP
NNPC=NNPO

C ERROR CHECK. (ALL MD)

20 IF(MDOeLTel1eOReMDO«GTo3) GO TO 90
IF(NDPO«LTe4) GO TO 90
IF(NIPOeLTel) GO TO 90
IF(NNPOeLTe2+0R«NNPN<GENDPO) GO TO 90
IF (MDOeNE o1) GO TO 22

21 WK(1)=FNDPO
WK(2)=FNNPO
GO TO 24

22 FNDPPV=WK (1)

FNNPPV=WK (2)
IF(NDPONE.NDPPV) GO TO 90
IF (NNPO«NE«NNPPV) GO TO-90
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I8l
IR1
181
1B1
IRI
181
IR]
IRI
IR1
IRI
181
181
181
181
181
1Pl
IB1
181
181
IBI
IBI
181
IBI
181
IRI
1B1
181
181
I8l
181
181
18I
181
181
IBI
I8l
IB1
IRI
IBI
IBI
181
IRI
181
181
IB1
181
IBI
IRI
I8l
181
I81
T1RI
IRI
181
IBI
181
IBI
IB1
I8I
18I
181
I8l
181
IB1
IR1

001
00?2
0013
004
nns
006
nna
nor
009
010
011
012
0113
014
015
M6
017
018
019
020
021
022
023
N2a4
025
026
027
028
029
030
031
032
033
034
n3s
036
037
nag
n39
040
041
042
043
044
045
046
047
048
049
050
051
0ns?
053
054
055
056
057
058
059
060
061
062
063
064
065



IF(MNDNeNFo3) GO TO 24
23 FNIPPV=Wk (3)
IF(NIPOMENIPPV) GO TO 90
GO TOo 3n
24 WK(3)=FNIPO
C ALLOCATION OF STORAGE AREAS IN THF wK ARRAY. (ALL MD)
32n NDNDM] =NDPO#* (NDPO-1)
IWIPT=7
IWIPL=IWIPT+NMDNDM1
JTWIPN= ] 1PL+NDNDM]
IWPD =IWIPN+NDPN#NNPO
IWIT =IWPD +NDPO#*5
C DIVIDES THE X-Y PLANE INTO A NUMBER OF TRIANGLES AND
C DETERMINES NNP POINTS NEAREST EACH DATA POINT, (MD=1)
40 IF(MDeGT41) GO TO 42
41 CALL IDGFOM(XD»sYDsWK(IWIPT)sWK(IWIPL) sWK(IWIPN))
WK(S5)=FNT
WK (6)=FNL
Go To S0
42 FNT=WK(5)
FNL=WK (&)
C ESTIMATES PARTIAL DERIVATIVES AT ALL DATA POINTS. (ALL MD)
50 CALL IDPDRV(XDsYDsZDsWK (IWIPN) sWK (IWPD))
C LOCATES ALL INTERPOLATED POINTS. (MD=1+2)
6n IF(MDN.EQ.3) GO TO 70
JWIT=IWIT-1
DO 61 I1IP=1sNIPO
IWIT=JWIT+]
CALL IDLCTN(XDsYDsWK(IWIPT) sWK(IWIPL)S
1 XICIIP)sYI(IIP) sWK(JWIT))
61 CONTINUE
C INTERPOLATION OF THE 21 VALUES. (ALL MD)
70 NCF=0
ICF=0
JWIT=IWIT~1
DO 71 IIP=1sNIPO
IJWIT=JWIT+]
CALL IDPTIP(XDsYDsZDsWK(IWIPT)sWK (IWIPL) sWK(IWPD)»
1 WKIJWIT) o XI(IIP)sYI(IIP)SZI(IIP))
71 CONTINUE
C NORMAL EXIT
80 RETURN
C ERROR EXIT
90 WRITE (LUN»2090) MDOsNDPOsNIPO»sNNPO
RETURN
€ FORMAT STATEMENT FOR FRROR MESSAGF
2090 FORMAT (1X/41H ###% IMPROPER INPUT PARAMETER VALUEI(S)./
1 H MD =914510XsSHNDP =916510XsSHNIP =916
2 10X sSHNNP =916/
3 35H ERROR DETECTED IN ROUTINE IDBVIP/)
END

SUBROUTINE IDGEOM(XDsYDsIPTsIPLsIPN)
THIS SUBROUTINE DIVIDES THE X-Y PLANE INTO A NUMBER OF
TRIANGULAR AREAS ACCORDING TO GIVEN DATA POINTS IN THE PLANE»
DETERMINES LINE SEGMENTS THAT FORM THE BORDER OF DATA AREA»
DETERMINES THE TRIANGLE NUMBERS CORRESPONDING TO THE BORDER
LINE SEGMENTSs AND SELECTS SEVERAL DATA POINTS THAT ARE
NEAREST TO EACH OF THE DATA POINTS.
AT COMPLETIONs POINT NUMBERS OF THE VERTFXES OF FACH TRIANGLE
ARE LISTED COUNTER-CLOCKWISEe POINT NUMBERS OF THE END POINTS
OF EACH BORDER LINE SEGMENT ARE LISTED COUNTER-CLOCKWISE»
LISTING ORDER OF THE LINE SEGMENTS BEING COUNTER=-CLOCKWISE.

(a¥aNaNaNaNa¥aXaNaXal
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IBI
IR1
IBI
IRI
IRI
IRI
181
181
IB1
[
IRI
IRI
I1B1
181
181
181
181
IRI
181
IRI
IRI
181
181
1B
181
181
181
IBI
181
181
181
IB1
181
IBI
18I

181
181
181
181
IBI
181
IB1I
IB1
IBI
181
181
181
43¢
IBI
181

IGM
IGM
IGM
IGM
IGM
I1GM
IGM
IGM
1GM
IGM
IGM

ne66
067
nes
069
n70
n71
n72
n71
N74
n7s
n7s
077
078
079
080
081
082
083
oas
nas
086
087
[o]:1:]
0R9
0Q0
091
092
093
094
095
n96
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

001
002
003
004
005
006
007
008
009
010
011



C THE INPUT PARAMETERS ARE

C XD»YD = ARRAYS STORING THE X AND Y COORDINATESs RESPe.>»

OF DATA POINTS,
THE OUTPUT PARAMETERS ARE

DISPLAYED AS THE (3%#]T-2)NDs (3%#1T-1)STs AND
(3#IT)TH ELEMENTS, IT=192%eeesNT>

OF THE END POINTS OF THF (ILITH BORNFR LINE
SEGMENT AND ITS RESPECTIVE TRIANGLE NUMBER ARE
TO BE DISPLAYED AS THE (3%#IL-2)NDs (3%IL-1)ST»
AND (3#]L)TH ELEMENTSs IL=192%eee9 NL>
IPN = ARRAY OF DIMENSION NDP#MNPs WHERE THE POINT

NUMBERS OF NNP DATA POINTS NFAREST TO FACH OF
THE NATA POINTS ARE TO RE DISPLAYED»

WHERE NDP IS THE TOTAL NUMBER OF DATA POINTSs NNP IS THE

NUMBER OF DATA POINTS NEAREST TO EACH DATA POINTs NL IS

THE NUMBER OF BORDER LINE SEGMENTSs AND NT IS THE NUMBER

OF TRIANGLESe NDP AND NNP ARE GIVEN TO THIS SUBROUTINE

SUBROUTINE AND ARE LEFT IN THE IDGM COMMON AT COMPLETION.
DECLARATION STATEMENTS
DIMENSION XD(10)»YD(10)sIPT(100)sIPL(100)sIPN(50)
COMMON/TIDGM/NDP sNNP 3 NT o NL
EQUIVALENCE (DSQ1»IDSQ1)s(DSQ2sIDSQ2)s(DSQMs IDSQM)
C PRELIMINARY PROCESSING
10 NDPO=NDP
NDPM1=NDPN-1
NNPO=NNP
NNPM1=NNPO-1
C DETERMINES THE NEAREST NNP POINTS.
20 DO 29 IP1=1,NDPO
X1=xD(IP1)
Y1=YD(IP1)
JIMX=IP1#NNPO
JIMN=JIMX-NNPM1
DO 28 J1=JIMN»JIMX
J2MX=J1-1
IDMN=0
DO 27 IP2=1sNDPO
IF(IP2+EQeIP1) GO TO 27
IF(J1eGToJIMN) GO TO 22
21 DSQ1=(XD(IP2)=X1)##2+(YD(IP2)-Y1)#%2
IPT(IP2)=1DSQ1
GO TO 23
22 IDSQ1=IPT(IP2)
23 IF(IDMN<EQ.O) GO TO 24
IF(DSQ1 «GE«DSOMN) GO Tn 27
24 IF(JIMNeGTeJ2MX) GO To 26
DO 25 J2=J1MN»J2MX
IF(IP2EQeIPN(J2)) GO Tn 27
25 CONTINUE
26 DSQMN=DS01
IDMN=1P2
27 CONTINUE
IPN(J1)=1DMN
28 CONT INUF
29 CONTINUE
C LISTS ALL THE POSSIBLE LINE SEGMENTS IN THE IPL ARRAY,

aNalaNaNaNaNakaNaNaNaNaVakaNa¥aNalaNaNaks)

C CALCULATES THE SQUARES OF THE LINE SEGMENT LENGTHSs AND STORE

C THEM IN THE IPT ARRAY.

30 IL=0
DO 32 1IP1=1»NDPMI1
X1=xD(I1P1)

35

IPT = ARRAY OF DIMENSION 3%NT, WHFRF THE POINT NUMBERS
OF THE VERTEXES OF THE (IT)TH TRIANGLF ARF TO RE

IPL = ARRAY OF DIMENSION 3%#NL»s WHERE THE POINT NUMBERS

THROUGH THE 1DGM COMMON. NL AND NT ARE CALCULATED BY THIS

IGM
IGM
IGM
IGM™m
I16GM
IGM
IGM
I1GM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
InM
IGM
I1GM
IGM
IGM
IGM
IGMm
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM

IGM
I1GM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
I1GM
IGM
IGM
1GM
IGM
IGM
IGM

ni?
0113
014
015
nlé
017
018
019
020
021
022
023
024
025
026
027
028
029
030
0131
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
nes
069
070
071
072
073
074
075
076



31

Yl=yn(IP1)
IP1P1=]P1+1
DO 31 IP2=IP1P1,sNDPO

IL=IL+1
ILT2=1L+IL
IPLUILT2-1)=1P]
IPLUILT2) =IP2

DSQ1=(XD(IP2)=X1)##2+(YD(IP.2)-Y]1)#**2

IPT(IL)=IDSNY
CONT INUF

22 CONTINUE

NLO=IL
C SORTS THE IPL AND

C SFGMENT LENGTH (DISTANCF).
15 NLM1=NLNn-1

26

DO 37 IL1=1sNLM]

IPSQ1=IPT(IL])
ILM=1L1
nSQM=DSQ1
[L2MN=TL]+1
DO 36 IL2=IL2MN,NLO
IDSQ2=1IPT(]IL2)
IF(DSA2+GE.DSOM) Gn Tn 136
ILM=]IL?2
DSQOM=DSQ2
CONT INUE
IPT(ILM)=1DSO1
IPT(IL1)=1DSOM
ILIT2=]IL1+IL1
ILMT2=1LM+ILM
ITS=1PL(IL1T2-1)
IPLUILIT2=-1)=1IPL(ILMT2-1)
IPLUILMT2-1)=1ITS
ITS=1IPL(IL1T2)
IPLOILIT2)=IPL(ILMT2)
IPLUILMT2)=1ITS

37 CONTINUE

C ELIMINATES LINE SEGMENTS THAT CROSS OR LIE OVER SHORTER ONEe

an ILO=1

DO 46 IL1=2sNLO

IL1T2=IL1+IL1
IP1=IPL(IL1T2-1)
IP2=1PL(IL1T2)
X1=XD(IP1)
X2=XD(1P2)
Y1=YD(IP1)
Y2=YD(1P2)
DX21=X?-X1
DY21=Y2-Y1
DO 45 1L2=1s1L0
IL2T2=1L2+1IL2
IP3=IPLIIL2T2-1)
1P4=IPL(IL2T2)
X3=xD(1P3)
X4=XD{1P&4)
Y3=Yn(IP3)
Y4=YD(IP4&4)
DX43=X4=-X3
DX42=X4=-X2
DX&41=X4=X1
NX32=X3-X2
OX31=Xx3-X1
DY43=Y4~Y3
DY&42=Y4—-Y2
DY&41=Y4-Y1

36

I[PT ARRAYS IN ASCENDING ORDER OF THE LINE

](‘,M
1G™
16m
1G™
1GM
1GM
1G™
IGM
16M
Iam
IGM
IG™M
1GM
16GM
IGM
1GM
IGM
1GM
1GM
IGM
I1GM
1Gm
IGM
IGM
IGM
1GM
IGM
IGM
IGM
I1GM
IGM
IGM
IGM
IGMm
I1GM
IGM
IGM
IGM
IGM
I1GM
IGM
IGM
1G™
IGM
IGM
IGM
IGMm
IGM
IGM
IGM
I1GM
IGM
IGM
1GM
I1GM
1GM
1GM
I1GM
1GM
1GM
1GM
1Gm
IGM
1Gm
1GM

n77
n7R
n79
080
NR1
0R»
ng3
0Ra
naeg
NRA
OR7
0RP
UR9
nan
N9l
092
091
N9 4
09%
nag
n97
098
099
100
101
102
103
104
106
106
107
108
109
110
111
112
112
114
115
116
117
118
119
120
121
122
129
124
125
126
127
128
129
130
131
132
133
13%
135
136
137
138
139
140
141



nl

42

43

44

45

nY32=Y3-Y2
NY31=Y3-Y1
IF(IP3.NE.IP1) GO TO 41

IF(DY41%#DX21-DX41#DY21eNEeNeN) GO TO 45

JF(DX41#DX21+DY41%#DY21)
IF(IP4eNE.IP1) GO TO 42

45945946

IF(DY31#DX21-NX31%¥DY21eNEeOe0O) GO TO 45

IF(NX31%¥NX21+NY21%#NY21)

IF(IP3.NE«IP2) GO TO 43

L6945 946

IF(DY42%#DX21-DX42%#NDY21eNEeNe0) GO TO 45

IF(DX42%DX21+DY42%#NDY21)

IF(IP4.NE.IP2) GO TO 44

46945945

IF(DY32#DX21-DX32#NY21«NE«0s0) GO TO 45

IF(DX32%#DX21+DY32%DY21)

46945945

IF((NY31#DX21-DX31#DPY21)*#(DY41#DX21-NX41%¥DY21) eGFe0.0)

GO TO 45

IF((DY31%DX43-DX31#DY43)*#(DY32#DX43-DX32%#DY42).LTe0.0)

CONT INUF
ILO=ILO+]
ILOT2=ILO+ILO
IPLLILOT2-1})=1P1
IPL(ILOT2) =IP?

46 CONTINUE

NLO=1ILO

GO TO 46

C RE-SORTS THE IPL ARRAY IN ASCENDING ORDER OF ITS ELEMENTS.
50 NLT2=NLA+ANLO

51
52

63

NLM1T2=NLT2-2
DO 54 IL1T2=2,NLM1T2,2

ILMT2=1L1T2
IPMI=IPLILMT?2-1)
1PM2=1PL(ILMT2)
IL2T2M=1L1T2+2

DO 53 IL2T2=1L2T2M»NLT2»2

1P21=1PL(IL2T2-1)
1P22=1PL(IL2T2)

IF(IPM1-1P21) 531951952
IF(IPM2-1P22) 53953952

ILMT2=1L2T2

I1PM1=1P21

1PM2=1P22
CONT INUF
IPLOILMT2-1)=1PL(IL1T2-1)
IPLLILMT2) =IPL(IL1T2)
IPLIIL1IT2-1)=1PM]
IPLOILIT2) =1PM2

54 CONTINUE
C DETERMINES TRIANGLES.
6n IT=0

61

NLM1=NLNP-1
NLM2=NLN-2
DO 67 IL1=1sNLM2

IL1T2=IL1+IL1
IP1=IPL(IL1T2-1)
1P2=1PL(IL1T2)
IL1P1=IL1+1
DO 66 IL2=IL1P1»NLM1
IL2T2=1L2+1IL2
IF(IPLIIL2T2-1)eNE.IP1)
IP3=IPL(IL2T2)
IL2P1=1L2+1
PO 62 IL3=1L2P1»MLO
IL3T2=1L3+IL3
IFCIPLIIL3T2-1)-1P2)
IFCIPLUIL3T2) =1IP3)

GO Tn 67

62961966
62+63+66

37

1G™
IG™M
1GM
1GM
IG™
IGMm
IGM
IGM
I1GM
I1GM
1GM
I1GM
IGM
IGM
1GM
16M
1GM
IGM
1GM™
IGM™
IGM
1GM
IGMm
I1GM
IGm
IGM
1Gm
IGM
1G™m
I1GM
IGMm
IG™
IG™
IGM
IGM
1GM
IGM
IGM
IGM
IGM
I1G™m
IGM
I1GM
IGM
IGM
I1GM
IGM
IGM
IGM
16M
IGM
IGM
IGM
1GM
1GM
IGM
IGM
IGM
IGM
IGM
IGM
I1GM
IGM
IGM
IGM

142
143
loa
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
172
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206



62

63

A4

65

66

—

CONTINUE
GO TO 66
IPT1=1P1
1PT2=1P2
IPT3=1P3

IFCCYD(IPT3)=YD(IPT1))I*(XP(IPT2)-XD(IPT1) )~
(XD(IPT3)-XD(IPT1))*(YD(IPT2)-YD(IPT1))eGEeOo0)

1TS=1PT2
IPT2=1PT3
IPT3=1TS
X1=xP(IPT1)
X2=Xp(IPT2)
X3=xD(1PAT3)
Y1=YD(IPT])
Y2=Yp(1PT2)
Y3=Yn(IPT3)
PX32=X3-X2
PX21=x2-X1
DX13=X1-X3
PY32=Y3-Y2
NY21=Y2-Y1
PY13=Y1-Y3
DO 65 I1P0=1sNDPO

GN TO 64

IF(IPOEQeIPT1eOReIPOENeIPT2enP.IP0ENCIPT3)

Xo=xD(IPQ)
Yo=YD(IPO)
IFC(YO-Y]1)#DX21-(X0-X1)#DY21eL Te0s0)
IF((YO-Y2)#DX32-(X0-X2)#DY22.LTe0.0)
IF((YO~Y3)#DX13=-(X0-X3)#DY13eGEeOeO)

CONTINUE

IT=1T+1

ITT3=]1T*3

IPT(ITT3-2)=]PT1

IPT(ITT3=-1)=]PT?

IPT(ITT3) =IPT3

CONTINUE

67 CONTINUE

NTO=1IT
NT=NTO

GO TO 65

GO TO 65
GO TO 65
GO TO 66

C SELECTS AND SORTS LINE SEGMENTS THAT FORM THE BORDER.
70 ILO=0

71
72

73

DO 75 1IL1=1»sNLO
IL1T2=IL1+IL]
IP1=1PL(IL1T2-1)
IP2=1PL(IL1T2)
X1=xD(IP1)
Y1=YD(IP1)
X2=xD(1P2)
Y2=YD(1IP2)
DX21=x2-X1
DY21=Y2-Y1
DO 71 1P0O=1sNDPO

IF(IPOEQeIP1.0ORIPO0EQ.IP2) GO To 71

S=(YD(IPO)-Y1)#DX21~(XD(IPO)~-X1)#%DY21
IF(SeNEeOoeN) GO TO 72

CONMNT INUE

IPOMN=IPN+1

DO 73 I1PO=1POMNsNDPO

IF(IPN.EQeIP1eORIPOEQeIP2) GO TO 73

IFCCCYD(IPO)=Y1)#DX21-(XD(IPO)=X1)%¥DY21)%#SelLTe040)

CONTINUE

38

GO TO 75

IGM
I1Gm
1M
1GM
1GM
IGM
IGM
IGM
1GMm
1GM
16GM
IGM
IGM
IGM
1GM
1GM
IG™
16M
IGM
IGM
IGM
1GM
IGMm
1G™m
IGM
I1GM
IGM
1Gm
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
1G™
1Gm
1Gm
IGM
IGM
IGM
IGM
IGM
IGM
IGM
IGM
1Gm
IGm
IGM
IGM
I1GM
IGM
IGM
IGM
IGM
IGM
IGM
1GM
IGM
1GM
1GM
IGM
IGm

207
20e
209
210
211
212
213
214
215
216
217
218
219
22n
221
222
223
224
225
226
227
228
229
230
231
232
2313
234
235
236
237
238
239
240
241
247
243
244
245
246
247
248
249
250
261
252
251
254
256
256
257
258
259
260
261
262
269
264
265
266
267
268
269
270



ILO=1LO+1
ILOT2=1L0+ILO
IF(S«LTeNe0) GO TO 74
IPL.LILOT2-1)=1P1
1IPL(ILOT2) =1P2
GO Tn 75
74 IPL(ILOT2-1)=1P2
IPLLILOT2) =1P1
75 CONTINUE
NLO=ILO
NLM1=NLO-1
DO 79 IL1=2sNL"1
IL1T2=1L1+IL1
I1P2=1PL(IL1T?-2)
IFCIPLUIL1IT2-1)«EQ.IP2) GO TO 79
IL1P1=1L1+1
DO 77 IL2=IL1P1sNLO
IL2T2=1L2+1L2
IF(IPLIIL2T2-1).EQ.IP2) GO To 78
77  CONTINUE
78 IP1=IPL(IL1IT?2-1)
IP2=IPLIIL1T2)
IPLIIL1IT2-1)=1PL(IL2T?-1)
IPL(ILYT2) =IPL(IL?2T2)
IPL(IL2T2-1)=1P1
IPLLIL2T2) =1P2
79 CONTINUE
NL=NLO

C FINDS OUT TRIANGLES CORRESPONDING TO THE BORDER LINFE
C SFGMENTS.

[aXaNaRa¥aXaXa!

8n NLP1=NLN+1
DO 83 [ILR=1sNLO

IL=NLP1-ILR

ILT2=1L+IL

ILT3=ILT2+IL

IPL1I=IPL(ILT2-1)

IPL2=T1PL(ILT2)

DO 81 IT=1sNTO
ITT3=1T%*3
IPT1=IPT(ITT3-2)
IPT2=IPT(ITT3-1)
IPT3=IPT(ITT3)
IF(IPL1eNE«IPT1eANDeIPL1eNE«IPT2.ANDeIPL1«NE.IPT3)

1 GO To 81
IF(IPLZ-EQ.IPTI.OR.IPLZ-EQ-IPTZ-OR-IPL?oEQ.IPT3)
1 GO TO 82

81 CONT INUF
82 IPLLILT3=-2)=IPL1
IPL(ILT3-1)=IPL2
IPLCILT3) =IT
83 CONTINUE
RETURN
END

SUBROUTINE IDLCTN(XDsYDsIPTsIPLsXITsYIISITI)
THIS SUBROUTINE LOCATES A POINTs leEes DETERMINES WHAT
TRIANGLE A GIVEN POINT (XITsYIT) RELONGS TO. WHEN THE GIVEN
POINT DOES NOT LIE INSIDE THE DATA AREA»s THIS SUBROUTINE
DETERMINES THF BORDER LINE SEGMENT IN THE AREA ABOVE WHICH THE
POINT LIESs OR TWO RORDER LINE SEGMENTS RETWEEN TWO ARFAS
AROVE WHICH THE POTNT LIES.
THE INPUT PARAMETERS ARE

39

1G™
1GM
1G™m
IGwm
IGM
16GM
1GM
1Gm
1G#
1G™m
IG™
1G™m
1G™
IGM
IGM
IGM
IGM
1GM
1Gm
IG™
IGM
IG™m
IGMm
IG™m
IGM
IGM
IGM
IGM
IGM
I1GM
I1Gm
IGM
16Mm
I1G™m
I1GM
IGM
IGM
IGM
1GM
I1GM
1Gm
I1GM
IGM
IGM
IGM
IGM
IGM
IGM
IGm
I1GM
1G™
IGM
I1GM

ILC
ILC
1LC
ILC
ILC
ILC
ILC
ILC

271
272
271
274
275
276
2717
278
279
280
281
282
283
284
285
286
287
288
280
290
291
292
2913
294
295
296
297
298
299
300
301
Ny
N3
304
305
306
307
308
309
310
211
312
313
314
315
316
317
318
319
320
321
322
3212

001
002
003
004
005
006
nor
008



THE

2¥a¥aXaXaXaNalalaNaYaNaXaiaNaXala)

XDsYD = ARRAYS STORING THE X AND Y COORD
NF DATA POINTS,

IPT = ARRAY STORING THFE POINT NUMAFRS OF
NF THE TRIANGLES»,

IPL = ARRAY STORING THE POINT NUMBFPS CF
POINTS OF THE BORDER LINE SFGMFNTS
RESPECTIVE TRIANGLE NUMBERS»

XIIsYII = X AND Y COORDINATESs RESP.s OF

INTERPOLATED POINT.

OUTRIIT PARAMETFR IS

ITI = TRIANGLE NUMBFRs WHEN THE POINT IS
DATA AREAs OR

INATFSs RFSPes
THE VFRTEXES

THE END
ANP THEIR

INSIDE THF

TWO BORDER LINE SEGMENT NUMBERSs IL1 AND IL2»

CODED TO ILI*(NT+NL)+IL?2» WHEN THF
OUTSIDE THE DATA AREAs WHFRE NT IS
TRIANGLES AND NL»s THAT OF BORDER L

DFCLARATIOM STATEMENTS

POINT IS
THE NUMBER OF
INF SEGMENTS,

NDIMENSION XN(10)sYD(10)sIPT(100),1IPL(10O)

COMMON/ IDGM/NDP sNNP sNTsNL
DATA NTPV/0/ sNLPV/0/

C PRELIMINARY PROCESSING

10

NTO=NT
NLO=NL
NTL=NTO+NLO
x0=XI1
Yo=YIl

C CHECKX IF IN THF SAMF TRIAMGLF AS PREVINUS
20 IFINTOWNFNTPV) GO TO 35

21

IF(NLO«NE«NLPV) GO TO 2%
ITO=ITIPV

IF(ITOGT4NTO) GO TO 2%
ITOT3=1TN#*3

IP1=IPT(ITOT3-2)

1P2=1PT(ITOT3-1)

IP3=IPT(ITNT3)

X1=xD(IP1)

X2=XD(1P2)

X3=XD(IP2)

Y1=YD(1IP1) s

Y2=YD(1IP2)

Y3=YD(IP3)
IFC(YO=Y1)#(X2=X1)=(XO=X1)*#(Y2=-Y1))
IFLLYO-Y2)#({X3=-X2)=-(X0-X2)#*#{Y3-Y2))

22 IF((YD-Y3)#(X1-X3)=-(XO0-X3)*#(Y1-Y3))
C CHECK IF ON THE SAME BORDER LINE SEGMENT

25

26

27

IL1=ITO/NTL

IL2=ITO-TL1#NTL

IL1T3=]L1%3

I1P1=IPL(IL1T3-2)

IP2=IPL(IL1T3-1)

X1=XD(IP1)

x2=XD(1P?2)

Y1=YD(IP1)

Y2=YD(1IP2)

DXx02=X0-X2

DY02=Y0-Y2

DX21=X2-X1

DY21=Y2-Y1
CS50221=DXN2%#DX214+DYN2#DY21
IF(IL2eNFeIL1) GO TO an
IFICSN221) 269261950
DX01=X0-X1

DY01=Y0-Y1
IF(DYN1#DX21-DX01%#DY21) 27927+50
IF(DX01#DX21+DY0O1#DY21) 50+80+80

40

50921421
50422922
50980480

ILC
ILc
ILC
ILc
ILc
ILC
ILC
ILC
ILr
ILc
ILC
ILC
ILC
ILC
ILC
ILC
ILc
ILC
ILC
ILC
ILc
ILc
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILC

ILC
ILC
ILC
ILC
ILC
ILC
ILc
ILc
ILc
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILc
ILc
ILC
ILC
ILC
ILC
ILC
1c
ILc
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILc

nc9
n10
011

N2
o012
Nla
015
0164
N7
nis
019
020
021
022
023
024
noes
026
027
n2e
029
N30
031
032
0133
0134
n3s
036
027
038
0139
040
041
042
nag3
044
45
(1°Y.}
047
n4g
049
050
051
052
053
n54
055
056
057
058
059
060
061
062
063
064
065
066
067
ne8
069
070
071
072
073



C CHECK IF BETWEEN THF SAME TwO BORDFR LINE SFGMENTS
30 IF(CS0221) 50531431
31 1L2T3=]L2*3
IP3=IPL(IL2T3-1)
X3=XD(1pP2)
Y3=YDIIP3)
DX32=X3-X2
DY32=Y3-Y2
IF(DXN2#DX32+DYN2#DY32) 8080150
C WHEN CALLED WITH A NEW SET OF NT AND NL
35 NTPV=NTn
NLPV=NLA
ITIPV=n
C LNCATION INSIDE THF DATA ARFA
sn IT0T3=0
DO 69 ITO=1sNTO
ITOT3=1IT0T3+3
IF(ITAEQITIPV) GO TO 69
IP1=IPT(ITOT3-2)
I1P2=1IPT(ITOT3-1)
IP3=IPT(ITOT3)

X1=XD(1P1)

X2=xXD(1P2)

X3=XD(1P3)

IF(X0-X1) 53955551
51 IF{X0-X2) 55455952
52 IF(X0-X3) 55955969
53 IF(X0-X2) 54955555
54 IF({X0-X3) 69955155
55 Y1=YD(IP1)

Y2=YD(IP2)

Y3=YD(IP2)

IF(Y0-Y1) 5896N956
56 IF(YO-Y2) 60960557
57 IF(YO-Y3) 60,6069
58 IF(Y0-Y2) 59+60+60
59 IF(Y0-Y3) 69560460

60 IF((YA=Y1)*#(X2-X1)=-(X0=X1)%*(Y2-Y1)) 69961461
61 IF((YN=Y2)*(X3=-X2)=(XO0-X2)*(Y3-Y2)) 69+962+62
62 IFC(YO-Y3)#(X1-X3)=(X0=-X3)*(Y1-Y3)) €95+80+80
69 CONTINUE
C LOCATION OUTSIDE THE DATA AREA
70 NLOT3=NLO*3
IP1=IPL(NLOT3-2)
I1P2=1PL(NLOT3-1)
X1=xD(IP1)
Y1=YD(IP1)
X2=XD(1P2)
Y2=YD(IP2)
DX02=X0-X%X2
DY02=Y0-Y2
DX21=x2-X1
DY21=Y2-Y1
CS0221=DXN2*DX21+DY0N2*DY21
DO 74 ILN=1,NLO
X1=X2
Yl=Y2
DXN1=DX02
DYO01=NYN2
IP2=1PL(3%]LO0-1)
X2=XD(IP2)
Y2=YD(IP2)
NPX02=X0=-X2
DY02=Y0-Y2

41

ILC
ILc
L
ILe
ILC
lic
ILc
ILC
ILc
ILc
Inc
ILcC
ILc
ILC
ILcC
ILC
Ic
ILC
ILC
ILC
ILC
ILC
ILC
Iec
ILC
ILC
ILC
ILC
ILC
ILC
ILc
Iec
ILc
ILc
ILC
ILc
ILC
ILC
ILc
ILC
ILc
ILC
ILC
ILC
ILc
ILc
ILC
ILc
ILcC
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILC
ILcC
ILc
ILC

074
074
n716
N7
n7e
n7a
0RO
ng1l
0R?
081
084
nNAs
NRA
(aF-Ird
NARR
089
090
091
092
093
nay
nas§
096
na?7
098
099
100
101
102
103
104
108
1n6
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
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DX21=Xx2-X1

DY21=Y2-Y1

CcSPV=CS0221
CSN0221=DPX02%DX21+DY02#DY?21

IF(CSNn221) 71471976

71 IF(DXN1*#DX21+DYO1%DY21) 7372572
72 IF(DYN1#DX21-DX01%DY21) 76276574
73 IF(CSPV) T4sTL 75
76 CONTINUE

1L0=1
75 1TO=ILN=-)

IF(IT0.EQ.0! ITO=NLO

GO TO 77
76 1TO=ILO

77 ITO=ITO®NTL+ILD

NORMAL EXIT

8n ITI=ITO
ITIPV=ITN
RETURN
END

SUBROUTINE IDPDRV(XDsYDZDsIPNsPD)
THIS SUBROUTINE ESTIMATES PARTIAL DERIVATIVES OF THE FIRST AND
SECOND ORDER AT THE DATA POINTS.
THE INPUT PARAMETERS ARE
XDsYDsZD = ARRAYS STORING THE X»s Ys AND Z COORDINATES»
RESP.s OF DATA POINTS,
IPN = ARRAY STORING THE POINT NUMRERS OF NNP DATA
POINTS NFEAREST TO EACH NF THE DATA POINTS»
WHERE NNP IS THE NUMBER OF DATA POINTS USED FOR FSTIMATION
OF PARTIAL DERIVATIVES AT EACH DATA POINT. NNP IS GIVEN
THROUGH THE IDGM COMMON.
THE OUTPUT PARAMETER IS
PD = ARRAY OF DIMENSION S5*NDPs WHERE THE ESTIMATED
ZXs 2Ys» ZXXs ZXYs AND ZYY VALUES AT THF DATA
POINTS ARE TO BE DISPLAYED,
WHERE NDP IS THE TOTAL NUMBER OF DATA POINTSe. NDP IS GIVEN
THROUGH THE IDGM COMMON .
DFCLARATION STATEMENTS
DIMENSION XD(10)sYD(10)9ZD(10)sIPN(100)sPN(50)
COMMON/ IDGM/ NDP sNNP sNT s NL

REAL NMX sNMY s NMZ s NMXX s NMXY s NMY X sNMYY
PRELIMINARY PROCESSING
10 NDPO=NDP
NNPO=NNP

NNPM1=NNPO~1
ESTIMATION OF ZX AND 2Y
20 JPDO=-5
JIPNO==NNPO
DD 24 1PO=1sNDPO
JPDN=UPDO+5
X0=xXD(IPO)
YO=YD(IPO)
20=20(1PO)
NMX=0.0
NMY=0,0
NMZ=0e0
JIPNO=JIPNO+NNPO
DO 23 IN1=1,NNPM1
JIPN=JIPNO+IN1
IPI=IPN(JIPN)
DX1=XD(IPI)=-X0
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ILC
ILC
ILC
ILC
ILc
ILC
ILC
ILC
iLC
ec
ILC
ILC
ILC
ILC
ILC
Iec
ILC
ILC
Iec
Iec

I1PD
1PD
1PD
IPD
IPD
IPD
IPD
IPD
IPD
1PD
1PD
IPD
1PD
1PD
IPD
I1PD
IPD
IPD
IPD
1PD
IPD
IPD
IPD
IPD
1PD
IPD
1PD
1PD
IPD
1PD
IPD
1PD
1PD
IPD
1PD
1PD
1PD
1PD
1PD
1PD
IPD

12¢P
129
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
188
156
187

001
002
003
004
00s
006
007
o008
009
010
011
012
013
014
018
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
n3]
032
033
034
035
036
037
038
039
040
041



NDY1=YD(IPI)-YO 1PN 042

DZ1=2D(IPI)-20 IPD 043
IN2MN=IN1+1 IPD 044

DD 22 [IN2=IN2MNINNDQ IPD 048
JIPN=JIPAN+IN? IPD Cus
IPI=IPN(JIPN) IPN n47
DX2=XD(IPI)=XN IPD n4P
DY?2=YD(IPI)=YO IPD 049
D22=2D(IPI)-2n IPD NS0
DNmMX=DY1#D22-D21%DY2 IPD 051
DNMY=DZ1#DX2-DX1%#D22 IPD 052
DNMZ=DX1#DY2-DY1#DX2 IPD 082
IF(DNMZ cGEeNeN) GO Tn 21 IPh n&y
PMMX==NNMX 1en 0ss
DNMY==DNMY IPN Neg
DNMZ==DNMZ IPD 087

21 NMX=NMX+DNMX IPD 08A
NMY=NMY+DNMY IPD 089
NMZ=NMZ+DNMZ 1PN N0

22 CONTINUE IPD 061
23 CONTINUE IPD 062
PD(JPDO+1 ) =—-NMX/NMZ IPD NA13
PD(JPDO+2) ==NNMY/NMZ 1PD 064
24 CONTINUE IPD N65
C ESTIMATION OF 2XXs 2ZXYs AND 2YY IPD 0O&A
an JPDO=-5 IPD 067
JIPNN==NNPN IPND NAB
DO 34 IPNn=1sNDPO IPD N9
JPDO=JPDO+5 IPD 070
X0=xXD(1PO) IPD 071
YO=YD(1IPO) IPD 072
ZX0=PD(JPDO+1) IPD N73
2Y0=PD(JPDO+2) IPD 074
NMXX=0e0 IPD 075
NMXY=n.0 IPD 076
NMYX=Ne0 IPD 077
NMYY=0eN IPD 078
NMZ =0,0 IPD 079
JIPNO=JIPNO+NNPQ IPD 080
DO 33 IN1=1sNNPM] IPD 081
JIPN=JIPNO+IN1 IPD OR?2
IPI=IPN(JIPN) IPD 0813
DX1=XD(IPI)=-X0 IPD 084
DY1=YD(IPI)-YO IPD 085
JPD=s#(IPI-1) IPD 0R6
DZX1=PD(JPD+1)-2X0 I1PD 087
DZ2Y1=PD(JPD+2)-2Y0 IPD 088
IN2MN=IN1+1 IPD 089

DO 32 IN2=IN2MNsNNPO I1PD Na0
JIPN=JIPNO+IN?2 1Ph Nay
IPI=IPN(JIPN) 10D 0a2
DX2=XD(IPI)-X0 I1PD 093
DY2=YD(IPI)=-Y0Q IPD 094
JPD=S5#(IPI-1) IPD 095
DZX?=PD(JPD+1)-2X0 IPD 096
D2Y2=PD(JPD+2)-2Y0 IPD 097
DNMXX=DY1%#DZX2-DZX1#DY?2 IPD 098
DNMXY=DZX1#DX2-DX1#D2ZX2 IPD 099
DNMYX=DY1#D2Y2-D2Y1%*DY?2 IPD 100
DNMYY=D2Y1%#DX2-DX1#D2Y2 IPD 101

DNMZ =DX1#DY2 -DY1#DX2 1PD 102
IF(DNMZ ¢GEsDe0) GO TO 31 IPD 1073
DNMXX==DNMX X IPD 104
DNmXY=-DNMXY IPD 105
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DNMYX==~DNMYX
DNMYY==DNMYY
DNM2Z =-DNMZ
a1 NMXX=NMXX+DNM XX
NMXY=NMXY+DNMXY
NMYX=NMYX+DNMYX
NMYY=NMYY+DNMYY
NMZ =NMZ +DMMZ
32 CONT INUE
33 CONT INUE
PD(JPDN+3) =—MMXX/NMZ
PDIJPNO+4) == (NMXY+NMYX) /(2 ,0%#NMZ)
PD(JPDO+5) =—NMYY/NMZ
34 CONTINUF
RETURN
END

SUBROUTINF IDPTIP(XDsYDsZNsIPTsIPLsPDDsITIsXIToYIIZII)
C THIS SUBROUTINE PERFORMS PUNCTUAL INTFRPOLATICN OR EXTRAPO-

C LATIONs leEes DETERMINES THE 2 VALUE AT A POINT.
C THE INPUT PARAMETFEPRPS ARF

c
C
C
C
C
C
C
C
C
C
C
C
(¢
c
C
c

XD»sYDsZD = ARRAYS STORING THE Xs Ys AND Z COORDINATES»
RESPes OF DATA POINTS,

ARRAY STORING THE POINT NUMRERS OF THE VERTEXES

OF THE TRIANGLES»

IPL = ARRAY STORIMNG THE POINT NUMRFRS OF THE END
POINTS OF THE BORDER LINE SEGMENTS AND THEIR
RESPECTIVE TRIANGLE NUMBERS»

PDD = ARRAY STORING THE PARTIAL DFRIVATIVES AT THE
DATA POINTS»

IT] = TRIANGLE NUMBER OF THE TRIANGLE IN WHICH
THE INTERPOLATED POINT LIES»

XIIsYII = X AND Y COORDINATESs RESPes OF

INTEPPOL ATED POINT,

IPT

THE OUTPUT PARAMETFR 1S

ZI11 = INTFRPOLATEDN Z VALUE.

DECLARATION STATEMENTS
DIMENSION XD(10)sYD(10)s2ZD(10)sIPT(100)sI1PL(100),PDD(50)

COMMON/ IDGM/NDP-sNNP sNT sNL

COMMON/IDPI/NCF s ICF

DIMENSION CFo(27)

EQUIVALENCE (X0sCFO(1))s (YOsCFO(2))s (APsCFO(3))>
(BPsCFO(4))s (CPsCFO(S))s (DPsCFO(6))
(PONSCFO(T))s (P10OsCFN(B))s (P20sCFO(9)) >
(P30sCFO(10))9(P40sCFO(11))9(PSOsCFO(12))>
(PO1sCFO0(13))9(P11sCFN(14))s(P21sCF0(15))>
(P31+sCFO(16))9(P41sCFO(17))s(PO2+sCFO(18))»
(P12sCFO0(19))s(P22+CFO0(20))9(P325sCF0(21))>
(PO3sCF0(22))9(P13,CFO0(23))9(P23,CF0(24))>»
(PO4sCFO(25))9(P14sCFQ(2A) )9 (PO5sCFO(27))

DIMENSION CF(980)

DIMENSION X(3)9Y(3)92(3)sPD(15))

ONPINES WUN =

1 ZU(3)92ZVI(3)52UU(3)52ZUVI(3)92VVI(3)
EQUIVALENCE (ITOsFLITO)» (ITUSsFLITY)
REAL LUsLVsLUSNUVsLVSNUV

EQUIVALENCE (P5sP05)
DATA NCFMX/35/

C SETTING OF SOME LOCAL VARIABLES.

10 ITO=1ITI
XI10=XI1I
YI0=YI1l
NTL=NT+NL

44

Ion
)l
1PD
1PN
1PD
1PN
1PD
IPD
1PD
1PD
1PN
1PD
IPD
1PD
IPD
1PD

IP1
IPI
IPI
IPI

IPI
IPI
1Pl
IPI
IPI
IP1
IPI
IPI
IPI
IPI
IPI
1P
IPI
IPI
IPI
IP1
IPI
IP1
IPI
IP1
IPI
IPI
IPI
1PI
IP1
Pl
IPI
IPI
IPI
IPI
IPI
IPI
IPI
1Pl
IPI
IPI
1Pl
IP1
IPI
IPI

1nA
1n7
10p
170
110
111
112
11"
114
119
116
117
11FR
119
120
121

001
002
003
004
005
006
007
nna
009
010
n11
012
012
014
015
016
n7
n1e
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
061
042
043
044
045



[aNaNalaKaKal

DETERMINES IF SIMPLE INTERPOLATION IS APPLICABLE.
20 IF(ITALFeNTL) GO TO 130
IL1=ITO/NTL
IL2=1TO-IL1#NTL
IL1TA=10L1%3
IL2Ta=117%3
ITo=1PLIILITI)
IF(IL.1eNFeIL2) GO TO 40

CALCULATION OF ZII BY SIMPLE INTERPOLATION OR EXTRAPOLATION.

3n ASSIGN 31 TO LBL
GO TO Sa

31 211=210
RETURN

CALCULATION OF ZI1 AS A WEIGHTED MEAN OF TWO EXTRAPOLATED

VALUES.

40 ASSIGN 41 TO LBL
GO TO S5n

41 ZI11=210
ITO=IPL(IL2T3)
ASSIGN 42 TO LBL
GO TO 50

42 212=210

CALCULATES THE WEIGHTING COEFFICIENTS FOR EXTRAPOLATFD VALUES.

45 IP1=IPL(IL1T3-2)
IP2=1PL(IL1T3-1)
IP3=IPL(IL2T3-1)
X1=XD(IP1)
Y1=YD(IP1)
X2=XD([P2)
Y2=YD(1IP2)
X3=XD(IP3)
Y3=YD(1P3)}
DX02=x10-X2
DY02=YIn-Y2
DX32=X3-X2
DY32=Y3-Y2
DX21=Xx2-X1
DY21=Y2-Y1
W1l=(DX02#DX324DY02#DY32)##2/(DX32#DX32+DY32%DY32)
W2=(DX02#DX21+DY02#DY2]1 ) ##2/(DX21%DX21+4DY21%DY21)
CALCULATES 2I1 AS A WEIGHTED MEAN.
46 Z11=(W1%ZT14W2#212)/(W1+W2)
RETURN
INTERNAL ROUTINE FOR PUNCTUAL INTERPOLATION.
CHECKS IF THE NECESSARY CFO VALUES ARE SAVEDe
50 IF(NCFeEQen} GO TO 60
JCF==27
D0 51 LCF=1sNCF
JCF=JUCF+28
FLITJ=CF(JCF)
IF(ITN.EQeITY) GO TO 70
51 CONTINUE
CALCULATION OF NEW CFO VALUES.

DETERMINES THE COEFFICIENTS FOR THE COORNINATE SYSTEM TRANS-
FORMATION FROM THE X-Y SYSTEM TO THE U=V SYSTFMs AND CALCU-
LATES THE COEFFICIENTS OF THE POLYNOMIAL FOR INTERPOLATION.

LOADS COORDINATE AND PARTIAL DERIVATIVE VALUES AT THE
VERTEXESe.
60 JIPT=3%#(1T0-1)
JPD=0
DO 62 1I=1,3
JIPT=JIPT+1
IDP=IPT(JIPT)
X(1)=XN(IDP)
Y(I)=YD(IDP)
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1Pl
1P 1
IPl
IPI
IPI
Iel
IP1
Inl
TPI
IPI
IPI
IPI
IPI
IP1
IPI
IPI
IPI
Iel
el
1PI
IPI
IPI
IP1
1PI
IPI
IP1
IPI
IPI
IPI
IPI
IPI
1Pl
1PI
IPI
IPI
I1PI
IP1
IPI
IPI
IPI
IPI
IPI
IPI
1Pl
IPI
IPI
IPI
1Pl
IPI
1Pl
IPI
Pl
IP1
1PI
IP1
IPI
IPI
IPI
IPI
IP1
1Pl
IP1
1Pl
IPI
IPI

046
na?7
n48
049
nen
ns1

neo
ns13
054
055
0%6
057
nsg
059
n&O
061

062
062
064
n6s5
066
n67
068
n69
n70n
071

n72
072
074
075
076
n717
078
079
080
081
082
083
084
085
(oJ.1)
087
nA8
089
n90
no91
092
093
n94
098
096
na7
098
099
100
101
102
103
104
105
106
107
108
100
110



61

Z(1)=Zn(10P)

JPDD=5%(1DP-1)

PO 61 KXPD=1»5
Jep=JPD+1
JPDD=JPDD+1
PD(JPD)=PDN (JPDD)

CONT INUE

62 CONTINUE

C DETERMINING THE COEFFICIENTS FOR THE COORDINATE SYSTEM
¢ TRANSFORMATION FROM THF X-Y SYSTFM TO THE U-V SYSTFM
C AND VICE VFRSA

63 X0=X(1Y¥

Yo=Y(1)

A=X(2)-X0
B=X(3)-X0
Cc=Y(2)-YO0
D=Y(3)-Y0
AD=A*D

BC=R#*C

DLT=AD-BC
AP= D/DLT
BP=-B/DLT
CP=-C/DLT
DP= A/DLT

C CONVERSION OF THE PARTIAL DERIVATIVES AT THE VERTEXES OF THE
C TRIANGLE FOR THE U-V COORDINATE SYSTEM

64 AA=A#*A

ACT2=2 .n*A*C

CC=C*C

AB=A#*B

ADBC=AD+RC

CD=C*D

BB=B#*B

BDT2=2.0#B*D

DD=D*D

DO 65 1I=1,3
JPD=5#1
ZU(I)=A*PD(JPD-4)+C*PD(JPD-13)
ZV{1)=B*PD(JPD-4)+D*PD(JPDN-73)
ZUU (1) =AA*PD(JPD=2 )+ACT2#PN(JPD-1)+CC*PD(JIPD)
ZUV(T)=AB*PD(JPD-2)+ADRC*PD (JPN-1)+CD*PD(JPD)
ZVV(1)=BB*PD(JPD-2)+BDT2#PD(JPD-1) +DD*PD( JPD)

65 CONTINUE

C CALCULATION OF THE COEFFICIENTS OF THE POLYNOMIAL

66 P00=2(1)

P10=2U(1)
PO1=ZV(1)

P20=0.5%2UU(1)

P11=2UV(])

P02=0.5%ZVVI(1)
H1=2(2)-P00-P10-P20
H2=ZU(2)-P10~ZUU(])
H3=ZUU(2)=2UU (1)

P30= 10e0%Hl=4e0*H2+0e5%H
P40=-15.0%H1+T«O%H2 -H3
P50= 6e0%H1=340%H2+0e5%H3
H1=Z(3)-PN0=-P01-D02
H2=ZV(3)-Pn1-2VV(1)
H3=ZVV(3)=2VV(1)

PO3= 10eN*H1=4eN*H240¢5%H3

PO4=-15e0%H1+Te0*H2 =H2
PNS= 6e0%#H1-3,0*H2+0,5%H3
LU=SQRT(AA+CC)
LV=SQRT(BR+DD)

THXU=ATAN2(CsA)

46

1Pl
IPI
IPI
1P1
1Pl
1Pl
Iel
1P
IPI
IP1
IPI
IP1
1P]
1P1
IPI
1P
IP1
IP1
1Pl
IPI
1P1
IP1
1P1
IPI
IPl
IPI
IP]
IP1
IP1
IPI
IPI
IPI
IPI
IPI
IPI
Il
IPl
IPI
IP1
IPI
IP1
IPI
IPI
IPI
IPI
IPI
1Pl
IPI
IPI
IPI
IPI
IPl
1Pl
IP1
1P1
IPI
IPI
IP1
IPI
I1P1
1Pl
1Pl
1Pl
IP1
1Pl

111
11?2
112
114
1158
116
117
118
119
120
121
122
123
124
125
126
127
j2¢
129
120
131
132
133
134

136
137
128
130
140
141 .
142
143
144
1645
146
147
148
149
150
181
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175



THUV=ATAN2(D+B) -THXU
CSUV=COS ( THUV)
P41=5,0%LV*#CSUV/LU*PS50
Pl4=5.0%LU*CSUV/LV*PQS
H1=ZV(7)-PN1-P]1-04]
H2=ZUV(2)=P11-64.0#%41
P21= 3.n*H1-H2
P31==2.N*#H1+H2
H1=2U(3)-P10-P11-C14
H2=ZUV(3)-P11-4.0%P14
P12= 3,0%H1-H2,
P13=-2.n#*H1+H2"
THUS=ATAN2(D+Cy»B-A)~THXU
THSV=THUV-THUS
SNUV=S IN( THUV )
LUSNUV=LU*SNUV
LVSNUV=LV#SNUV

AA= SIN(THSV)/LUSNUV
BB=-COS( THSV) /LUSNUV

CC= SIN(THUS)/LVSNUV

PD= COS(THUS)/LVSNUV
AC=AA%CC

AD=AA#DD

BC=BB*CC
Gl=AA#ACH*(3.,0#BC+2.0*AD)
G2=CCHACH (3. 0%AD+7 « 0#RC)

H1==AA®AA#AAR (5 ,0%AA*#BB#P50+ (4. O*RC+AD)I*P4])
1 —CCHCCHCCH(S5.0#CCHODXPOS+ (4. 0*AD+BC)I*P14)

H2=0e5%#2VV(2)-P02-P12
H3=0.5%#2UU(3)-P20-P21
P22=(G1#H2+G2#H3-H1)/(G1+G2)

P32=H2-P22
P23=H3-P22
C SAVES THE CFO VALUES IN THE CF ARRAY.
67 IF(NCFeLToNCFMX) NCF=NCF +1
ICF=ICF+]
IF(ICFeGTeNCFMX) ICF=1

JCF=28#ICF-27
CF(JCF)=FLITO
DO 68 KCF=1927
JCF=JUCF+1
CF(JCF)=CFO(KCF)
68 CONTINUE
GO TO 8n

C LOADS THE CFO VALUES FROM THE CF ARRAY.

70 DO 71 KCF=1927
JCF=JCF+1
CFO(KCF)=CF (JCF)

71 CONTINUE

C TRANSFORMATION OF THE COORDINATE SYSTEM FROM X-Y TO U-V

80 DX=XII-XO0
DY=YII-YO
U=AP*DX+BP*DY
V=CP#DX+DP#*DY
C FVALUATION OF THE POLYNOMIAL

85 PO=PON+U* (P10+U*(P20+U*(P30+U*(P4N+U*P50))))
P1=PO1+U* (P11+U*(P21+U*(P31+U%*P4]1)))

P2=P02+U*(P12+U%* (P22+J#p32))
P3=P03+U* (P13+U*P23)
P4=PO4L+U*P14

Z10=P0+V# (P 1+V#(P2+V# (P3+VE(P4+V#P5))))

GO TO LBLs (31941942)
END
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Iel
1P1
1P
1P1
1Pl
1P
el
IP1
IPI
IP1
1P1
1Pl
IP1
Pl
IP1
1Pl
IP1
IP1
IPI
IP1

IP1
IP1
IPI
IP1
IPI
IP1
IPI
IPI
IPI
IP1

176
177
178
179
1e0
121
182
1213
124
185
186
187
18R
189
190
191
192
193
196
195
196
107
17R
19
200
2m
202
203
204
205
206
207
208
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211
212
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215
216
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219
220
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225
226
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228
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230
231
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233
234
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236
237
238



C

SUBROUTINF IDSFFT(MDsNDP sXDsYDsZDsWKsNXIsNYI s XIsYIs2I])
THIS SUBROUTINE PERFORMS SMOOTH SURFACF FITTING WHEN THFE PRO-

C JFCTIONS OF THE DATA POINTS IN THF X-Y PLANE ARF IRRFGULARLY
C DISTRIBUTED IM THE PLANE.

c

a¥aNalalaNaNalaNaXaNalaXaNalaNalaNakalaNalalaNaNaNalaNaNaNalaRa el

C

c

THE INPUT PARAMFTERS ARF

MD = MONF OF COMPUTATION (MUST RF 1y 29 DR 3
= 1 FOR NEW XN-YD»
= 2 FOR OLD XN-YDes MEW XI-Y],
= 3 FOR OLD XP-YDs OLD XI-YI, o
NDP = NUMBER OF DATA POINTS (MUST RE 4 OR GREATER)»
XD = ARRAY OF DIMENSION NDP STORING THE X COORDINATES
OF THE DATA PNINTS»
YD = ARRAY OF DIMENSION NDP STORING THE Y COORDINATES

OF THE DATA POINTS»

ZD = ARRAY OF DIMENSION NDP STORING THE Z CCORDINATES
OF THE DATA POINTS»

WK = ARRAY OF DIMENSION (2%NDP+NNP4+5)*¥NDP+NXT#NY]
TO BE USED AS A WORK AREA)»

NXI = NUMBER OF OUTPUT GRID POINTS IN THE X COORDINATE
(MUST BE 1 NR GRFATFR)»

NYI = NUMBER OF OUTPUT GRID POINTS IN THE Y COORDINATE
(MUST BE 1 OR GREATER)»

X1 = ARRAY OF DIMENSION NXI STORING THE X COORDINATES
OF THE OUTPUT GRID POINTS»
Y1l = ARRAY OF DIMENSION NYI STORING THF Y COORDINATES

OF THE OUTPIIT GRID POINTS»
WHERE NNP IS THE NUMBER OF ADDITIONAL DATA POINTS USED FOR
ESTIMATING PARTIAL DERIVATIVES AT EACH DATA POINT. THE VALUE
OF NNP MUST BE GIVFN THROUGH THE IDNN COMMON. NNP MUST BE 2
OR GREATERs RUT SMALLER THAN NDP.
THE OUTPUT PARAMETER IS
Z1 = DOUBLY-DIMENSIONED ARRAY OF DIMENSION (NXIsNYI)s
WHERE THE INTERPOLATED Z VALUES AT THE OUTPUT
GRID POINTS ARE TO BE DISPLAYED.
THE LUN CONSTANT IN THE DATA INITIALIZATION STATFMENT IS THE
LOGICAL UNIT NUMBER OF THE STANDARD OUTPUT UNIT AND IS»
THEREFOREs SYSTEM DEPENDENT.
DECLARATION STATEMFENTS
DIMENSION XD(10)sYD(10)+ZD(10)sWK(1000)»
1 XI(10)sY1(10)s21(100)
COMMON/ 1NPNN/NNP
COMMON/ IDGM/NDPC sNNPC sNT sNL
COMMON/INPI/NCFsICF
EQUIVALENCE (FNDPOsNDPO) s (FNDPPVsNDPPV)»
(FNNPOsNNPO) s (FNNPPV sNNPPV) »
(FNXIOsNXIO) s (FNXIPVSNXIPV )y
(FNYIOsNYIO) s (FNYIPVINYIPV ),
(FNToNT) s (FNLsNL)
DATA LUN/6/
SETTING OF SOME INPUT PARAMETERS TO LOCAL VARIABLES. (ALL MD)
1n MDO=MD
NDPO=NDP
NDPC=NDPO
NXI103MX]
NYIO=NYI
NNPO=NNP
NNPC=NNPO
ERROR CHECK. (ALL MD)
20 IF(MDNeLTe1e0ReMNNeGTo3) GO TO 90
IF(NDPO«LTe4) GO TO 90
IF{NXTOeLTeleOReNYIOeLTel) GO TO ©0
IF(NNPO«LT+2sORsNNPO<GE«NDPO) GO TO 90
IF(MDOeNE .1 GO TO 22
21 WK(1)=FNDPO
WK (2)=FNNPN

S NN =

48

I1SF
ISF
ISF
1SF
ISF
1SF
1SF
1SF
1SF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
1SF
ISF
ISF
ISF
I1SF
1SF
15F
ISF
I1SF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
1SF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF

001
002
0013
N04
nQas
06
no7
nnp
nng
010
011
012
D12
014
015
n16
™7
018
019
[avdy
021
022
023
n24
025
n26
027
028
029
0130
031
032
033
034
035
036
037
0138
039
040
041
042
043
044
045
046
047
048
049
050
ns1
ns52
ns53
054
055
056
057
058
n59
060
061
062
063
064
065



Go TO 24
22 FNDPPV=WK (1)
FNNPPV=WK ()
IF (NDPO «NE «NDPPV) GN TO 90
IF (NNPO «NE « NNPPV) GO TO 90
IF(MDNeNEo3) GO TO 24
23 FNXIPV=WK(3)
FNYIPV=Wy (4)
IF(NXIOeNENXIPV) GO TO 90
IF(NYIOeME<NYIDV) GO TO 90
GO TOo 3n
24 WK(3)=FNXIn
WK(4)=FNYIO
C ALLOCATION OF STORAGE AREAS IN THE WK ARRAY. (ALL MD)
30 NDNDM1=NDPO* (NDPO-1)
IWIPT=7
IWIPL=IWIPT+NDNDM1
IWIPN=IWIPL+NDNDM1
IWPD =IWIPN+NDPN#NNPO
IWIT =IWPD +NDPO#*5
DIVIDES THE X-Y PLANE INTO A NUMBER OF TRIANGLES AND
DETERMINES NNP POINTS NEARFST EACH DATA POINT. (MD=1)
40 IF(MDeGTel) GO TO 4?
41 CALL IDGEOM(XDsYDsWK (IWIPT) sWK(IWIPL)sWK(IWIPN))
WK(S)=FNT
WK (6)=FNL
GO TO 50
42 FNT=WK(5)
FNL=WK (6)

nN

C ESTIMATES PARTIAL DERIVATIVES AT ALL DATA POINTS. (ALL MD)

50 CALL IDPDRV(XDsYD9sZDsWK(IWIPN) sWK(IWPD))
C LOCATES ALL INTERPOLATED POINTS. (MD=1»2)
60 IF(MDN.EQ.3! GO TO 70
IXI=0
JWIT=IWIT=-1
INC=-1
DO 62 IYI=1sNYIO
INC==INC
YIT=YI(IY])
DO 61 IXID=1sNXIO
IXI=IXI+INC
JWIT=UWIT+INC
CALL IDLCTN(XDsYDsWK(IWIPT) sWK(IWIPL)»
1 XICIXI)oYIToWK(UWIT))
61 CONTINUE
IXI=IXI+INC
JWIT=UWIT+INC+NXIN
62 CONTINUE
C INTERPOLATION OF THE Z1 VALUESe. (ALL ™MD)
70 NCF=0
ICF=0
JWIT=IWIT-1
IXI=0
121=0
INC=-1
DO 72 IYI=1sNYIO
INC==INC
YII=YI(IY])
DO 71 IXIO=1sNXIO
IWIT=UWIT+INC
IXIsIXI+INC
1Z1=12Z1+INC

CALL IDPTIP(XDsYDsZDsWK(IWIPT)sWK(IWIPL) sWK(IWPD)»

1 WKIJIWIT) o XT(IXI)oYIIZICIZI))
71 CONTINUE

49

1SF
ISF
1SF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
1SF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF
ISF

neh
nNe7
n&A
069
070
n7T1
072
073
074
07s
n76
n77
nTe
079
080
(0]:31
082
0812
084
nAs
ngé6
087
nea
089
090
091
092
093
094
095
096
097
nea
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130



JWIT=JUWIT+INC+NXIN
IXI=IXI+INC
1Z1=1Z1+INC+NXIO
72 CONTINUE
C NORMAL FEXIT
RN RETURN
C ERROR EXIT
90 WRITE (LUNs2090) MDOsNDPOSNXIOsNYTQ s NNPN
RETURN
C FORMAT STATEMENT FOR ERROR MESSAGF
2090 FORMAT (1X/41H #*%#* IMPROPER INPUT PARAMETER VALUE(S)./
1 ™ MD =914910Xe5SHNDP =916910Xs5HNX] =9169
2 10X s5HNYI =916910X9sSHNNP =516/
3 35H ERROR DETECTED IN ROUTINE IDSFFT7/)
END

BLOCK DATA

C THIS SUBPROGRAM ENTERS A NUMBER INTO THE NNP CONSTANT IN THE
C IDNN COMMONs WHERE NNP IS THE NUMBER OF ADDITIONAL DATA POINTS
C USED FOR ESTIMATING PARTIAL DERIVATIVES AT EACH DATA POINT IN
C THE IDBVIP/IDSFFT SUBPROGRAM PACKAGF«. NNP IS SET TO 4
C INITIALLY BY THIS SUBPROGRAM.

COMMON/ IDNN/NNP

DATA NNP/4/

END

50

ISF
ISF
ISF
ISF
1SF
I1SF
1SF
1SF
ISF
1SF
ISF
ISF
ISF
ISF
1SF

18D
180
180
180
18D
IRD
1RD
18D
18D

131
132
133
134
135
176
127
138
139
140
141
142
143
la4
145

nn1
002
0013
004
005
006
007
008
009
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