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Abstract The primary motivation for characterizing the electrical
performance of video equipment is to objectively and consistently
The Institute for Telecommunication Sciences (ITS) is maintain picture quality by controlling measurable electrical
conducting research to derive objective measures of video qualityparameters. From the examples above, it is disturbing to note
that emulate human perception. These measures should agrehowever, that perceived picture quality can change while measured
closely withquality judgements made by a large panel of viewers. electrical values remain constant. One solution to this problem is
The measures are valuable because they provide video designeng set tight bounds on the electrical parameters to insure that all

and standards organizationgith means for making meaningful  possible video scenes of interest will be ogjpiced with sufficient
qualty evaluations whout convening viewer panels. The quality.
derivation of these measures involves the following steps. A set of Over the past decade, the problem has become more

test scenes is selected and distorted. Next, we extract a set Qfomplicated. Video signals are now commonly transmitted and
candidate objective measurements that gfiathe video scene  stored in compressed digital form with a possible resulting loss of
distortions that are thought to be |mp_ortant to the human visual quality. The stringertiounds on electrical parameters adopted by

and perceptual systems. A panel of viewers watches the same Sg{e television broadcasting industry are not realistic limits for

of test scenes and their subjective judgements of the distortions areany of the new video services. On the other hand, some metric
recorded. ~ The final step in the derivation process is @ of system performance is essential. Ideally, this metric should
simultaneous statistical analysis of the objective and subjectivemimic the metric of the human visual and perceptual system, so

data sets. This analysis reveals which portion of the objective datay,at measured video quality agrees with video qualiyeaseived
set is meaningful, and how the objective data should be combinedOy the end user who actually views the video signal.

to create an objective metric that emulates human percepti'o”' Modification of the existing traditional test signals and
After describing the need for these measures, this paper prov'de%easurements will not solve the problem because there is a
a detailed description of the derivation process and som

preliminary results € fundamental incompatibility between traditional analog video

signal testing and modern digital video systems. Effective
compression algorithms are dynamic, with the input signal
dictating the overall behavior of the algorithm through many sub-
algorithms that perform motion prediction, adaptive transforms,
adaptive pixel and/or frame prediction, and adaptive quantization,
. . ly afew. Th Itim learly time-
The traditional performance measurements of video t© name only a few € resultingleo systems are clearly time
i : varying systems. Due to the complex dynamic nature of these
transport and storage systems use fixed test signals and assume . . . S .
systems, the conventional family of static, deterministic test signals

that the system l_mder testis tlme-lnvarlant.[ln] V.Vh"e these Slgnalscannot provide an accurate characterization of their performance.
and the associated measurements are indispensable for the

characterization of the electrical performance of conventional,
time-invariant, analog video systems, the measurements often do
not correlate well with video quality aerceived by the end users

of the video system. For instance, weighted signal-to-noise ratio
does not give an accurate indication of image quality when the
noise is correlated with the image, as is the case with predictive
video coders.[2] A video system with horizontal resolution limit
of 200 television lines (TVL) may be adequate for head and
shoulders video teleconferencing, but unacceptabin graphics
are added to the scene. A chrominance phase error of 10 degre
might be insignificant while the weather map is being transmitted
but it becomes objectionable when the meteorologist appears wit
false colored flesh. In each of these examples, it is the variability
of video scenes that results in a range of perceived video quality
levels for a fixed video system.

1. Introduction

2. Overview

This paper describes a method for deriving objective
measurements of video quality that can be used to predict the
human perception of video quality. The intent is that these
measures should work well over a wide range of analog and digital
video transmission and storage technologies. Such measurements
would be indispensable to persons who design, operate, and
$Raintain video components, storage and delivery systems, as well
as those involved in standards work. Our method for deriving
hese measurements is diagramed in Figure 1.
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Figure 1. Measurement Derivation Process

First, a wide-ranging library of motion video test scenes
is selected and recorded. Next, the scenes are dubbed to a
second tape machine through representative video systems that
distort the video signals and impair the resulting video images.
The next step is a parallel objective and subjective measurement
process. As the impaired video scenes are played back, they are
digitized and a candidate set of objective measurements is
computed from the digitized video data. These candidate
measures are designed to extract and quantify the attributes of
video scenes that are important to the human visual and
perceptual systems. Data derived from these measures form the
objective data set. The subjective measurement process involves
playing the tapes for a panel of viewers. The viewers are asked
to rate their perceptions of the impairments and these results
form the subjective set. By utilizing the "null impairment” both
the viewers and the objective measurement algorithm have access
to the original, unimpaired version of each scene. This allows
the use of differential measurement techniques: the viewers
perform an "A versus B" comparison test, and the computer can
calculate difference images of the form A-B.

The final step of the process is a simultaneous
statistical analysis of the subjective and objective data sets. This
analysis should indicate which of the candidate objective
measurements provide unique information that is useful for
predicting subjective assessments and which measures provide
redundant or extraneous information, and hence can be discarded.
The results of this analysis will be used to build a prediction
algorithm that generates accurate predictions of subjective quality
using the set of "good" objective measurements as inputs. This
set of "good” measurements and the prediction algorithm are the
final outputs of the derivation. Together, they provide an
objective video quality metric that emulates the human
perceptual video quality metric. By using a wide range of scenes
and impairments as inputs to the derivation process, it is hoped
that the resulting objective metric will provide an accurate,
repeatable, reliable technique for predicting subjective video
quality over a wide range of video applications without involving
human viewers. The following sections describe the steps of the

derivation process in detail and provide some preliminary results.

3. Test Scenes and Impairments

The selection of the test scenes used in the derivation
must be done carefully. In particular, the spatial and temporal
information content of the scenes are critical parameters. These
parameters play a crucial role in determining the amount of video
compression that is possible, and consequently, the level of
impairment that is suffered when the scene is transmitted over a
fixed-rate digital channel.

Video compression schemes attain various degrees of
compression by removing the spatial and temporal statistical
redundancies of the video signal. For a highly detailed scene,
where the scale of the details is comparable to the scale of the
spatial sampling grid, and the details are hard to predict, the
video signal has very little spatial statistical redundancy. In this
case, little compression can be gained by removing the small
amount of spatial statistical redundancy. If the signal must be
compressed, picture quality must be sacrificed. On the other
hand, a scene with few details or with highly predictable details
can often be greatly compressed. A parallel situation exists in
the time domain. Scenes with large amounts of unpredictable
motion have little redundancy in their temporal statistics and
little temporal compression can be expected. Scenes with no
motion or limited motion are highly redundant in their temporal
statistics and can often be greatly compressed without loss of
quality. Thus, there are direct links connecting information
content of a scene, potential for compression, potential for
transmission at a given rate, and received quality.

In light of these links, fair and relevant video quality
measurements must use video scenes with spatial and temporal
information content that is consistent with the video services that
the device or system under test was intended to provide. As an
example, video scenes of a soccer game contain too much spatial
and temporal information to be useful in testing the performance
of a codec designed to provide video teleconferencing services



over 56 Kbps lines. In order to derive the most general possible
measures, our library of test scenes contains scenes with widely
varying amounts of spatial and temporal information. Figure 2
shows the relative amounts of spatial and temporal information
for some possible test scenes.

L4

Fast
Full Instra Soccer Game
dispiay
Conference Table
Temporal Video Teleconference
Information
Head and Shouiders
Content Video Teleconference
Detailed Map
with Pointer
Ctg:su;ond
Zzle
Sull (Close Up) (Wide Shot)
Low Spatial High
Information
Content

Figure 2. Information Content of Test Scenes

The subjective impairment tests require that viewers
rate the impairment level of many versions of the test scenes. If
this process fatigues and bores the viewers, their judgements may
be less careful. Thus, it is important that the library of test
scenes be fairly interesting. Our test scenes were recorded using
a professional quality electronic news gathering camera and are
stored on half-inch video tape in a component analog video
(CAYV) format. Our library also contains some test scenes from
other labs which are NTSC encoded.

Since we are striving for a quality metric that works
well across a wide range of video technologies, we have included
a broad family of impairments in the derivation. The
impairments include video codecs operating over simulated
digital networks with controlled error rates and line rates that
range from 45 Mbps down to 56 Kbps. Analog impairments
include NTSC encode/decode cycles, VHS record/play cycles,
and a noisy RF transmission link. All test scenes are subjected
to all impairments to create a library of impaired test scenes.

4. Subjective Impairment Tests

The subjective data set is build from viewer judgements
gathered in subjective impairment tests. These tests are
conducted in a video viewing laboratory. The laboratory
conforms to CCIR recommendation 500-3, which specifies the
standard visual environment for conducting picture quality
assessment in all respects except for the color temperature of
room illumination.[3] The 14 x 11 x 8 foot room is finished
with full length white drapes on three sides and gray drapes on
the fourth (rear) wall. Gray carpet compietes the subdued visual
environment and provides noise reduction. An offset stud wall
reduces noise transfer from an adjacent office area and a
specially designed air handling system operates with a minimum

of noise.

The six light fixtures in the Ilaboratory are
independently steerable and dimmable. This flexible lighting
feature allows one to obtain the specified screen-to-background
luminance ratio while simultaneously providing comfortable
lighting conditions for writing. Recommendation 500-3 indicates
that a light source with a color temperature of 6500 degrees
Kelvin is preferred, presumably to match NTSC white. Several
problems (power requirements, heat dissipation, bulb life, fixed
light output) seem to be intrinsically linked to such sources. As
a practical matter, we chose to use color-corrected incandescent
bulbs. The tinted bulbs presently in use have a maximum color
temperature of 4000 degrees Kelvin. This means that the
"white"” room illumination does not exactly match NTSC white.
Given the adaptive nature of human color perception, effects of
this fixed background color error are expected to be minimal. If
necessary, color correction filters may be added in order to more
closely approximate 6500 degree sources.

Video scenes are displayed on a broadcast quality
monitor. The monitor displays CAV video signals with a
maximum of 900 lines of horizontal resolution on a 19-inch
screen. The monitor includes an option that allows repeatable
monitor setup which is referenced to digitally stored values.
This feature eliminates monitor setup as a potential source of
variation in the subjective tests. Comfortable seating for three
viewers is provided at a distance of six picture heights from the
monitor screen. By restricting the number of viewing locations
to three, the viewers in the end locations are only 20 degrees off-
center and potential test variations due to viewer location are
minimized. The laboratory is equipped with hidden studio
quality speakers to allow for recorded voice instructions as well
as future subjective video-with-audio quality assessment tests.

The following paragraphs describe the test methodology
used in the subjective impairment tests. The methods are based
on standard picture quality assessment procedures augmented by
the results of our preliminary viewing sessions.[3][4] Those
sessions used a viewer questionnaire to determine the testing
rates and scales most likely to provide accurate responses.

Subjects for the impairment tests are selected at random
from the site telephone directory. This gives a pool of 1,750
prospective viewers. The pool of viewers includes maintenance
workers, office workers, administrators, scientists, and engineers.
The use of a large, random sample of viewers from this diverse
pool should substantially reduce any occupational bias that might
be present. By recording the occupation of each viewer as a
potential correlate, subjective impairment ratings within
occupation can be calculated and results can be weighted to
approximate those of other populations. In addition, each
subject’s exposures to several types of video, including broadcast
and cable television, video teleconferencing and computer video
displays are recorded as potential correlates. In accordance with
CCIR Recommendation 500-3, cach viewer is given a visual
acuity test and a color vision test. The results of these tests
along with the age and sex of the viewer become part of the
viewer’s data record.

Each viewer participates in four twenty-minute sessions.
These sessions are conducted on four consecutive days. The first
third of the initial session is a training period. The training
period exposes the subjects to a wide range of video
impainments, many of which may be new to the subjects, as well
as a wide range of scene types that can also affect the perceived



severity of the impairments. The final portion of the training

period allows the subjects to practice marking the response form m n 5
between scenes. The remainder of the initial session and the MIN 2121 [S(,y,t=K)-D(x,y, )]"
subsequent three sessions contain 30-second impairment tests. k: k=0 """

Here the subject is presented with nine seconds of a scene, three

seconds of grey screen, nine seconds of the impaired same scen'g1= h s | f k=k is found. th f
and finally a nine second period in which to mark the response ter the minimizing value of k=k is found, the output frame

form. The subjects are instructed to decide on and mark the IeveP(x‘y‘t) i_s paired with '_[he input frame S(x,y4-k ). The value[pf K
of impairment in the second scene, using the first scene as Js an estimate of the time delay of the system-under-test at time t.

reference. The five possible responses offered are: imperceptible, de b Sr']ncﬁ we are.seelkmg measurements"the(ljt gmglate t_ho_se
perceptible but not annoying, slightly annoying, annoying, and made by the human visual system, we are well-advised to mimic

very annoying. This scale intentionally covers a very wide range Its properties yvhenever possu_ble. The human V|sual_ system has
of impairment levels in a nonlinear fashion. By including 9reater resolving power on still scenes than on moving objects.
reference scenes, impairment tests take advantage of the fact th&urther, since the time-averaged information content of a still
the human eye excels at making comparisons. Impairment testy/d€0 scene is much less than the time-averaged information
also tend to reduce inter-laboratory testing variances. To reducéontent of a moving scene, most compressed digital video systems
unwanted comparison effects, the order of scene presentation i§ave very different static and dynamic responses. In light of these
randomized. observations, it is clear that measurements could be enhanced by
After allowance for training periods, rest intervals, and partitioning each video frame into still and motion parts,
some redundancy (to provide consistency checks), the cumulative®€rforming separate measurements on each part and then
80 minutes of testing allow for the viewing and rating of 127 test Fecombining these measurements in an appropriate way. We have
scenes. In order to hold the subjects’ interest, this body of 127adopted this technique.
scenes is composed of 36 distinct scenes, with each scene The partitioning of each frame is accomplished
appearing 3 or 4 times. Thus, the impact of 3 or 4 different according to the following algorithm. To fition the K" frame,
impairments can be measured for each scene. The scendirst compute the absolute difference image, [Ffame - Frame |.
impairment combinations are selected from the library of impaired Then compare each pixel of the absolute difference image with a
test scenes described in the previous section. threshold value of 15. (The 8 bit luminance pixel values range
from 0 to 255.) Those pixels exceeding the threshold value are
declared to be motion pixels, and those below are considered to be
5. Objective Impairment Measurements still. A three bythree dilation operation serves to smooth and fill
the thresholded image, and the resulting binary motion mask
The objective data set is built up from objective indicates which regions of thé'k frame are still and which are
measurements or computations performed on the digitizeck(756 moving. The threshold value of 15 was selected following a
486x 24 bits) video signal. The measurements are performed onstatistical analysis of 3 million motion pixels and 3 million still
every frame of each test scene. This intensive measuremenpixels.[5][6]
approach, along with the need for large data sets, dictates that the Once the video sequences have been digitized, time-
measurements be automated. A controlling program with aaligned, and partitioned into motion and still regions, a family of
windowed user interface passes instructions to device drivers thabver 90 differential measurements is computed and stored in the
in turn control the tape machines, frame digitizer, video routing objective data set. These candidate measures were selected with
switcher, and video codecs. Additional software distributes the an eye toward the following desirable properties: correlation with
computation of measurements across several workstations tGubjective quality, applicability to many types of scenes, value as
reduce the total measurement time. a local estimate of quality in space and time, computational
In an exact parallel to the subjective tests, these efficiency, stability, functional independence (each measuneics
measurements are all differential. That iS, they involve both the provide d|f—ferent information), and techno'ogy independence (each
impaired and the unimpaired versions of each scene. In order tGneasure should be useful for a wide range of video storage and
make meaningful differential measurements, the two frame {3nsmission technologies). Al video impairments can be

sequences must be aligned as closely as possible. Spatigfescribed as distortions of the amplitude or the timing of the video
alignment is determined by the video frame acquisition hardwarewaveform_ On the other hand, when displayed on a monitor for

and is e_lccurat(_e to a fraction of a pixel. Becausg ther_e are unlmOW'Fluman use, this one-dimensional voltage waveform is interpreted
delays in the video systems used to create the impaired sequenceg, 5 continuously evolving, iccolored, two-dimensional signal.

the temptqa_l ?It'gnlineﬁt ?f ttr;]e two, 3C|)_fratm;eh- per-sgcond Sequ%nceiilseful measures must take note of this human interpretation and
IS a hon-triviaj task. 10 further complicate the matter, many vid€o ; nic it o the extent possible. Thus, our candidate set of

C0d99§ output Fhe same frame_Mo or more tlme_s. Th|s_ framemeasures includes those designed to measure temporal, luminance,
repetition technique e.‘HOWS significant data reduction, but it also chrominance, and spatial distortions. A detailed description of the
ir:sanjntgzh?;i 22;3gieosnii-ltc?;?n\e/vzor::/sep:cri]c?p?tgc:ietr:):?c/)vlﬁ)?ir:rg;zeet of candidate measurements is available.[7] These techniques
. . ' re currently being considered for inclusion into the draft standard
technique for temporal alignment. For each output frame, matchof “Analo I)rl1terfage Performance Specifications for BidVideo
it with the input frame that is the closest (in terms of squared pixel 9 . : P . g .
Teleconferencing/Video Telephony Service" by the American

error) and consistent with a causal system under test: i , 4
National Standards Institute (ANSI) Accredited Standards



Committee  T1, Working Group T1Q1.5, Video 6. Analysis of Measurements
Teleconferencing/Video Telephony Sub-working Group.

Temporal distortions are perceived by the viewer as The final stage of the derivation process involves joint
unnatural motion. Both the residual squared pixel error sequencestatistical analysis of the subjective and objective data sets. As of
given in the above equation, and the sequence of minimizingthis writing, only preliminary work has beeone in this stage.
values of k contain information which aids in quantifying The step is intended to single out a subset of the candidate set of
unnatural motion.  Color distortions are measured after objective measures and provide information that aids in the design
transforming luminance and chrominance values to the of the prediction algorithm. The members of this set of "good"
International Commission on lllumination (CIE) LUV color measures should provide enough information to enable an
space. In that 3-dimensional space, each cgisrigperceptually appropriate algorithm to make accurate predictions of subjective
independent and psychometrically uniform.[8] The remainder of impairment scores. Rather than predicting only the mean
this section provides some discussion and examples of spatiafubjective impairment score, we hope to predict the fraction of
distortion measurements. persons that vote in eachtb five impairment categories. From

Investigators in the fields of human vision and object this predicted histogram we can compute predicted mean
recognition have noted the importance of sharp edges in the visua$ubjective impairment scores as well as predicted dispersions
perception and recognition of objects. Thus, an important class ofabout that mean. Potential prediction, estimation and classification
spatial distortions are those that destroy, soften, blur, displace, otechnigues include linear and quadratic predictors, hybrid linear-
create edges in the video image. Our measurements of thessonlinear decision structures (possibly adaptive), and Bayesian
effects utilize the Sobel and Laplace edge extraction or edgeinferencing.
enhancement filters.[9][10] These filters are followed by The remainder of this section gives the results of
differencing operators, energy accumulators, averagers, et-cetergyreliminary statistical analysis that was performed on relatively
to create a family of measures that quantify edge distortions. Assmall data sets. For this preliminary study, we ditizing the
an example, the blurring of the sharpest edges can be measured bgsults of an experiment conducted by Fish and Judd.[11] Their
examining the decrease in the number of pixels in the filtered team selected 5 NTSC encoded test scenes. Each scene consists of
output that exceed a fixed threshold. More detailed examples ofa three secondilfollowed by five seconds of full motion video.
two spatial distortion measurements follow. They created two impaired versions of each scene: a VHS record-

The measurements ,,p and,, p are described play cycle and a simulated codec operating at the DS1 signaling
mathematically at the end of this section. The measurement p hagate. The resulting 15 scenes were shown to 45 viewers who rated
been named "Edge Fraction Gained, Still Portion", because iteach scene in terms of its "distance from ideal". The researchers
quantifies edges in the distorted frame that are not present in theprovided our lab with a copy of their test scenes and their
original frame. The measurement is restricted to the still portion subjective data set. We applied our family of objective measures
of each frameThe second measure,p is called "Absolute Edge to the test scenes to create a companion objective data set. This
Energy Difference, Motion-Still Weighted". Here a logarithmic involved the processing of roughly four seconds from the motion
energy difference measure is computed for both the motion and thepart of each of the 15 scenes, resulting in approximately 120
still portions of each frme. The measures are passed through the values for each of 92 candidate measures. (One value for each
absolute value operator and then combined using the weightingframe of the four second sequence.) Since the subjective human
factorsa and (1e), which indicate the relative amounts tlirsess assessnrgs that we seek to emulate consist of a single value for
and motion in the frame. The meritgfp angl p as predictors ofthe entire 4 seconds, we must reduce each temporal sequence of
subjective picture impairment is discussed in the following section. 120 objective measurements to a single value. This data reduction

step should be done the same way human viewers do it. It seems

p,,=-mean_{still(Sobel(S)still(Sobel(D))}, reasonable that the median value of the sequence, augmented in
some way by the minimum and maximum values would provide
Pe, = 0-20|l0g {Std(St”|(SObe|(S)}| . a good approximation. We are currently experimenting with a
60 1% std(still(Sobel(D) family of 10 data reduction functions. Included in this family of
(1-0)-20log {std(motion(Sobel(S)E functions are mean value, maximum value, minimum value and
10 std(motion(Sobel(D) ' median value. The final contents of the objective data set is a

collection of 92 measures on 15 scenes for each of the 10 data
reduction functions used.

where: Next we performed a correlation analysis between the
Sis the original video frame, objective and subjective data sets, and an analysis within the
D is the distorted frame, objective data set. Correlation analysis detects monotonic
mean_is the mean of the negative pixels, relationships between data sets. As relationships become more
still takes only the still parts of frame, monotonic and closer to linear, the coefficient of correlation
motion takes only the motion parts of frame, tends towards +1. A correlation coefficient (across the 15
std is the standard deviation of frame pixel values, scenes) was computed between the mean subjective impairment
o = (number of still pixels)/(total number of pixels). score and each of 92 candidate objective measures. We found

absolute correlation coefficients larger than .8 for a large group
of measures, but many of the objective measures are highly
correlated with each other, indicating that all of them cannot
contribute unique information to the prediction problem. If we



select a subset of these measures by requiring that the absolute
correlation coefficient between every possible pair of members of
the subset be less than .9, we find 14 measurements in the subsei,
The correlation thresholds (.8 and .9) are somewhat arbitrary, but
were chosen because they provide the "best family" of 14 objective
measurements. If one were interested in larger or smaller families,
one could lower or raise the appropriate thresholds. Of the 14
objective measurements mentioned above, two are those described
in section 4. The coefficient of correlation between subjective
score and the median value of the objective measurement called
"Edge Fraction Gained, Still Portion"{p ) is .96. For "Absolute
Edge Energy Difference, Motion-Still Weighted" ;{p ) the
correlation value is .94. In general, the median function seems to
provide the best data reduction across time. The majority of the
remaining 12 top measures provide additional information about
edges lost and/or gained in the motion and/or still portions of the®
video scene. Some of them are linear measurements, some are
quadratic, and some are logarithmic.

The correlation values attained indicate that for this set -
of scenes, a trivial, first order linear predictor would do a
respectable job of predicting mean subjective impairment values
from either measurement. While these preliminary results are
encouraging, the data sets are much too small to draw any firm
conclusions from the results. Larger data sets might yield lower
correlation values and present a greater challenge in terms of-
designing an objective video quality predictagorithm. We are
confident that a sufficient set of measures can be found and that an
accurate prediction algorithm can be designed. As of this writing,
we are building up the data sets to enable a much more thorough
analysis, and more sophisticated prediction algorithm design.

7. Conclusion 7.

We have described a method for deriving an objective
video quality metric that emulates the human vigeality metric.
The objective metric comprises a family of measurements that
quantify spatial, temporal, luminance and chrominance distortions, 8.
followed by a prediction algorithm. The intent is that the derived
metric will work well over a wide range of digital and analog
video transmission and storage technologies. The metric promises
to yield reliable predictions of perceived video quality without the
effort and expense of polling a large group of human subjects in a9.
controlled environment. This provides a valuable tool for persons
who design video components, storage and delivery systems, and
those involved in standards work.
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