
ITU-T SG 12 - STUDY PERIOD 1993-1996 DOC. SQ - 75 .96
EXPERTS GROUP ON SPEECH QUALITY

TITLE: An Algorithm for Estimating the Delay of Telephony Speech

SOURCE: Institute for Telecommunication Sciences
 National Telecommunications and Information Administration
 U.S. Department of Commerce

DATE: September 26, 1996

AUTHOR: Stephen Voran

CONTACT: Stephen Voran
 NTIA/ITS.N3
 325 Broadway
 Boulder, CO 80303 USA
 1-303-497-3839 (Phone)
 1-303-497-5323 (Fax)
 sv@bldrdoc.gov

ABSTRACT: This contribution is provided for informational purposes. It contains a
description of an algorithm that has sucessfully been used to estimate the delay of telephony
band speech. The algorithm features a coarse stage that uses speech envelopes and a fine
stage that uses speech power spectral densities. Observations on the performance of the
algorithm and its potential for extension beyond telephone band speech are offered. This
algorithm is included in the Draft ANSI T1 Standard on Multimedia Communications Delay,
Synchronization, and Frame Rate Measurement.

An Algorithm for Estimating the Delay of Telephony Speech

1. Introduction

This informational contribution contains a description of an algorithm that the Institute for
Telecommunication Sciences (ITS) has developed for estimating the delay of telephony band
speech. Section 2 of this contribution provides background information, motivating factors,
and a high-level description of the algorithm. Section 3 offers observations on the
performance of the algorithm, and its potential for extension beyond telephone band speech.
Appendix A provides a detailed description of the algorithm. This appendix was taken from
Section 7 of the Draft ANSI T1 Standard on Multimedia Communications Delay,
Synchronization, and Frame Rate Measurement, T1A1.5/96-101R8. The final page of
Appendix A provides a block diagram of the algorithm.

2. Application and Overview

The algorithm was developed at ITS as a component of the ITS research on perception-based
objective audio quality assessment tools. One desired output from this research is a
perception-based algorithm that compares the contents of two digital audio files in a way that
is consistent with human perception and judgment. Figure 1 shows how these two files are
created and where the delay estimation algorithm is used. One of the files contains digital
samples of a reference audio signal that went into the audio system under test. The other file
contains digital samples of the audio signal as it came out of the audio system under test.
These two files are referred to as the reference file and the test file, respectively. Because the
audio system under test is a physical device, audio events can emerge from its output only
after they have been presented to its input. The time required for the audio output to react to
an input audio event is the delay of that audio system. If like segments of the reference and
test files are to be compared by an objective audio quality assessment tool, the delay of the
audio system under test must be removed before the comparison is made. Before the delay
can be removed, it must be estimated. The algorithm described here estimates the delay of
the contents of the test file relative to the contents of the reference file. It was designed for
use on 4 kHz bandwidth speech, sampled at a rate of 8000 samples/second. Its potential for
other uses is discussed in Section 3.

Audio System
Under Test

Reference
File

Test
File

Delay
Estimation
Algorithm

A/D

A/D

Delay
Estimates

Audio Signal

Figure 1. Example application of delay estimation algorithm

The algorithm features a coarse stage that uses speech envelopes, and a fine stage that uses
speech power spectral densities. The coarse stage estimates delay to the nearest 4 ms.
Whenever possible, the fine stage then refines this estimate to the nearest sample (125 µs
when the sample rate is 8000 samples per second). Each stage involves a search over a range
of possible delay values. The two stage process is efficient because the coarse stage can
search a wide range of delay values, but at low resolution. If that same range were searched
at high resolution, many more computations would be required. Once the coarse stage has
finished its work, its low-resolution estimate can often be refined to a high resolution estimate
by the fine stage that follows. The fine stage needs to search only a narrow range of delay
values, consistent with the uncertainty of the coarse estimate.

Many digital speech coders do not preserve the speech waveform. By preserving a higher
level statistical description of the speech waveform, but not the speech waveform itself, these
devices achieve substantial compression ratios, and still generate output speech that sounds
very similar to the input speech. When speech waveforms are not preserved, waveform
cross-correlation and other waveform matching techniques will give ambiguous or erroneous
delay estimates. For this reason, the coarse stage of the ITS algorithm uses speech envelopes,
which are preserved by digital speech coders. Likewise, the fine stage uses speech power
spectral densities (psd’s) which are usually approximately preserved. For some speech coders
and other speech devices, psd’s are not adequately preserved and fine estimates are not
possible. In other cases, multiple fine estimates will give inconsistent results. This indicates
that, in the high resolution view at least, the delay is not constant. In these situations the
coarse delay estimate, along with its inherent uncertainty, becomes the total delay estimate.
Appendix A provides a detailed description of the algorithm. This appendix was excerpted
from the Draft ANSI T1 Standard on Multimedia Communications Delay, Synchronization,
and Frame Rate Measurement, T1A1.5/96-101R8. The final page of Appendix A provides a
block diagram of the algorithm.

Finally, note that the timing relationship between the two A/D converters in Figure 1 must be
known if an absolute delay value is required. While only positive delays are physically
possible, the samples in the test file may lead or lag the samples in the reference file,
depending on when the two A/D converters were started. If their starts were synchronized,
then the samples in the test file must lag the samples in the reference file.

3. Observations on the Algorithm

Our experience with this algorithm is limited to 4 kHz bandwidth speech with a sample rate
of fs=8000 samples/second. A simple experiment shows that, under laboratory conditions, the
delay estimation algorithm performs as we would expect. This experiment uses 30 speech
files, each containing a distinct English language sentence pair. Three female and three male
talkers were used, and each spoke five sentence pairs.

The 30 files were passed through the Modulated Noise Reference Unit (MNRU) at 6 different
settings. The MNRU is a reference condition that adds amplitude correlated noise to a speech

signal[1]. This allows the MNRU to simulate the quantization noise that is produced by
many waveform coders. The MNRU has a single control variable called Q, which essentially
specifies the SNR of the output speech in dB. Our experiment uses Q = 0, 10, 20, 30, 40, and
50. Table 1 shows the mean and standard deviation (calculated across the 30 files) of the
total estimated delay through the MNRU as a function of Q. Table 1 also indicates the
percentage of the 30 files for which the fine stage was able to produce a useable delay
estimate.

MNRU Setting Mean of Estimated

Delays
Standard Deviation of

Estimated Delays
Percentage of Files
with Useable Fine

Estimate
Q = 0 dB 0.2 Samples 0.9 Samples 3%

10 1.1 1.6 97
20 1.5 0.7 100
30 1.6 0.6 100
40 1.7 0.7 100
50 1.7 0.6 100

 Table 1. Delay Estimation Results for MNRU

Table 1 shows that when the speech waveform is severely distorted (Q=0 dB) the fine stage
rarely produces a useable estimate. When the speech waveform is less distorted (Q≥20 dB)
the fine stage always produces a useable estimate, and the standard deviations of the delay
estimates are smaller than when the waveform is more distorted. Also, as the speech
waveform becomes less distorted, the mean value of the estimated delay converges to 1.7
samples. This delay is caused by a filter inside the MNRU.

The 30 files were also passed through the T-Reference Condition (T-Ref) at 6 different
settings. The T-Ref is a reference condition that removes and interpolates samples of digital
speech signals to create a form of frequency modulation plus aliasing that can sound similar
to some lower bit-rate coders[2]. The T-Ref has a single control variable called T, and
smaller values of T correspond to larger amounts of distortion in the output speech signal.
Our experiment uses T = 2, 4, 8, 16, 32, and 64. The theoretical, time-averaged delay of our

software T-Ref implementation is − ⋅2
3

256
T

. Table 2 includes this theoretical delay value, as

well as the mean and standard deviation (calculated across the 30 files) of the total estimated
delay, and the percentage of the 30 files for which the fine stage was able to produce a
useable delay estimate.

Table 2 reveals the following. The mean of the delay estimates track the theoretical delay
values. The ability of the fine stage to produce a useable result increases as the waveforms
become less distorted. The standard deviation of the delay estimates decreases as the
waveforms become less distorted. Since the uncertainty of the coarse stage is ± 32 samples,
the difference between the mean of the delay estimates and the theoretical delay value is

larger when the coarse stage operates alone, and is smaller when when the fine stage provides
a refinement.

T-Ref
Setting

Theoretical
Average
Delay

Mean
of

Estimated Delays

Standard Deviation
 of

Estimated Delays

Percentage of Files
with Useable Fine

Estimate
T = 2 -85.3 Samples -87.5 Samples 18.7 Samples 0%

4 -42.7 -37.3 12.1 7
8 -21.3 -30.9 5.9 33
16 -10.7 -8.2 7.9 53
32 -5.3 -5.8 2.6 87
64 -2.7 -3.0 0.9 97

 Table 2. Delay Estimation Results for T-Reference

The algorithm also performs as we would expect under non-laboratory conditions. We have
used the algorithm to estimate the delays of over 10,000 test speech files. These files include
sentences and sentence pairs, and cover over 100 distinct combinations of speech coders and
network conditions or reference conditions, 36 talkers and 3 languages. As an example of
the selective behavior of the fine stage, we have observed that the fine stage of the algorithm
produces a useful estimate all of the time when Adaptive Differential Pulse Code Modulation
(ADPCM) coders are tested, some of the time when Vector Sum Excited Linear Predictive
(VSELP) coders are tested, and never when Sinusoidal Transform Coders (STC’s) are tested.
 The coarse stage always produces a useful estimate. Using either a priori information on
coder delays, or a pair-wise listening technique, we have verified that the total delay estimates
produced by the algorithm are correct, within the uncertainties inherent in the test files.

We have described an algorithm that generates a single delay estimate for a pair of files that
were completely digitized before the algorithm was started. It is clear that this algorithm
could also be implemented in an “on-line” or “live-data” fashion. Such an implementation
would continuously read two streams of audio samples and generate a continuing stream of
delay estimates.

We would expect this algorithm to perform similarly on wideband telephony speech (7 kHz
bandwidth, fs=16,000 samples/second.) We would expect performance to be much worse on
more general audio signals. In particular, music can exhibit periodicities at many different
time scales, ranging from milliseconds to 10's of seconds. These intrinsic periodicities can
make delay estimation an extremely challenging task. A thorough study of a wide range of
general audio signals might yield modifications to this algorithm that would provide
maximal robustness against this intrinsic challenge.

4. Summary

We have presented a description of an algorithm for estimating the delay of telephony band
speech. The algorithm features a coarse stage that uses speech envelopes, and a fine stage
that uses speech power spectral densities. This approach is motivated by the need for delay
estimates for audio and speech devices that do not preserve waveforms. The algorithm
behaves as desired for speech signals that have been distorted by the MNRU, the T-Ref, and
combinations of real speech coders and networks. The coarse stage of the algorithm always
produces a useful estimate with an uncertainty of ± 32 samples (4 ms). The fine stage of the
algorithm produces a refinement to that estimate whenever sufficient spectral detail is
preserved to make such a refinement meaningful.

References

[1] ITU-T Recommendation P.810, “Modulated Noise Reference Unit,” Geneva 1995.

[2] B. Cotton, “New Reference Condition for Very Low Bit Rate Voice Coder Evaluation”
Proc. IEEE Global Telecommunications Conference, Orlando, 1992.

Appendix A

Section 7 of the Draft ANSI T1 Standard on Multimedia Communications Delay,
Synchronization, and Frame Rate Measurement, T1A1.5/96-101R8.

7. Audio Measurements

7.1 Collecting Audio Frames for Measurements

7.1.1 Description of Audio Frames
An Audio Frame is a group of consecutive audio samples. The preferred number of samples
in an Audio Frame depends on the audio sample rate, and is given in Section 5.
(Note: This chart suggests that an Audio Frame should contain 128 samples when the sample
rate is 8000 samples/sec., 256 samples when the sample rate is 16,000 samples/sec., and 512
samples when the sample rate is 32,000, 44,100, or 48,000 samples/sec.)

7.1.2 Analog to Digital Conversion
The methods of measurement described in subsequent sections require the digitization of the
analog audio signal. The digitization process results in audio samples, which can then be
grouped into Audio Frames. The audio sample rate is determined by the bandwidth required
for the subsequent measurements. Using the Nyquist theorem, the sampling rate must be at
least twice this measurement bandwidth. For audio signals that are limited to speech, a
sample rate of 8000 samples per second is sufficient. For other audio signals, higher sample
rates may be required. The digitization process should result in at least 8 bits of precision.
Depending on the signal-to-noise ratio of the audio signal, additional precision up to 16 bits
will often benefit the methods of measurement that follow. The digitization process must
include appropriate low-pass filtering to prevent aliasing, and care should be taken to match
the impedance and balance of the audio signals.

7.1.3 Time Stamp Assignment
The time, T(n) associated with the Audio Frame n shall be read immediately following the
digitization of the last sample in Audio Frame n, and before the next sample is digitized.

7.2 Delay Measurement for Audio
Many channels of potential interest are capable of delivering useable audio signals without
preserving audio waveforms from input to output. This means that a robust delay
measurement must not rely on audio waveforms alone. The measurement described here
features a coarse stage that uses audio envelopes, and a fine stage that uses audio power
spectral densities (PSD’s). Audio envelopes and audio PSD’s are approximately preserved by
most channels.

The two stage process is efficient because the coarse stage searches a wide range of potential
delay values, but at low resolution. If that same range were searched at high resolution, many
more computations would be required. Once the coarse stage has finished its work, its low-
resolution measurement can often be refined to a high resolution measurement by the fine
stage that follows. The fine stage needs to search only a narrow range of potential delay

values, consistent with the uncertainty of the coarse measurement. For some channels, audio
PSD’s are not adequately preserved and fine measurements are not possible. In other cases,
multiple fine measurements will give inconsistent results. In these situations the coarse delay
measurement, along with its inherent uncertainty, becomes the final delay measurement.

7.2.1 General
A series of Audio Frames must be gathered from the channel input and the channel output
before measurement can proceed. The use of more Audio Frames increases both the
reliability and the complexity of the measurement. If a group of Audio Frames contains only
the silence between words or phrases in a spoken conversation, no reliable measurement will
be possible, and additional Audio Frames must be acquired before measurement can proceed.
To detect an insufficient audio level condition, the RMS level of the audio samples in the
group of Audio Frames acquired from the channel input should be compared with the
nominal RMS level of the channel input. This nominal level may be taken from the channel
input specifications or it may be measured. If the RMS level of the samples in the group of
acquired channel input Audio Frames is more than 30 dB below the nominal channel input
level, then additional Audio Frames must be acquired before the measurement can proceed.
Similarly, the RMS level of the audio samples in the group of Audio Frames acquired from
the channel output should be compared with the nominal RMS level of the channel output. If
the RMS level of the samples in the group of acquired channel output Audio Frames is more
than 30 dB below the nominal channel output level, then additional Audio Frames must be
acquired before the measurement can proceed

For typical speech signals, the use of larger groups of Audio Frames reduces the possibility
that the group contains only silence. Beyond this consideration, more Audio Frames bring
more data to the measurement, and the measurement will be more reliable. For audio signals
that are limited to speech, it is preferred that 256 Audio Frames be taken from the channel
input and the channel output. The measurement will also work with 128 or 64 frames. When
the sample rate is 8000 samples per second, and each frame contains 128 samples, these
choices correspond to approximately 4 seconds, 2 seconds, or 1 second of speech signal
respectively. The expected audio delay should not be more than 25% of the duration of the
speech signal used in this measurement. When 256 frames (4 seconds) of speech signal are
used, delays up to 1 second may be measured. When 64 frames (1 second) are used, only 250
ms of delay should be measured. The measurements are most efficiently computed when the
number of frames acquired is a power of two.

7.2.2 Signal Preparation
When a measurement of audio delay is required, the Audio Frame most recently acquired
from the channel input A(n), is concatenated with some number of previously acquired Audio
Frames (e.g. A(n), A(n-1), ... A(n-255)), to form the most recent time-history of channel
input samples. Similarly, the Audio Frame most recently acquired from the channel output
A(m), is concatenated with the same number of previously acquired Audio Frames (e.g.
A’(m), A’(m-1), ... A’(m-255)), to form the most recent time-history of channel output
samples. According to Section 5, the time difference between these two acquisition

processes, is T’(m)-T(n). Positive values indicate that acquisition at the channel output
happens after acquisition at the channel input.

The input samples are placed in an array called ref, which contains samples ref(1), ref(2), ...
ref(L1). The output samples are placed in an identically sized array called test, which
contains samples test(1), test(2), ... test(L1). The mean value of each array is then removed in
order to eliminate any DC component in the digitized audio signals:

ref i ref i ref j test i test i test j i LL

j

L

L

j

L

() () (), () () (), .= − ⋅ = − ⋅ ≤ ≤
= =

∑ ∑1
1

1

1
1
1

1

1

1 1

Next, each array is normalized to a common level:

ref i ref i ref j test i test i test j

i L

L

j

L

L

j

L

() () () , () () () ,

.

, ,= ⋅










−
= ⋅











−

≤ ≤

−
=

−
=

∑ ∑1
1 1

2

1

1

1
1 1

2

1

11
2

1
2

1 1

7.2.3 Coarse Stage
The measurement methodology starts with a coarse stage that extracts and cross-correlates
audio envelopes. Audio envelopes are approximately preserved by most channels.

7.2.3.1 Envelope Extraction
Audio envelopes are calculated as follows. The digitized audio signals in ref and test are
rectified by taking the absolute value of each sample. Because the original digitized audio
signals in ref and test will be required by the fine sage, the rectified signals, and other
subsequent intermediate results are stored in the temporary arrays ref_temp and test_temp:

ref temp i ref i test temp i test i i L_ () () , _ () () , .= = ≤ ≤1 1

The rectified signals are then low-pass filtered to create audio envelopes with a bandwidth of
approximately 125 Hz. It is this low-pass filtering and subsequent subsampling that gives the
coarse stage its reduced resolution and reduced computational load. The bandwidth reduction
factor and the subsampling factor are both specified by the variable B. Appropriate values of
B for some common audio sample rates are given in table 7.1

Audio Sample Rate (samples/second) B

8000 32
16,000 64
32,000 128
44,100 176
48,000 192

Table 7.1: Values of the bandwidth reduction factor, B.

When the audio sample rate is 8000 samples per second, the bandwidth must be reduced by a
factor of B=32, from a nominal value of 4000 Hz to a nominal value of 125 Hz. The required
bandwidth reduction can be adequately approximated using a seventh order, Infinite Impulse
Response (IIR), low-pass Butterworth filter with a -3 dB point at 125 Hz:

out i b in i j a out i j i L

where out i in i i

j

j

j

j

() () (), ,

() () , .

= ⋅ − − ⋅ − ≤ ≤

= = ≤
= =

∑ ∑
0

7

1

7

1 1

0 0

The filter coefficients are given in table 7.2.

j aj bj

0 1.00000000 0.00553833 x 10-7
1 -6.55883158 0.03876830 x 10-7
2 18.44954612 0.11630512 x 10-7
3 -28.85178274 0.19384125 x 10-7
4 27.08958968 0.19384206 x 10-7
5 -15.27097592 0.11630465 x 10-7
6 4.78557610 0.03876843 x 10-7
7 -0.64312159 0.00553831 x 10-7

Table 7.2: Coefficient values for seventh order, IIR, low-pass Butterworth filter.

Both the ref _temp and test _temp arrays are low-pass filtered using this filter. Next ref _temp
and test _temp are subsampled by retaining only every Bth sample, resulting in a total of L2
samples. For example, when B=32, samples 1, 33, 65, etc. would be retained. When 256
Audio Frames, each with 128 samples are used as input to the coarse stage, L1=32,768, and
L2=L1/B=1024 samples result from the subsampling process. Both ref _temp and test _temp
now contain audio envelopes. Finally, the audio envelopes in ref _temp and test _temp are
normalized. The mean value of each array is removed, and each array is divided by its
standard deviation.

ref temp i ref temp i ref temp j

test temp i test temp i test temp j

ref temp i ref temp i ref temp j

test temp i test temp i test temp j

i L

L

j

L

L

j

L

L

j

L

L

j

L

_ () _ () _ (),

_ () _ () _ (),

_ () _ () _ () ,

_ () _ () _ () ,

.

,

,

= − ⋅

= − ⋅

= ⋅








 −

= ⋅








 −

≤ ≤

=

=

−

=

−

=

∑

∑

∑

∑

1
2

1

2

1
2

1

2

1
2 1

2

1

2

1
2 1

2

1

2

1
2

1
2

1 2

7.2.3.2 Envelope Cross-Correlation
The cross-correlation between the audio envelopes in ref _temp and test _temp is calculated
by way of a circular convolution, which in turn is calculated by way of Discrete Fourier
Transforms (DFT’s) or Fast Fourier Transforms (FFT’s). First, the array ref _temp is extend
from length L2 to length 2⋅ L2 by appending L2 zeros. In the example above, L2=1024 zeros
would be added to arrive at a final array size of 2048. Next the array test _temp is time-
reversed. To do this in-place, samples 1 and L2 of test _temp are exchanged, as are samples 2
and L2-1, samples 3 and L2-2, etc. When L2 is even, the final exchange is between samples
L2/2 and L2/2 + 1. When L2 is odd, the final exchange is between samples L2/2 - 1/2, and
L2/2 + 3/2. After this time reversal, test _temp is extended from length L2 to length 2⋅ L2 by
appending L2 zeros.

Now ref _temp and test _temp are transformed using DFT’s or FFT’s. When the array
length, 2⋅ L2, is a power of two, FFT’s can be used. If 2⋅ L2 is not a power of two, DFT’s
can be used. As an alternative, the number of zeros appended in the previous step may be
increased so that the array length is a power of two and FFT’s may then be used. In any case,
an in-place transformation algorithm may be used, resulting in transformed versions of ref
_temp and test _temp overwriting the previous versions. The transformations result in
complex numbers.

Next, the complex samples stored in ref _temp and test _temp are multiplied, sample by
sample, and the complex results go into an new array called cross_corr, which has the same
length as ref _temp and test_temp:

cross corr i ref temp i test temp i i L_ () _ () _ (), .= ⋅ = ⋅for to1 2 2

The array cross_corr is now Inverse Fast Fourier Transformed or Inverse Discrete Fourier
Transformed, as dictated by its length. An in-place transformation may be used. In theory,
the resulting contents of cross_corr would be real numbers. In practice, finite-precision

calculations yield a small imaginary component. At this point, the real part of cross_corr is
retained and the imaginary part is discarded. Next, each result in cross_corr is normalized:

cross corr i cross corr i L i L_ () _ () / () , .= − ≤ ≤ ⋅2 1 1 2 2

Note that this normalization is required in order to get true cross-correlation values between
-1 and +1, but it does not affect the smoothing or peak-finding steps that follow.

The array cross_corr holds the values of the cross-correlation’s between the speech envelopes
in ref_temp and test_test at every possible shift of those envelopes. These results are then
smoothed with a symmetric, second-order, low-pass FIR filter, and stored in a smoothed
cross-correlation array:

cross corr s i cross corr i cross corr i cross corr i

i L

cross corr s i cross corr i i L

_ _ () . _ () . _ () . _ () ,

,

_ _ () _ (), , .

= ⋅ − + ⋅ + ⋅ +
≤ ≤ ⋅ −

= = ⋅

25 1 5 25 1

2 2 2 1

1 2 2

After this smoothing, the largest value in cross_corr_s is taken as an indication of the coarse
delay:
coarse delay L j B

L j B

sample rate

cross corr s j cross corr s i i L i j

_ ()

()

_
,

_ _ () _ _ (), , .

= − ⋅

= − ⋅

> ≤ ≤ ⋅ ≠

2

2

1 2 2

samples,

seconds

where

The uncertainty in the value of coarse_delay at this point is taken to be ± B samples. If
cross_corr_s does not contain a unique maximal value, then the measurement must be made
again using new audio samples.

7.2.4 Fine Stage
In many cases, the ±B sample uncertainty inherent in the coarse measurement of audio delay
can be reduced by a fine stage of the delay measurement.

7.2.4.1 Location Selection
The fine stage is performed at n1 locations in the acquired audio signal. When audio signals
are limited to speech and 256 Audio Frames are used in the measurement of audio delay, the
value of n1 is 6. Other values of n1 may be more appropriate for other audio signals. At each
location, a range of potential delay values from -3⋅B to 3⋅B samples is searched.

The locations where the fine stage is performed are randomly selected. At each location, 8⋅B
samples are taken from the array ref and are stored in ref_temp and 2⋅B samples are taken

from the array test and are stored in test_temp. The samples taken from test are offset by the
measured coarse delay:

ref_temp(i) = ref(location-4⋅B-1+i), 1≤ i ≤ 8⋅B ,
test_temp(i) = test(location+coarse_delay-B-1+i), 1≤ i ≤ 2⋅B ,

where location is a uniformly distributed pseudo-random variable from the interval:
[max(4⋅B +1 , 1-coarse_delay+B) , min(L1-4⋅B +1 , L1-coarse_delay-B+1)].

The fine delay measurement will not work in silent regions. Two level tests are conducted at
each location to insure that the audio signal there is within 30 dB of the average audio signal
level:

− ≤ ⋅








 − ≤ ⋅









⋅ −

=

⋅

⋅ −

=

⋅

∑ ∑30 10 30 1010
1

8 1
2

1

8

10
1

2 1
2

1

2

log _ () , log _ () .B

B

B

B

ref temp i test temp i
i i

If either of the level tests is failed, then a new location must be selected.

7.2.4.2 Power Spectral Density Calculations
The fine stage works by cross-correlating audio power spectral densities (PSD’s) at each of
the selected locations. The PSD’s are calculated as follows. The 8⋅B samples in ref_temp are
broken into groups of 2⋅B samples per group. There are 6⋅B+1 such groups. Each group of
samples is stored in an array called ref_temp_i:

ref_temp_i(j)=ref_temp(i+j-1) , 1≤ i ≤ 6⋅B+1, 1≤ j ≤2⋅B .

Each ref_temp_i array and the test_temp array is multiplied by a Hamming window, and then
transformed to the frequency domain using a length 2⋅B DFT or FFT. These steps can be
done in place:

ref_temp_i(j) = ref_temp_i(j) ⋅ {.54 - .46 ⋅ cos(2π(j-1)/(2⋅B-1))}, 1≤ i ≤6⋅B+1, 1≤ j ≤2⋅B ,
test_temp(j) = test_temp(j) ⋅ {.54 - .46 ⋅ cos(2π(j-1)/ (2⋅B-1))}, 1≤ j ≤2⋅B ,
ref_temp_i = FFT (ref_temp_i) , 1≤ i ≤6⋅B+1 ,
test_temp = FFT (test_temp) .
In the frequency domain, only the first B+1 complex samples in each array are unique, so
only those samples are saved. The magnitude of each retained sample is taken, resulting in
the square root of the power spectral density of each frame. These results are referred to as
PSD’s for simplicity.

ref_temp_i(j) = | ref_temp_i(j) | , 1≤ i ≤6⋅B+1, 1≤ j≤B+1 ,
test_temp(j) = | test_temp(j) | , 1≤ j ≤ B+1 .

The mean value of each PSD is then removed:

ref temp i j ref temp i j ref temp i j i B j B

test temp j test temp j test temp j j B

B

j

B

B

j

B

_ _ () _ _ () _ _ (), , ,

_ () _ () _ (), .

= − ⋅ ≤ ≤ ⋅ + ≤ ≤ +

= − ⋅ ≤ ≤ +

+

=

+

+

=

+

∑

∑

1
1

1

1

1
1

1

1

1 6 1 1 1

1 1

7.2.4.3 Power Spectral Density Cross-Correlation
A cross-correlation value is calculated between the PSD stored in the test_temp array and
each of the 6⋅B+1 PSD’S stored in the ref_temp_i arrays.

cross corr i

ref temp i j
j

B
test temp j

ref temp i j
j

B
test temp j

j

B

i B_ ()

_ _ () _ ()

_ _ () _ ()

, .=

⋅
=

+
∑

=

+
∑

=

+
∑

























≤ ≤ ⋅ +1

1

1

22

1

1
1

22

1

1

1 6 1

The array cross_corr now holds the values of the cross-correlations between the reference and
test PSD’s at each time-domain shift. Note that the second term in the denominator of the
equation for cross_corr is a normalizing constant that is required to get true cross-correlation
values between -1 and +1. It does not have any impact on the peak-finding that follows, but
does impact subsequent processing of the fine delay measurements. The largest value in
cross_corr is taken as an indication of the fine delay:

fine delay k B j

B j

sample rate

corr k cross corr j k n

cross corr j cross corr i i B i j

_ _ ()

()
_

,

_ _ (), ,

_ () _ (), ., .

= ⋅ + −

= ⋅ + −

= ≤ ≤
> ≤ ≤ ⋅ + ≠

3 1

3 1

1 1

1 6 1

samples,

seconds

where

If cross_corr does not contain a unique maximal value, then the fine stage procedure must be
repeated at a new location. This entire fine stage, starting with the selection of a location, is
repeated n1 times, resulting in n1 fine delay measurements stored in fine_delay_1,
fine_delay_2, ... fine_delay_n1, and n1 corresponding correlation values stored in corr_1,
corr_2, ... corr_n1, respectively. Note that each of the fine delay estimates will fall between
-3⋅B and 3⋅B, inclusive.

7.2.4.4 Fine Delay Measurement Processing
Once the n1 fine delay measurements and corresponding cross-correlation values have been
calculated, they are further processed to determine how they should be used.

First, each of the n1 correlation values are tested against a threshold:

1
2 1 1≤ ⇒ ≤ ≤corr k fine delay k k n_ _ _ , .is retained

By this process, only fine delay measurements where at least half the PSD variance is
accounted for are retained. The number of fine delay measurements that pass this test is n2,
and the measurements are now renumbered as fine_delay_1, fine_delay_2, ... fine_delay_n2.
If n2 < n1/2, the fine stage will not produce a useful result. In this event, the value of
fine_delay is set to “invalid” and the fine stage is terminated.

If n2 ≥ n1/2, the fine stage continues and tests the remaining n2 fine delay measurements for
consistency with the coarse delay measurement. Since the uncertainty in the coarse delay
measurement is ±B samples, and the coarse delay has been removed, only fine delay
measurements between -B and B samples are retained:

fine delay k B fine delay k k n_ _ _ _ , .≤ ⇒ ≤ ≤is retained 1 2

The number of fine delay measurements that pass this test is n3, and the measurements are
now renumbered as fine_delay_1, fine_delay_2, ... fine_delay_n3. If n3 < n1/2, the fine
stage will not produce a useful result. In this event, the value of fine_delay is set to “invalid”
and the fine stage is terminated.

If n3 ≥ n1/2, the fine stage continues and tests the for consistency among the remaining n3
fine delay measurements. This test requires a search through all possible subsets of size n3,
n3-1, on down to size n1/2. There is one possible subset of size n3, n3-1 possible subsets of
size n3-1, n3⋅(n3-1)/2 possible subsets of size n3-2, and so forth. For each subset, the spread
of the fine delay measurements is tested:

max{ _ _ } min{ _ _ } current subset

i i

Bfine delay i fine delay i fine delay i− ≤ ∈2 , _ _ .

The largest subset that passes this test is called the final subset. The fine stage fails to
produce a useful result when:
y no subset passes this test, or
y there is not a single, largest subset that passes this test.
In either of these events, the value of fine_delay is set to “invalid” and the fine stage is
terminated.

The number of fine delay measurements in the final subset is n4. The mean value of these n4
fine delay measurements is taken as the final fine delay measurement:

fine delay fine delay i fine delay in

j

n

_ _ _ , _ _ .= ⋅ ∈
=

∑1
4

1

4

finalsubset

The spread of the n4 measurements in the final sub-set is retained as a measure of uncertainty
in the final fine delay measurement:

spread fine delay i fine delay i fine delay i

i i
= max{ _ _ } min{ _ _ } final subset .− ∈, _ _

7.2.5 Combining Coarse and Fine Stage Results
If the fine stage was not able to produce a useful fine delay measurement, then the fine stage
will have set fine_delay to “invalid”. In this case, the coarse measurement alone becomes the
delay measurement. If the fine stage was able to produce a useful fine delay measurement,
then the coarse measurement is augmented by that fine measurement and the uncertainty is
reduced from that of the coarse measurement alone:

fine delay invalid delay coarse delay B

fine delay invalid delay coarse delay fine delay spread

_ " " _ ,

_ " " _ _ .

= ⇒ = ±
≠ ⇒ = + ±

These values of delay are correct only when the acquisition of audio samples from channel
input and the channel output are simultaneous. Time stamps can be used to correct the delay
measurement for non-simultaneous acquisition:

delay delay T m T n= + −' () () , where T’(m) is the time associated with the start of sample
acquistion at the channel output,and T(n) is the time associated with the start of sample
acquistion at the channel input.

Variables used in Section 7.

B: bandwidth reduction factor and subsampling factor
coarse_delay: delay as measured by coarse stage
cross_corr: temporary array, ultimately holds cross-correlation values
cross_corr(i): ith element of cross_corr array
cross_corr_s: smoothed version of cross_corr in coarse stage
cross_corr_s(i): ith element of cross_corr_s array
delay: final output of two-stage delay measurement
fine_delay: delay as measured by fine stage
fine_delay_k: kth fine delay masurement
L1: number of audio samples input to measurement
L2: number of audio samples after subsampling
location: location where fine stage makes a measurement
n1: number of measurements made by fine stage
n2: number of fine stage measurements retained after first test
n3: number of fine stage measurements retained after second test
n4: number of fine stage measurements retained after third test
ref: array of audio samples from channel input
ref(i): ith element of ref array
ref_temp: temporary storage array for channel input audio samples as they are processed
ref_temp(i): ith element of ref_temp array
ref_temp_i : temporary storage array for channel input audio samples as they are processed
ref_temp_i(j): jth element of ref_temp_i array
sample_rate: rate at which channel input and channel output are digitized
spread: spread in the final subset of fine delay measurements
test: array of audio samples from channel output
test(i): ith element of test array
test_temp: temporary storage array for channel output audio samples as they are

 processed
test_temp(i): ith element of test_temp array

Figure 1

7.2.2 Signal Preparation
-Acquire Signal
-Time Stamp
-Remove Mean
-Normalize Level

7.2.3.1 Envelope Extraction
-Rectify
-Low-Pass Filter
-Subsample
-Remove Mean
-Normalize Level

7.2.3.2 Envelope Correlation
-Append Zeros, Time Reverse
-Transform
-Multiply
-Inverse Transform
-Extract Real Part, Normalize
-Smooth
-Locate Peak

7.2.2 Signal Preparation
-Acquire Signal
-Time Stamp
-Remove Mean
-Normalize Level

7.2.3.1 Envelope Extraction
-Rectify
-Low-Pass Filter
-Subsample
-Remove Mean
-Normalize Level

7.2.4.1 Location Selection
-Pick Location
-Test Signal Levels

7.2.4.2 PSD Calculations
-Segment into Groups
-Window
-Transform
-Take Magnitude
-Remove Mean

7.2.4.2 PSD Calculations
-Segment into Groups
-Window
-Transform
-Take Magnitude
-Remove Mean

7.2.4.3 PSD Correlation
-Correlate
-Locate Peak

7.2.4.4 Measurement Processing
-Test Correlation Value
-Test Consistency with coarse_delay
-Test Self Consistency
-Find Mean and Spread

7.2.5 Combining Results
-Coarse Alone
-Coarse plus Fine
-Time Stamps

Channel Input, A(n)
Channel Output, A’(m)

Timestamp, T(n) Timestamp, T’(m)

Timestamps,
 T(n), T’(m)

delay

 coarse_delay fine_delay

coarse_delay

