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ABSTRACT: This contribution is provided for informational purposes.  It contains a 
description of an algorithm that has sucessfully been used to estimate the delay of telephony 
band speech.  The algorithm features a coarse stage that uses speech envelopes and a fine 
stage that uses speech power spectral densities.  Observations on the performance of the 
algorithm and its potential for extension beyond telephone band speech are offered.   This 
algorithm is included in the Draft ANSI T1 Standard on Multimedia Communications Delay, 
Synchronization, and Frame Rate Measurement. 



  

 
 

An Algorithm for Estimating the Delay of Telephony Speech 
 
1.  Introduction 
 
This informational contribution contains a description of an algorithm that the Institute for 
Telecommunication Sciences (ITS) has developed for estimating the delay of telephony band 
speech.  Section 2 of this contribution provides background information, motivating factors, 
and a high-level description of the algorithm.  Section 3 offers observations on the 
performance of the algorithm, and its potential for extension beyond telephone band speech.  
Appendix A provides a detailed description of the algorithm.  This appendix was taken from 
Section 7 of the Draft ANSI T1 Standard on Multimedia Communications Delay, 
Synchronization, and Frame Rate Measurement, T1A1.5/96-101R8.  The final page of 
Appendix A provides a block diagram of the algorithm. 
 
2. Application and Overview 
 
The algorithm was developed at ITS as a component of the ITS research on perception-based 
objective audio quality assessment tools.  One desired output from this research is a 
perception-based algorithm that compares the contents of two digital audio files in a way that 
is consistent with human perception and judgment.  Figure 1 shows how these two files are 
created and where the delay estimation algorithm is used.  One of the files contains digital 
samples of a reference audio signal that went into the audio system under test.  The other file 
contains digital samples of the audio signal as it came out of the audio system under test.  
These two files are referred to as the reference file and the test file, respectively.  Because the 
audio system under test is a physical device,  audio events can emerge from its output only 
after they have been presented to its input.  The time required for the audio output to react to 
an input audio event is the delay of that audio system. If like segments of the reference and 
test files are to be compared by an objective audio quality assessment tool, the delay of the 
audio system under test must be removed before the comparison is made.  Before the delay 
can be removed, it must be estimated.  The algorithm described here estimates the delay of 
the contents of the test file  relative  to the contents of the reference file.  It  was designed for 
use on 4 kHz bandwidth speech, sampled at a rate of 8000 samples/second.  Its potential for 
other uses is discussed in Section 3. 
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Figure 1.  Example application of delay estimation algorithm 



  

 
 

The algorithm features a coarse stage that uses speech envelopes, and a fine stage that uses 
speech power spectral densities.  The coarse stage estimates delay to the nearest 4 ms.  
Whenever possible, the fine stage then refines this estimate to the nearest sample (125 µs 
when the sample rate is 8000 samples per second).  Each stage involves a search over a  range 
of possible delay values. The two stage process is efficient because the coarse stage can 
search a wide range of delay values, but at low resolution.  If that same range were searched 
at high resolution, many more computations would be required.  Once the coarse stage has 
finished its work, its low-resolution estimate can often be refined to a high resolution estimate 
by the fine stage that follows.  The fine stage needs to search only a narrow range of delay 
values, consistent with the uncertainty of the coarse estimate. 
 
Many digital speech coders do not preserve the speech waveform.  By preserving a higher 
level statistical description of the speech waveform, but not the speech waveform itself, these 
devices achieve substantial compression ratios, and still generate output speech that sounds 
very similar to the input speech.  When speech waveforms are not preserved, waveform 
cross-correlation and other waveform matching techniques will give ambiguous or erroneous 
delay estimates.  For this reason, the coarse stage of the ITS algorithm uses speech envelopes, 
which are preserved by digital speech coders.  Likewise, the fine stage uses speech power 
spectral densities (psd’s) which are usually approximately preserved.  For some speech coders 
and other speech devices, psd’s are not adequately preserved and fine estimates are not 
possible.  In other cases, multiple fine estimates will give inconsistent results.  This indicates 
that, in the high resolution view at least, the delay is not constant.  In these situations the 
coarse delay estimate, along with its inherent uncertainty, becomes the total delay estimate. 
Appendix A provides a detailed description of the algorithm.  This appendix was excerpted 
from the Draft ANSI T1 Standard on Multimedia Communications Delay, Synchronization, 
and Frame Rate Measurement, T1A1.5/96-101R8.  The final page of Appendix A provides a 
block diagram of the algorithm. 
 
Finally, note that the timing relationship between the two A/D converters in Figure 1 must be 
known if an absolute delay value is required.  While only positive delays are physically 
possible, the samples in the test file may lead or lag the samples in the reference file, 
depending on when the two A/D converters were started.  If their starts were synchronized, 
then the samples in the test file must lag the samples in the reference file. 
 
3.  Observations on the Algorithm 
 
Our experience with this algorithm is limited to 4 kHz bandwidth speech with a sample rate 
of fs=8000 samples/second.  A simple experiment shows that, under laboratory conditions, the 
delay estimation algorithm performs as we would expect.  This experiment uses 30 speech 
files, each containing a distinct English language sentence pair.  Three female and three male 
talkers were used, and each spoke five sentence pairs. 
 
The 30 files were passed through the Modulated Noise Reference Unit (MNRU) at 6 different 
settings.  The MNRU is a reference condition that adds amplitude correlated noise to a speech 



  

 
 

signal[1].  This allows the MNRU to simulate the quantization noise that is produced by 
many waveform coders.  The MNRU has a single control variable called Q, which essentially 
specifies the SNR of the output speech in dB.  Our experiment uses Q = 0, 10, 20, 30, 40, and 
50.  Table 1 shows the mean and standard deviation (calculated across the 30 files) of the 
total estimated delay through the MNRU as a function of Q.  Table 1 also indicates the 
percentage of the 30 files for which the fine stage was able to produce a useable delay 
estimate.  
 
MNRU Setting  Mean of Estimated 

Delays 
Standard Deviation of 

Estimated Delays 
Percentage of Files 
with Useable Fine 

Estimate 
Q = 0 dB 0.2 Samples 0.9 Samples 3% 

10 1.1 1.6 97 
20 1.5 0.7 100 
30 1.6 0.6 100 
40 1.7 0.7 100 
50 1.7 0.6 100 

 
   Table 1.  Delay Estimation Results for MNRU 
 
Table 1 shows that when the speech waveform is severely distorted (Q=0 dB) the fine stage 
rarely produces a useable estimate.  When the speech waveform is less distorted (Q≥20 dB) 
the fine stage always produces a useable estimate, and the standard deviations of the delay 
estimates are smaller than when the waveform is more distorted.  Also, as the speech 
waveform becomes less distorted, the mean value of the estimated delay converges to 1.7 
samples.  This delay is caused by a filter inside the MNRU. 
 
The 30 files were also passed through the T-Reference Condition (T-Ref) at 6 different 
settings. The T-Ref is a reference condition that removes and interpolates samples of digital 
speech signals to create a form of frequency modulation plus aliasing that can sound similar 
to some lower bit-rate coders[2].  The T-Ref has a single control variable called T, and 
smaller values of T correspond to larger amounts of distortion in the output speech signal.  
Our experiment uses T = 2, 4, 8, 16, 32, and 64.  The theoretical, time-averaged delay of our 

software T-Ref implementation is − ⋅2
3

256
T

.   Table 2 includes this theoretical delay value, as 

well as the mean and standard deviation (calculated across the 30 files) of the total estimated 
delay, and the percentage of the 30 files for which the fine stage was able to produce a 
useable delay estimate. 
 
Table 2 reveals the following.  The mean of the delay estimates track the theoretical delay 
values.  The ability of the fine stage to produce a useable result increases as the waveforms 
become less distorted.   The standard deviation of the delay estimates decreases as the 
waveforms become less distorted.  Since the uncertainty of the coarse stage is ± 32 samples,  
the difference between the mean of the delay estimates and the theoretical delay value is 



  

 
 

larger when the coarse stage operates alone, and is smaller when when the fine stage provides 
a refinement. 
 
T-Ref 
Setting  

Theoretical 
Average 
Delay 

Mean 
of 

Estimated Delays 

Standard Deviation 
 of 

Estimated Delays 

Percentage of Files 
with Useable Fine 

Estimate 
T = 2 -85.3 Samples -87.5 Samples 18.7 Samples 0% 

4 -42.7 -37.3 12.1 7 
8 -21.3 -30.9  5.9 33 
16 -10.7 -8.2 7.9 53 
32 -5.3 -5.8 2.6 87 
64 -2.7 -3.0 0.9 97 

 
   Table 2.  Delay Estimation Results for T-Reference 
 
The algorithm also performs as we would expect under non-laboratory conditions.  We have 
used the algorithm to estimate the delays of over 10,000 test speech files.  These files include 
sentences and sentence pairs,  and cover over 100 distinct combinations of speech coders and 
network conditions or reference conditions,  36 talkers and 3 languages.  As an example of 
the selective behavior of the fine stage, we have observed that the fine stage of the algorithm 
produces a useful estimate all of the time when Adaptive Differential Pulse Code Modulation 
(ADPCM) coders are tested,  some of the time when Vector Sum Excited Linear Predictive 
(VSELP) coders are tested, and never when Sinusoidal Transform Coders (STC’s)  are tested. 
 The coarse stage always produces a useful estimate.  Using either a priori information on 
coder delays, or a pair-wise listening technique, we have verified that the total delay estimates 
produced by the algorithm are correct, within the uncertainties inherent in the test files. 
 
We have described an algorithm that generates a single delay estimate for a pair of files that 
were completely digitized before the algorithm was started.  It is clear that this algorithm 
could also be implemented in an “on-line” or “live-data” fashion.  Such an implementation 
would continuously read two streams of audio samples and generate a continuing stream of 
delay estimates. 
 
We would expect this algorithm to perform similarly on wideband telephony speech (7 kHz 
bandwidth, fs=16,000 samples/second.)  We would expect performance to be much worse on 
more general audio signals.  In particular, music can exhibit periodicities at many different 
time scales, ranging from milliseconds to 10's of seconds.  These intrinsic periodicities can 
make delay estimation an extremely challenging task.  A thorough study of a wide range of 
general audio signals might yield modifications to this algorithm that would provide  
maximal robustness against this intrinsic challenge.



  

 
 

4.  Summary  
 
We have presented a description of an algorithm for estimating the delay of telephony band 
speech.  The algorithm features a coarse stage that uses speech envelopes, and a fine stage 
that uses speech power spectral densities.  This approach is motivated by the need for delay 
estimates for audio and speech devices that do not preserve waveforms.  The algorithm 
behaves as desired for speech signals that have been distorted by the MNRU, the T-Ref, and 
combinations of real speech coders and networks. The coarse stage of the algorithm always 
produces a useful estimate with an uncertainty of ± 32 samples (4 ms).   The fine stage of the 
algorithm produces a refinement to that estimate whenever sufficient spectral detail is 
preserved to make such a refinement meaningful. 
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7.  Audio Measurements 
 
7.1  Collecting Audio Frames for Measurements 
 
7.1.1  Description of Audio Frames 
An Audio Frame is  a group of consecutive audio samples.  The preferred number of samples 
in an Audio Frame depends on the audio sample rate, and is given in Section 5. 
(Note:  This chart suggests that an Audio Frame should contain 128 samples when the sample 
rate is 8000 samples/sec., 256 samples when the sample rate is 16,000 samples/sec., and 512 
samples when the sample rate is 32,000, 44,100, or 48,000 samples/sec.)   
 
7.1.2  Analog to Digital Conversion 
The methods of measurement described in subsequent sections require the digitization of the 
analog audio signal.  The digitization process results in audio samples, which can then be 
grouped into Audio Frames.   The audio sample rate is determined by the bandwidth required 
for the subsequent measurements.  Using the Nyquist theorem, the sampling rate must be at 
least twice this measurement bandwidth.  For audio signals that are limited to speech, a 
sample rate of 8000 samples per second is sufficient.  For other audio signals, higher sample 
rates may be required.  The digitization process should result in at least 8 bits of precision.  
Depending on the signal-to-noise ratio of the audio signal, additional precision up to 16 bits 
will often benefit the methods of measurement that follow.  The digitization process must 
include appropriate low-pass filtering to prevent aliasing, and care should be taken to match 
the impedance and balance of the audio signals. 
 
7.1.3  Time Stamp Assignment 
The time, T(n) associated with the Audio Frame n shall be read immediately following the 
digitization of the last sample in Audio Frame n, and before the next sample is digitized. 
 
7.2  Delay Measurement for Audio 
Many channels of potential interest are capable of delivering useable audio signals without 
preserving audio waveforms from input to output.  This means that a robust delay 
measurement must not rely on audio waveforms alone. The measurement described here 
features a coarse stage that uses audio envelopes, and a fine stage that uses audio power 
spectral densities (PSD’s).  Audio envelopes and audio PSD’s are approximately preserved by 
most channels. 
 
The two stage process is efficient because the coarse stage searches a wide range of potential 
delay values, but at low resolution.  If that same range were searched at high resolution, many 
more computations would be required.  Once the coarse stage has finished its work, its low-
resolution measurement can often be refined to a high resolution measurement by the fine 
stage that follows.  The fine stage needs to search only a narrow range of potential delay 



  

 
 

values, consistent with the uncertainty of the coarse measurement.  For some channels, audio 
PSD’s are not adequately preserved and fine measurements are not possible.  In other cases, 
multiple fine measurements will give inconsistent results.  In these situations the coarse delay 
measurement, along with its inherent uncertainty, becomes the final delay measurement. 
 
7.2.1  General 
A series of Audio Frames must be gathered from the channel input and the channel output 
before measurement can proceed.  The use of more Audio Frames increases both the 
reliability and the complexity of the measurement.  If a group of Audio Frames contains only 
the silence between words or phrases in a spoken conversation, no reliable measurement will 
be possible, and additional Audio Frames must be acquired before measurement can proceed. 
To detect an insufficient audio level condition, the RMS level of the audio samples in the 
group of Audio Frames acquired from the channel input should be compared with the 
nominal RMS level of the channel input.  This nominal level may be taken from the channel 
input specifications or it may be measured.  If the RMS level of the samples in the group of 
acquired channel input Audio Frames is more than 30 dB below the nominal channel input 
level, then additional Audio Frames must be acquired before the measurement can proceed.  
Similarly, the RMS level of the audio samples in the group of Audio Frames acquired from 
the channel output should be compared with the nominal RMS level of the channel output.  If 
the RMS level of the samples in the group of acquired channel output Audio Frames is more 
than 30 dB below the nominal channel output level, then additional Audio Frames must be 
acquired before the measurement can proceed 
 
For typical speech signals, the use of larger groups of Audio Frames reduces the possibility 
that the group contains only silence.  Beyond this consideration, more Audio Frames bring 
more data to the measurement, and the measurement will be more reliable.  For audio signals 
that are limited to speech, it is preferred that 256 Audio Frames be taken from the channel 
input and the channel output.  The measurement will also work with 128 or 64 frames.  When 
the sample rate is 8000 samples per second, and each frame contains 128 samples, these 
choices correspond to approximately 4 seconds, 2 seconds, or 1 second of speech signal 
respectively.  The expected audio delay should not be more than 25% of the duration of the 
speech signal used in this measurement.  When 256 frames (4 seconds) of speech signal are 
used, delays up to 1 second may be measured.  When 64 frames (1 second) are used, only 250 
ms of delay should be measured.  The measurements are most efficiently computed when the 
number of frames acquired is a power of two. 
 
7.2.2  Signal Preparation 
When a measurement of audio delay is required, the Audio Frame most recently acquired 
from the channel input A(n), is concatenated with some number of previously acquired Audio 
Frames (e.g. A(n), A(n-1), ... A(n-255)), to form the most recent time-history of channel 
input samples.  Similarly, the Audio Frame most recently acquired from the channel output 
A(m), is concatenated with the same number of previously acquired Audio Frames (e.g. 
A’(m), A’(m-1), ... A’(m-255)), to form the most recent time-history of channel output 
samples.  According to Section 5, the time difference between these two acquisition 



  

 
 

processes, is T’(m)-T(n).  Positive values indicate that acquisition at the channel output 
happens after acquisition at the channel input. 
 
The input samples are placed in an array called ref, which contains samples ref(1), ref(2), ... 
ref(L1).  The output samples are placed in an identically sized array called test, which 
contains samples test(1), test(2), ... test(L1).  The mean value of each array is then removed in 
order to eliminate any DC component in the digitized audio signals: 
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7.2.3  Coarse Stage 
The measurement methodology starts with a coarse stage that extracts and cross-correlates 
audio envelopes.  Audio envelopes are approximately preserved by most channels.    
 
7.2.3.1  Envelope Extraction 
Audio envelopes are calculated as follows.  The digitized audio signals in ref and test are 
rectified by taking the absolute value of each sample.  Because the original digitized audio 
signals in ref and test will be required by the fine sage, the rectified signals, and other 
subsequent intermediate results are stored in the temporary arrays ref_temp and test_temp: 
 

ref temp i ref i test temp i test i i L_ ( ) ( ) , _ ( ) ( ) , .= = ≤ ≤1 1  

 
The rectified signals are then low-pass filtered to create audio envelopes with a bandwidth of 
approximately 125 Hz. It is this low-pass filtering and subsequent subsampling that gives the 
coarse stage its reduced resolution and reduced computational load.  The bandwidth reduction 
factor and the subsampling factor are both specified by the variable B.  Appropriate values of 
B for some common audio sample rates are given in table 7.1



  

 
 

 
Audio Sample Rate (samples/second) B 

8000 32 
16,000 64 
32,000 128 
44,100 176 
48,000 192 

 
Table 7.1:  Values of the bandwidth reduction factor, B. 
 
When the audio sample rate is 8000 samples per second, the bandwidth must be reduced by a 
factor of B=32, from a nominal value of 4000 Hz to a nominal value of 125 Hz.  The required 
bandwidth reduction can be adequately approximated using a seventh order, Infinite Impulse 
Response (IIR), low-pass Butterworth filter with a -3 dB point at 125 Hz: 
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The filter coefficients are given in table 7.2. 
 
j aj bj 

0 1.00000000 0.00553833 x 10-7  
1 -6.55883158 0.03876830 x 10-7 
2 18.44954612 0.11630512 x 10-7  
3 -28.85178274 0.19384125 x 10-7 
4  27.08958968 0.19384206 x 10-7   
5 -15.27097592 0.11630465 x 10-7   
6 4.78557610   0.03876843 x 10-7   
7 -0.64312159 0.00553831 x 10-7 
 
Table 7.2:  Coefficient values for seventh order, IIR, low-pass Butterworth filter. 
 
Both the ref _temp and test _temp arrays are low-pass filtered using this filter.  Next ref _temp 
and test _temp are subsampled by retaining only every Bth sample, resulting in a total of L2 
samples.  For example, when B=32, samples 1, 33, 65, etc. would be retained.  When 256 
Audio Frames, each with 128 samples are used as input to the coarse stage, L1=32,768, and 
L2=L1/B=1024 samples result from the subsampling process.  Both ref _temp and test _temp 
now contain audio envelopes.  Finally, the audio envelopes in ref _temp and test _temp are 
normalized.  The mean value of each array is removed, and each array is divided by its 
standard deviation. 
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7.2.3.2  Envelope Cross-Correlation 
The cross-correlation between the audio envelopes in ref _temp and test _temp is calculated 
by way of a circular convolution, which in turn is calculated by way of Discrete Fourier 
Transforms (DFT’s) or Fast Fourier Transforms (FFT’s).  First, the array ref _temp  is extend 
from length L2 to length 2⋅ L2 by appending L2 zeros.  In the example above, L2=1024 zeros 
would be added to arrive at a final array size of 2048.  Next the array test _temp is time-
reversed.  To do this in-place, samples 1 and L2 of test _temp are exchanged, as are samples 2 
and L2-1, samples 3 and L2-2, etc.  When L2 is even, the final exchange is between samples 
L2/2 and L2/2 + 1.  When L2 is odd, the final exchange is between samples L2/2 - 1/2, and 
L2/2 + 3/2.  After this time reversal, test _temp  is extended from length L2 to length 2⋅ L2 by 
appending L2 zeros. 
 
Now ref _temp and test _temp are  transformed using  DFT’s or FFT’s.  When the array 
length, 2⋅ L2, is a power of two, FFT’s can be used.  If 2⋅ L2 is not a power of two, DFT’s 
can be used.  As an alternative, the number of zeros appended in the previous step may be 
increased so that the array length is a power of two and FFT’s may then be used.  In any case, 
an in-place transformation algorithm may be used, resulting in transformed versions of ref 
_temp and test _temp overwriting the previous versions.  The transformations result in 
complex numbers.  
 
Next, the complex samples stored in ref _temp and test _temp are multiplied, sample by 
sample, and the complex results go into an new array called cross_corr, which has the same 
length as ref _temp and test_temp: 
 
cross corr i ref temp i test temp i i L_ ( ) _ ( ) _ ( ), .= ⋅ = ⋅for to1 2 2  
 
The array cross_corr is now Inverse Fast Fourier Transformed or Inverse Discrete Fourier 
Transformed, as dictated by its length.  An in-place transformation may be used.  In theory, 
the resulting contents of cross_corr would be real numbers.  In practice, finite-precision 



  

 
 

calculations yield a small imaginary component.  At this point, the real part of cross_corr  is 
retained and the imaginary part is discarded.  Next, each result in cross_corr is normalized: 
 
cross corr i cross corr i L i L_ ( ) _ ( ) / ( ) , .= − ≤ ≤ ⋅2 1 1 2 2  
 
Note that this normalization is required in order to get true cross-correlation values between 
-1 and +1, but it does not affect the smoothing or peak-finding steps that follow. 
 
The array cross_corr holds the values of the cross-correlation’s between the speech envelopes 
in ref_temp and test_test at every possible shift of those envelopes.  These results are then 
smoothed with a symmetric, second-order, low-pass FIR filter, and stored in a smoothed 
cross-correlation array: 
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After this smoothing, the largest value in cross_corr_s is taken as an indication of the coarse 
delay: 
coarse delay L j B

L j B
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The uncertainty in the value of coarse_delay at this point is taken to be ± B samples.  If 
cross_corr_s does not contain a unique maximal value, then the measurement must be made 
again using new audio samples.  
 
7.2.4 Fine Stage 
In many cases, the ±B sample uncertainty inherent in the coarse measurement of audio delay 
can be reduced by a fine stage of the delay measurement. 
 
7.2.4.1  Location Selection 
The fine stage is performed at n1 locations in the acquired audio signal. When audio signals 
are limited to speech and 256 Audio Frames are used in the measurement of audio delay, the 
value of n1 is 6.  Other values of n1 may be more appropriate for other audio signals. At each 
location, a range of potential delay values from -3⋅B to 3⋅B  samples is searched. 
 
The locations where the fine stage is performed are randomly selected.  At each location, 8⋅B 
samples are taken from the array ref  and are stored in ref_temp and 2⋅B samples are taken 



  

 
 

from the array test and are stored in test_temp.  The samples taken from test are offset by the 
measured coarse delay: 
 
ref_temp(i) = ref(location-4⋅B-1+i),  1≤ i ≤ 8⋅B , 
test_temp(i) = test(location+coarse_delay-B-1+i), 1≤ i ≤ 2⋅B , 
 
where location is a uniformly distributed pseudo-random variable from the interval: 
[ max(4⋅B +1 , 1-coarse_delay+B) ,  min(L1-4⋅B +1 , L1-coarse_delay-B+1) ]. 
 
The fine delay measurement will not work in silent regions.  Two level tests are conducted at 
each location to insure that the audio signal there is within 30 dB of the average audio signal 
level: 
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If either of the level tests is failed, then a new location must be selected. 
 
7.2.4.2  Power Spectral Density Calculations 
The fine stage works by cross-correlating audio power spectral densities (PSD’s) at each of 
the selected locations.  The PSD’s are calculated as follows.  The 8⋅B samples in ref_temp are 
broken into groups of 2⋅B samples per group. There are 6⋅B+1 such groups.  Each group of 
samples is stored in an array called ref_temp_i: 
 
ref_temp_i( j)=ref_temp(i+j-1) , 1≤ i ≤ 6⋅B+1,  1≤  j ≤2⋅B . 
 
Each ref_temp_i array and the test_temp array is multiplied by a Hamming window, and then 
transformed to the frequency domain using a length 2⋅B DFT or FFT.  These steps can be 
done in place: 
 
ref_temp_i( j) = ref_temp_i( j) ⋅ {.54 - .46 ⋅ cos( 2π(j-1)/(2⋅B-1) )}, 1≤ i ≤6⋅B+1, 1≤ j ≤2⋅B , 
test_temp( j) = test_temp( j) ⋅ {.54 - .46 ⋅ cos( 2π(j-1)/ (2⋅B-1) )}, 1≤ j ≤2⋅B , 
ref_temp_i = FFT (ref_temp_i) , 1≤ i ≤6⋅B+1 , 
test_temp = FFT (test_temp) . 
In the frequency domain, only the first B+1 complex samples in each array are unique, so 
only those samples are saved.  The magnitude of each retained sample is taken, resulting in 
the square root of the power spectral density of each frame.  These results are referred to as 
PSD’s for simplicity. 
 
ref_temp_i( j) = | ref_temp_i( j) | , 1≤ i ≤6⋅B+1,  1≤ j≤B+1 , 
test_temp( j) = | test_temp( j) | , 1≤ j ≤ B+1  . 
 
The mean value of each PSD is then removed: 
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7.2.4.3  Power Spectral Density Cross-Correlation 
A cross-correlation value is calculated between the PSD stored in the test_temp array and 
each of the 6⋅B+1 PSD’S stored in the ref_temp_i arrays. 
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The array cross_corr now holds the values of the cross-correlations between the reference and 
test PSD’s at each time-domain shift.  Note that the second term in the denominator of the 
equation for cross_corr is a normalizing constant that is required to get true cross-correlation 
values between -1 and +1.  It does not have any impact on the peak-finding that follows, but 
does impact subsequent processing of the fine delay measurements.  The largest value in 
cross_corr is taken as an indication of the fine delay:  
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If cross_corr does not contain a unique maximal value, then the fine stage procedure must be 
repeated at a new location.  This entire fine stage,  starting with the selection of a location, is 
repeated n1 times, resulting in n1 fine delay measurements stored in  fine_delay_1, 
fine_delay_2, ... fine_delay_n1, and n1 corresponding correlation values stored in corr_1, 
corr_2, ... corr_n1, respectively. Note that each of the fine delay estimates will fall between 
-3⋅B and 3⋅B, inclusive. 
 
7.2.4.4  Fine Delay Measurement Processing 
Once the n1 fine delay measurements and corresponding cross-correlation values have been 
calculated, they are further processed to determine how they should be used.  
 



  

 
 

First, each of the n1 correlation values are tested against a threshold: 
 

1
2 1 1≤ ⇒ ≤ ≤corr k fine delay k k n_ _ _ , .is retained  

 
By this process, only fine delay measurements where at least half the PSD variance is 
accounted for are retained.  The number of fine delay measurements that pass this test is n2, 
and the measurements are now renumbered as  fine_delay_1, fine_delay_2, ... fine_delay_n2. 
If n2 <  n1/2, the fine stage will not produce a useful result.  In this event, the value of 
fine_delay is set to “invalid” and the fine stage is terminated. 
 
If n2 ≥  n1/2, the fine stage continues and tests the remaining n2 fine delay measurements for 
consistency with the coarse delay measurement. Since the uncertainty in the coarse delay 
measurement is ±B samples,  and the coarse delay has been removed, only fine delay 
measurements between -B and B samples are retained: 
 

fine delay k B fine delay k k n_ _ _ _ , .≤ ⇒ ≤ ≤is retained 1 2 

 
The number of fine delay measurements that pass this test is n3, and the measurements are 
now renumbered as  fine_delay_1, fine_delay_2, ... fine_delay_n3. If n3 <  n1/2, the fine 
stage will not produce a useful result.  In this event, the value of fine_delay is set to “invalid” 
and the fine stage is terminated. 
 
If n3 ≥  n1/2, the fine stage continues and tests the for consistency among the remaining n3 
fine delay measurements.  This test requires a search through all possible subsets of size n3, 
n3-1, on down to size n1/2. There is one possible subset of size n3, n3-1 possible subsets of 
size n3-1, n3⋅(n3-1)/2 possible subsets of size n3-2, and so forth.  For each subset, the spread 
of the fine delay measurements is tested: 
 
max{ _ _ } min{ _ _ } current subset

i i

Bfine delay i fine delay i fine delay i− ≤ ∈2 , _ _ . 

 
The largest subset that passes this test is called the final subset.  The fine stage fails to 
produce a useful result when: 
y  no subset passes this test, or  
y  there is not a single, largest subset that passes this test. 
In either of these events, the value of fine_delay is set to “invalid” and the fine stage is 
terminated. 
 
The number of fine delay measurements in the final subset is n4.  The mean value of these n4 
fine delay measurements is taken as the final fine delay measurement: 
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The spread of the n4 measurements in the final sub-set is retained as a measure of uncertainty 
in the final fine delay measurement: 
 
spread fine delay i fine delay i fine delay i

i i
= max{ _ _ } min{ _ _ } final subset .− ∈, _ _  

 
7.2.5 Combining Coarse and Fine Stage Results 
If the fine stage was not able to produce a useful fine delay measurement, then the fine stage 
will have set fine_delay to “invalid”.  In this case, the coarse measurement alone becomes the 
delay measurement.   If the fine stage was able to produce a useful fine delay measurement, 
then the coarse measurement is augmented by that fine measurement and the uncertainty is 
reduced from that of the coarse measurement alone: 
 
fine delay invalid delay coarse delay B

fine delay invalid delay coarse delay fine delay spread

_ " " _ ,

_ " " _ _ .

= ⇒ = ±
≠ ⇒ = + ±  

 
These values of delay are correct only when the acquisition of audio samples from channel 
input and the channel output are simultaneous.  Time stamps can be used to correct the delay 
measurement for non-simultaneous acquisition: 
 
delay delay T m T n= + −' ( ) ( ) ,   where T’(m) is the time associated with the start of sample 
acquistion at the channel output,and T(n) is the time associated with the start of sample 
acquistion at the channel input. 



  

 
 

Variables used in Section 7. 
 
B:  bandwidth reduction factor and subsampling factor 
coarse_delay:  delay as measured by coarse stage 
cross_corr: temporary array, ultimately holds cross-correlation values 
cross_corr(i): ith element of cross_corr array 
cross_corr_s: smoothed version of cross_corr in coarse stage 
cross_corr_s(i): ith element of cross_corr_s array 
delay:  final output of two-stage delay measurement 
fine_delay: delay as measured by fine stage 
fine_delay_k: kth fine delay masurement 
L1:  number of audio samples input to measurement 
L2:  number of audio samples after subsampling 
location: location where fine stage makes a measurement 
n1:  number of measurements made by fine stage 
n2:  number of fine stage measurements retained after first test 
n3:   number of fine stage measurements retained after second test 
n4:   number of fine stage measurements retained after third test 
ref:  array of audio samples from channel input 
ref(i):  ith element of ref array 
ref_temp: temporary storage array for channel input audio samples as they are processed 
ref_temp(i): ith element of ref_temp array 
ref_temp_i : temporary storage array for channel input audio samples as they are processed 
ref_temp_i(j):  jth element of ref_temp_i array 
sample_rate: rate at which channel input and channel output are digitized 
spread:  spread in the final subset of fine delay measurements 
test:  array of audio samples from channel output 
test(i):   ith element of test array 
test_temp:  temporary storage array for channel output audio samples as they are  

  processed 
test_temp(i):  ith element of test_temp array
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