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Abstract

In 1996, the American National Standards Institute (ANSI) adopted ANSI T1.801.03, which
presents a number of new objective video quality metrics for quantifying the effects of digital
compression and transmission impairments. The measurements in ANSI T1.801.03 were
selected based on an extensive multilaboratory quality assessment study that included video
systems from bit rates of 64 kbit/sec to 45 Mbit/sec and video test scenes that spanned a wide
range of spatial and temporal coding difficulties.  The set of objective video quality
measurements effectively accounted for subjective judgments by human viewers.  While 25
video systems were tested, this multilaboratory study did not include MPEG video systems, and
did not cover any bit rates between 1.6 and 10 Mbit/sec.  This paper presents the results from
two MPEG studies designed to fill in the bit-rate gap in the previous multilaboratory study.  In
these studies, we concentrated on bit rates from 1.5 - 8.3 Mbit/sec and examined the
performance of MPEG 1 and MPEG 2 codecs (coder-decoders) specifically.  The effectiveness
of the ANSI standard objective video quality metrics was examined for these bit rates and
coding technologies.  Our analysis revealed that the objective video quality metrics primarily
measure four principal components of video quality:  added edges, lost edges, added motion, and
lost motion; we found that parameters selected from these principal components can be used as
effective predictors of subjective quality ratings for entertainment video systems.



1. Background

The development of objective measures of the quality of compressed digital video was motivated
by a number of factors.  For example, Wolf (pg.2) 1 writes: “New, objective measures of video
transmission quality are needed by standards organizations, end users, and providers of advanced
video services.  Benefits would include impartial, reliable, repeatable, and cost effective
measures of video and image transmission system performance and increased competition
among providers as well as a better capability of procurers and standards organizations to specify
and evaluate new systems.”  Ardito and Visca 2 write: “...we may expect that in the future there
will be increasingly faster development of new coding systems, especially related to the matter
of image compression, and it would be an unrealistic hypothesis to carry out subjective
assessment for every different coder available on the market.”

Several groups have been working on new objective video quality measures; e.g.,  Research
Centre of RAI (Ardito & Visca) 2; Sarnoff Laboratories (Lubin) 3; National Telecommunications
and Information Administration, Institute for Telecommunication Sciences (NTIA/ITS) and their
associates (Wolf, Voran, Webster et al.) 1, 4, 5; Bellcore (Cotton) 6, and KPN Research
(Beerends).7  In 1996, ANSI adopted ANSI T1.801.03 8, which presents a number of new
objective video quality metrics for quantifying the effects of digital compression and
transmission impairments. (This standard has also been submitted to the ITU-T for consideration
for international standardization.9)  The measurements in ANSI T1.801.03 were selected after an
extensive multilaboratory quality assessment study of video systems from bit rates of 64 kbit/sec
to 45 Mbit/sec, and video test scenes that spanned a wide range of spatial and temporal coding
difficulties.  The set of objective video quality measurements effectively accounted for
subjective judgments by human viewers (Cermak & Fay).10  While 25 video systems were tested,
this multilaboratory study did not include MPEG video systems, and did not cover any bit rates
between 1.6 and 10 Mbit/sec.

The two MPEG studies described in this report were conducted to fill in the bit-rate gap in the
previous multilaboratory study.  In these studies, we concentrated on bit rates from 1.5 - 8.3
Mbit/sec and examined the performance of MPEG 1 and MPEG 2 codecs (coder-decoders)
specifically.  The effectiveness of the ANSI standard objective video quality metrics was
examined for these bit rates and coding technologies.  Several other metrics also were evaluated
as part of this study.  Two matrix versions of the ANSI spatial information (SI) distortion, named
Possob (positive Sobel difference ) and Negsob (negative Sobel difference), were used to
compute input and output SI distortions on a pixel-by-pixel basis.  The analysis revealed that the
objective video quality metrics primarily measure four principal components of video quality:
added edges, lost edges, added motion, and lost motion and that parameters selected from these
principal components can be used as  effective predictors of subjective quality ratings for
entertainment video systems.

2. Overview of the Two MPEG Studies

The data and analyses reported here are from two previous data-collection efforts, one on MPEG
1 codecs 11 and one on MPEG 2 codecs.12  In both studies, four analog Hypothetical Reference
Circuits (HRC’s) were compared with the MPEG HRC’s.  (The term Hypothetical Reference
Circuit refers to a specific realization of a video transmission system.  Such a video transmission
system may include coders, digital transmission circuits, decoders, and analog processing of the
video signal.)  Objective video quality measures should be general enough to apply to both



digital codecs and analog systems.  Also note that the MPEG 1+ (i.e., enhanced resolution
MPEG 1) codec at 3.9 Mbit/sec was included in the second study for comparison purposes.  By
including a common set of HRC’s in both studies, the subjective judgments from the two studies
could be directly compared with one another.

The HRCs tested in Study 1 were:

1.  MPEG 1 Bit rate 1.5 Mbit/sec
Vertical resolution 240 lines

2.  MPEG 1 Bit rate 2.2 Mbit/sec
Vertical resolution 240 lines

3.  MPEG 1+ Bit rate 3.9 Mbit/sec
Vertical resolution 480 lines

4.  MPEG 1+ Bit rate 5.3 Mbit/sec
Resolution 330-400 pixels by 480 lines

5.  MPEG 1+ Bit rate 8.3 Mbit/sec
Resolution 330-400 pixels by 480 lines

6.  Original scene with an SNR (signal-to-noise ratio) of 34 dB

7.  Original scene with an SNR of 37 dB

8.  Original scene with an SNR of 40 dB

9.  Original scene recorded and played back from a VHS VCR

10.  Original scene with no further processing

And, in Study 2, the HRCs were:

1.  MPEG 2 Bit rate 3.0 Mbit/sec
Resolution 352 pixels by 480 lines

2.  MPEG 1+ Bit rate 3.9 Mbit/sec
Resolution 352 pixels by 480 lines

3.  MPEG 2 Bit rate 3.9 Mbit/sec
Resolution 352 pixels by 480 lines

4.  MPEG 2 Bit rate 5.3 Mbit/sec
Resolution 704 pixels by 480 lines

5.  MPEG 2 Bit rate 8.3 Mbit/sec
Resolution 704 pixels by 480 lines

6.  Original scene with an SNR of 34 dB

7.  Original scene with an SNR of 37 dB

8.  Original scene with an SNR of 40 dB

9.  Original scene recorded and played back from a VHS VCR

10.  Original scene with no further processing

The random noise for HRC’s 6-8 in each study was added to the signals by attenuating a
modulated version of the signals before inputting them to a demodulator.  The SNR was
measured with a video test instrument.  To avoid introducing jitter when recording these signals,
the noise on the synchronizing pulses was removed by regenerating the pulses in a processing
amplifier.  The VHS unit used for HRC 9 was a consumer model, rather than a laboratory model.
Note that MPEG 1+ at 3.9 Mbit/sec and the comparison HRC’s 6-10 were used in both studies.

The same set of scenes was used in both studies.  The scenes spanned a range of coding
difficulty, within the general domain of entertainment.  They were not all chosen to stress the



codecs as much as possible.  Each scene was 14 sec long.  Four of the scenes were clips from
movies and four of the scenes were clips from sporting events.  Two of the movie clips were low
motion scenes with subtle facial expressions.  The rest of the clips contained considerable
motion and spatial detail.  The sources for the movie clips were commercial laser discs copied to
½ inch professional tape using a Y/C component connection.  The sports event scenes were
supplied by local broadcasters on ½ inch professional tape.

3. Objective Measures

3.1 Performance Measurement Issues for Digital Video Systems

A digital video transmission system that performs adequately for video teleconferencing might
be inadequate for entertainment television.  Specifying the performance of a digital video system
as a function of the video scene coding difficulty yields a much more complete description of
system performance.  Recognizing the need to select appropriate input scenes for testing,
algorithms have been developed for quantifying the expected coding difficulty of an input scene
based on the amount of spatial detail and motion.13 Other methods have been proposed for
determining the picture-content failure characteristic for the system under consideration.14

National and international standards have been developed that specify standardized video scenes
for testing digital video systems.15, 16  Use of these standards helps ensure that adequate care is
taken when systems from different suppliers are evaluated.

3.2 Summary of the Objective Measurement Methodology

The objective performance measurement system used in this study digitizes the input and output
video streams in accordance with ITU-R Recommendation BT.601 17 (the objective parameters
presented in this paper were applied to the luminance component only, which is sampled at 720
pixels by 486 lines) and extracts features from these digitized frames of video.  Features are
quantities of information that are associated with individual video frames.  These features are
used to quantify fundamental perceptual attributes of the video signal, such as spatial and
temporal detail.  Parameters are calculated using comparison functions that operate on two
parallel sequences of these feature samples (one sequence from the output video frames and a
corresponding sequence from the input video frames).  The ANSI T1.801.03 standard contains
parameters derived from three types of features that have been proven to be useful:       (1) scalar
features, where the information associated with a specified video frame is represented by a
scalar; (2) vector features, where the information associated with a specified video frame is
represented by a vector of related numbers; and (3) matrix features, where the information
associated with a specified video frame is represented by a matrix of related numbers.

In general, the transmission and storage requirements for measuring an objective parameter
based on scalar features are less than those required for an objective parameter based on vector
features.  These, in turn, are less than those required for an objective parameter based on matrix
features.  Significantly, scalar-based parameters have produced good correlations with subjective
quality.  This demonstrates that the amount of reference information that is required from the
video input to perform meaningful quality measurements is much less than the entire video
frame.  This important new idea of compressing the reference information for performing video
quality measurements has significant advantages, particularly for such applications as long-term
maintenance and monitoring of network performance.  Since a historical record of the output
scalar features requires very little storage, these features may be archived efficiently for future



reference.  Then, changes in the digital video system over time can be detected by simply
comparing these past historical records with current output feature values.

The performance metrics in ANSI T1.801.03 can be used in-service or out-of-service for
applications that detect the operational readiness of one-way, 525-line video systems that use
digital transport facilities (e.g., maintenance, fault detection, and quality monitoring).  The
ultimate goal is to refine and extend this technology to produce objective methods that can
replace subjective experiments for a wide range of applications.

3.3 Producing Frame-by-Frame Objective Parameter Values from Features

Frame-by-frame parameter values can be computed by applying mathematical comparison
functions to each input and output feature value pair (the algorithms for temporally aligning
output and input images are discussed below).  Useful comparison functions include the log ratio
(logarithm base 10 of the output feature value divided by the input feature value), and the error
ratio (input feature value minus output feature value, all divided by the input feature value).
These frame-by-frame objective parameter values give distortion measurements as a function of
time.

Subjective tests conducted in accordance with ITU-T Recommendation P.910 13 or CCIR
Recommendation 500 14 produce one subjective mean opinion score (MOS) for each HRC-scene
combination.  Since these video clips are normally about 10 sec in length, it is necessary to “time
collapse” the frame-by-frame objective parameter values before they are correlated to subjective
MOS.  ANSI T1.801.03 specifies several useful time-collapsing functions such as maximum,
minimum, and root mean square (rms).  The maximum and minimum functions are useful for
detecting the extremes of video quality while the rms function is a good indicator of the overall
average.

3.4 Calculation of Gain, Level Offset, and Active Video Shift

Calibration is an important consideration when input and output video frames are compared
directly.  Neglecting calibration can produce large measurement errors in the parameter values.
For example, both nonunity channel gains and nonzero level offsets can have a significant effect
on the calculations of peak signal to noise ratio (PSNR) and other parameters defined in ANSI
T1.801.03.  Thus, robust methods for measuring gain, level offset, and active video shift (i.e.,
spatial registration of input and output video frames) are specified in the standard.  These
methods require the use of still video and, in the case of the gain and level offset calculations,
that still video is a test pattern defined in the standard.

An alternative method for performing dynamic calibration measurements using the sampled
input and output video had to be devised for the MPEG experiments because the standardized
calibration frames were not included on the original source tapes.18   This calibration analysis
revealed that it is quite common for digital video systems to have substantial nonunity gains,
level offsets, horizontal shifts, and vertical shifts of the output video.  We also discovered that
important calibration quantities can change dynamically depending upon the scene content.  In
light of this analysis, a separate gain g, level offset l, horizontal shift hs, and vertical shift vs were
computed for each clip (i.e., each HRC-scene combination).  We median-filtered the time
histories of the calibration quantities for each clip and applied these filtered corrections to each
output frame before computing the objective parameters.  Note that within-scene variations from
the calibration quantities are not removed by this approach.  These within-scene variations could
thus be detected as impairments by the objective parameters.



3.5 Temporal Alignment (i.e., Video Delay)

The output video frames should be temporally aligned, or registered, to the input video frames
before the objective parameters are computed.  Temporal misalignment of the input and output
video streams results from accumulated video delays in the end-to-end transmission circuit (e.g.,
coder, digital transmission channel, and decoder).  There are two fundamental methods that can
be used to perform temporal alignment.  The first method, called constant alignment 8, gives one
time delay measurement for the entire output video stream.  The second method, called variable
alignment 19, gives a time delay measurement for each individual output video field.  Objective
parameters can be computed using either temporal alignment method.  When constant alignment
is used, frame by frame distortion metrics measure errors produced by both spatial impairments
and repeated output frames.  With variable alignment, frame-by-frame distortion metrics
measure only those errors produced by spatial impairments; and the error caused by repeated
output frames is quantified separately using variable frame delay statistics.

3.6 Temporal Alignment Observations

For higher quality transmission systems such as MPEG (i.e., systems that rarely drop frames), a
field-accurate constant alignment method has proven to be a simple and excellent technique for
measuring video delay.18, 20  This technique has the added advantage of being an in-service
method of measurement for video delay.  For transmission systems that repeat frames, drop
frames, or perform temporal warping (i.e., variable video delay), constant alignment produces a
temporal alignment that reflects the average alignment of the ensemble of output video frames
being examined.  For the current studies, the constant alignment technique was used prior to
computing the objective parameters.

3.7 Summary of Objective Parameters Used for the MPEG 1+ and MPEG 2 Tests

Table 1 presents a summary of the objective parameters that were computed for each HRC-scene
combination in the MPEG 1+ and MPEG 2 studies.  Parameter definitions and detailed methods
of measurement are based on ANSI T1.801.03.8, 9  Annex B of ANSI T1.801.03 is particularly
informative as it provides pictorial representations of parameter responses to various spatial and
temporal distortions (e.g., tiling, blurring, error blocks, and jerkiness, see ANSI T1.801.02-1996
21 for definitions of these impairments).

Table 1  Summary of Objective Parameters

Parameter Description ANSI Method of Measurement

711 maximum added motion energy Section 7.1.1 of ANSI T1.801.03-1996

712 maximum lost motion energy Section 7.1.2

713 average motion energy difference Section 7.1.3

714 average lost motion energy with noise
removed

Section 7.1.4

715 percent repeated frames Section 7.1.5



716 maximum added edge energy Section 7.1.6

717 maximum lost edge energy Section 7.1.7

718 average edge energy difference Section 7.1.8

719 maximum HV to non-HV edge energy
difference, threshold=20

Section 7.1.9

719_60 maximum HV to non-HV edge energy
difference, threshold=60

Section 7.1.9 using an rmin of 60 instead of 20

719a minimum HV to non-HV edge energy
difference, threshold=20

Section 7.1.9 using the feature comparison
function in section 6.5.1.5

719a_60 minimum HV to non-HV edge energy
difference, threshold=60

Section 7.1.9 using an rmin of 60 instead of 20
and the feature comparison function in
section 6.5.1.5

7110 added edge energy frequencies Section 7.1.10

7110a lost edge energy frequencies Section 7.1.10 using modified feature
comparison function to sum the lost
frequencies (i.e. sum positive part instead of
negative part)

721 maximum added spatial frequencies Section 7.2.1

722 maximum lost spatial frequencies Section 7.2.2

732 minimum peak signal to noise ratio Section 7.3.2

733 average peak signal to noise ratio Section 7.3.3

Negsob negative Sobel difference Mean of the negative part of the input minus
output pixel by pixel differences of SIr values
(see section 6.1.1.1), mean [Sobel(input)-
Sobel(output)]np ([X] np defined in section
6.5.1.9)

Possob positive Sobel difference Mean of the positive part of the input minus
output pixel by pixel differences of SIr values
(see section 6.1.1.1), mean [Sobel(input)-
Sobel(output)]pp ([X] pp defined in section
6.5.1.7)

The horizontal and vertical (HV) to non-HV edge energy difference parameters were computed
using an rmin threshold of 60 in addition to the recommended rmin threshold of 20.  An rmin

threshold of 20 included nearly every pixel in the sampled video frames due to the amount of
noise that was present in the source video.  With an rmin threshold of 60, the noise was eliminated
effectively from the calculation.  To remove the effect of scene length, the added edge energy



frequencies and lost edge energy frequencies parameters were computed using a mean
calculation rather than the sum calculation specified by ANSI T1.801.03.

Two matrix versions of the ANSI spatial information (SI) parameters were included in the
analysis.  These two parameters (Negsob and Possob) are illustrated in Figure 1. Figure 1 (a) is
the input image, Figure 1 (b) is the spatially registered output image, Figure 1 (c) is the spatial
information of the input image (SIr [input]), Figure 1 (d) is the spatial information of the output
image (SIr [output]), and Figure 1 (e) is the error between the two spatial information images
(i.e., SIr [error] = SIr [input] - SIr [output]).  In Figure 1 (e), zero error has been scaled to be equal
to mid-level gray (128 out of 255 for an 8-bit display).  When false edges are present in the
output image (e.g., blocks, edge busyness, etc.), the SI error is negative and appears darker than
gray (Negsob parameter).  When edges are lost in the output image (e.g., blurred), the SI error is
positive and appears lighter than gray (Possob parameter).  In this manner, the two types of error
can be clearly separated on a pixel-by-pixel basis when both are present in the output image.

The ability to separate impairments on a pixel-by-pixel basis is one advantage of the SI matrix
equivalents over the SI scalar features presented in ANSI T1.801.03.  Since SI scalar features use
summary statistics from the input and output SI images, impairments can be missed when two
impairments with opposite responses are present (for instance, lost edges and added edges).
However, it is possible to design scalar features that can separate certain impairments that have
opposite responses (e.g., blocking can be separated from blurring by looking at the direction of
the spatial gradient; see Annex B, section B.3 of ANSI T1.801.03).  The primary disadvantages
of using matrix features are that they require a tremendous amount of extra storage (or
transmission bandwidth), and precise spatial registration of the input and output images is
required.



   
(a)  Input (b)  Output

   
(c)  SI of Input (d)  SI of Output

(e)  SI of Input minus SI of Output

Figure 1  Illustration of Negsob and Possob Parameters



4. Subjective Data

4.1 Method Used to Collect Subjective Data

A variant of one of the methods specified in CCIR 500 14 was used to collect the subjective data.
Human observers watched recorded video segments on a single high-quality monitor in a room
with controlled illumination.  The video segments were presented in pairs, so that each judgment
was a comparison of two video treatments.  The observers made subjective judgments and
recorded them on answer sheets.

The method for collecting subjective judgments of video quality also differed from the CCIR
500 method used in the 1994 multilaboratory study (see Cermak et al.11 for rationale and details)
in three ways:

-  HRC’s were compared to each other, not to the original, unprocessed clip.  For a given
number of “trials” (exposures to stimuli), this method provides a larger number of
exposures to the HRC’s being tested.

-  The judgment that observers made was different from the impairment scale methods.
Rather than rating on a five-point impairment scale, observers         (a) chose the better
HRC in each pair, then (b) estimated the difference between the value of the two
HRC’s in dollars per month.  This method correlates highly with the impairment scale
method; it also provides technical advantages over the impairment scale method.

-  The video clips were recorded and played back on a video disc, rather than on a ½ inch
professional tape recorder.  The performance specifications for the video disc machine
are marginally lower than for the tape machine (>45 dB video SNR, 450 pixels
horizontal resolution).  The video disc has the advantages of random access and
computer control.  The ordering of stimuli was randomized separately for each subject
in real time.  Also, the pairings of HRCs and scenes were randomized; over the course
of the full experiment, each HRC was paired with each scene an approximately equal
number of times, but on any specific trial the scene was selected randomly.  This
sampling procedure is based on the logic that the HRC’s we tested are known, fixed,
and limited in number, while the scenes are sampled from a potentially infinite pool.

In the MPEG 1+ study 30 observers provided subjective responses in dollars per month.  The
observers were not laboratory employees but were chosen to be cable television  customers,
familiar with the signal quality of cable television, and also accustomed to paying for it.  Their
demographics were unremarkable.  The MPEG 2 study also used a sample of 30 consumers with
the same overall description as the MPEG 1+ study.  Some of the same subjects participated in
both studies, but the studies were separated by nearly a year, more than enough time for subjects
to forget fine details of visual stimuli.

4.2 Summary of Subjective Data

The basic subjective data for this study are the mean dollar ratings for each HRC-scene
combination, averaged across 30 observers.  Each rating represents the average difference
between a given HRC and the other HRC’s with which it was compared.  Thus, negative values
are possible.  Table 2 and Table 3 show the mean ratings (in dollars per month) for the MPEG 1+
and MPEG 2 studies, respectively.  The standard errors of the table values for MPEG 1+ and
MPEG 2 on the order of 0.7 and 1.0, respectively (there being half as many trials per subject in
the MPEG 2 study than in the MPEG 1+ study).



Table 2  Mean subjective ratings of HRC-scene combinations for MPEG 1+ study

Scene 1.5
Mbit/
sec

2.2
Mbit/
sec

3.9
Mbit/
sec

5.3
Mbit/
sec

8.3
Mbit/
sec

34 dB 37 dB 40 dB VHS Original

2001  0.86 -0.57  2.79 1.33 2.53 -7.92 -3.93 -2.12  2.35  3.85

Graduate -4.37 -6.06  0.84 0.22 1.97 -7.88 -4.98 -1.39 -0.11  3.09

Godfather  0.46 -0.19  0.80 1.70 2.18 -8.44 -2.22 -3.34  1.79  4.04

Being
There

 1.23  0.68  2.29 2.36 2.97 -9.14 -4.76 -0.65  1.81  2.91

Basketball -4.26 -1.04  0.31 2.46 3.50 -6.84 -1.88  0.47  2.71  3.17

Baseball -2.37 -0.41  3.56 2.30 2.00 -8.05 -5.57 -3.15  5.21  4.38

Hockey 1 -5.65 -5.53 -0.29 0.89 2.52 -3.94  1.97  2.39  3.79  4.16

Hockey 2 -4.61 -3.92  2.39 2.11 0.58 -5.12 -0.36  2.75  2.74  3.94

Table 3  Mean subjective ratings of HRC-scene combinations for MPEG 2 study

Scene 3.0
Mbit/
sec

3.9
Mbit/
sec

(1+)

3.9
Mbit/
sec

5.3
Mbit/
sec

8.3
Mbit/
sec

34 dB 37 dB 40 dB VHS Original

2001  3.40  1.17 2.57 3.29 2.56 -10.47 -6.29  0.24 2.00 2.90

Graduate -0.13  1.68 1.11 1.94 1.16 -10.09 -4.78 -2.65 0.23 3.38

Godfather  0.20 -0.72 2.80 3.17 1.13  -9.45 -6.75 -4.50 3.54 3.26

Being
There

 2.00  1.64 3.70 1.89 3.95  -9.50 -5.43 -2.13 1.30 2.35

Basketball  0.15 -0.68 0.22 1.36 3.42  -6.33 -2.73 -0.60 5.40 3.60

Baseball -1.00  3.35 1.44 2.50 4.20  -7.29 -6.69 -1.37 4.20 4.22

Hockey 1  2.38 -0.13 0.23 1.69 3.85  -6.06 -4.06 -0.10 1.36 2.38

Hockey 2 -0.24 -3.60 3.69 0.86 3.17  -8.89 -1.91 -0.26 1.25 4.15

Other papers have presented analyses of these subjective data in some detail.11, 12  In both data
sets the ratings were statistically related to the variables:  HRC, scene, and the specific HRC-
scene combinations, as would be expected.  Other analyses demonstrate that the subjective data
are not excessively noisy and show systematic differences between the way observers react to
analog vs. digital HRC’s.  We do not present further analyses of the subjective data by
themselves here.  Instead, we concentrate on analyses of the objective data as predictors of the
subjective data.



5. Statistical Analyses

5.1 Methods

5.1.1 Strategy

The theoretical goals of the data analysis were to

-  find the “best” set of objective measures for predicting the subjective judgments, and

-  determine how close to optimal these predictors are.

Two characteristics of most data sets complicate the problem of finding the "best" set of
predictors and force one to use compensating data analysis strategies: (a) noise and       (b)
redundancy.  Two consequences of noise are (a) that a different set of predictors will best fit in
different, but comparable, data sets; and (b) the best fit will never be 1.0.  Two consequences of
redundancy in a set of variables are (a) different subsets of variables will fit a data set
(essentially) equally well; and (b) if too many redundant variables are used as predictors, results
can be very unstable from one analysis to the next, especially in the presence of noise (a
phenomenon known as “over-fitting”).

Because of the realities of the characteristics of data,

-  the actual goals of the analysis were to find a generalizable and meaningful set of
predictor measures;

-  several sets of predictors may be essentially equally good; and

-  the fit of these good sets of predictors will be less than 1.0.

Strategies for handling data with noise and redundancy were:

-  measure the redundancy in the set of predictor variables;

-  pre-specify the maximum number of variables to be used in any analysis on the basis of
the measure of redundancy;

-  use variables that are known a priori to be causally related to the dependent variable
whenever possible; and

-  verify that a candidate set of predictor variables can be generalized to another data set
or sample.

5.1.2 Redundancy

The set of 20 objective measures is based on a few fundamental quantities such as spatial and
temporal differences in pixel brightness.  The measures fall into families of closely-related
measures (see above).  A statistical measure of the amount of redundancy in the set of 20
measures is the number of orthogonal (i.e., uncorrelated) variables needed to account for most of
the variance in the set of measures.  The analysis that computes this measure is “principal
components analysis.” In this analysis the original data set of measurements of the signals is
represented as a linear combination of the original measurements.  The particular linear
combination is given by the eigenvectors of the correlation matrix of the measures.  The
corresponding eigenvalues represent the amount of variation in the original correlation matrix
that is attributable to particular linear combinations of the original variables.  The original data
matrix can always be reproduced if the number of principal components is equal to the number
of original variables.  However, the data matrix can often be closely approximated with fewer



principal components than there are variables, especially when the original variables are
correlated.  Generally, one considers the number of principal components for a data set to be the
number whose eigenvalues are greater than 1.0.  In practice, an analysis is considered successful
if it accounts for about 70 or 80% of the variance in a set of measures with a number of
components equal to about a third or a fourth of the number of original variables.

5.1.3 Reliability

The reliability issue is important because it limits the statistical fit of even a perfect objective
measure.22, 23  That is, if the subjective judgments have noise in them (as we know they certainly
will), then even perfect objective measures will not be able to predict the subjective judgments
perfectly.  The reliability of a variable is defined as the ratio {the variance in the variable if it
were measured perfectly} / {the variance in the variable if it were measured perfectly, plus
error}.  This definition is theoretical because one never observes “the variance in the variable if
it were measured perfectly.”  However, the ratio still can be estimated using observable
quantities, as follows.23

-  The denominator is just the variance in the variable as actually observed.  This variance
is, by hypothesis, composed of both the true value and error.  The estimator for the
denominator is the mean square (variance) pooled across the two subsamples, i.e., the
MPEG 1+ and MPEG 2 studies.

-  The numerator is estimated by the covariance of the observed variable across the two
studies.  This simple estimator is based on the assumption that the error in the two
studies is independent and uncorrelated with the variable itself.  In this case, the
covariance of the observed variable with itself is the same as the variance of the
variable if it were measured perfectly.

The term “reliability” is somewhat misleading when applied to objective measures of video
quality.  If a measure receives a low reliability score, one might think of the measure as
defective, while in fact the measure may be responding accurately to real differences in the video
streams between the two studies.  Despite this incorrect connotation, the term “reliability” is the
one that the statistics literature recognizes.  We analyzed repeated measurements to compute
estimates of the statistical reliability of the objective measures and of the subjective measure.
Five of the HRC’s and all eight of the scenes were nominally the same across the two
experiments.  The repeated HRC’s were MPEG 1+ at 3.9 Mbit/sec, the cable simulations at 34,
37, and 40 dB SNR; and VHS.  We say “nominally the same” because the two tapes of the
HRC’s and scenes were not identical frame-by-frame and pixel-by-pixel.  In this sense, when we
speak of a measurement in the present study we refer to the end-to-end process of obtaining the
video signal and preparing it for measurement, as well as the digitization and parameter
computation.

5.1.4 Regression

We used a standard regression program for most of the analyses in which the objective measures
were used to predict the subjective judgments.  We also used a “stepwise” regression as a
secondary analysis.  Stepwise regression is an exploratory data analysis technique that seeks a
best-fitting set of predictor variables via an automated algorithm.  Stepwise regression is an
exploratory technique in the sense that it can suggest hypotheses on the basis of one data set for
testing in another data set.  (The “best” set of variables found through stepwise regression is
rarely the set that is most generalizable.)  Prior to the regression analyses, the MPEG 2 rating
data were re-scaled according to the formula:  New Rating = 0.721 + 0.833 * Rating, so that the



ratings from the two experiments would be comparable.

5.2 Results

5.2.1 Redundancy in Objective Measures

Redundancy was separately analyzed for the MPEG 1+ and MPEG 2 data sets, as well as for the
two data sets combined.  The separate analyses agreed qualitatively, so only the analysis of the
two sets combined is reported here.  A principal components analysis showed four principal
components with eigenvalues greater than 1.0, and these principal components jointly accounted
for 80% of the variance in the 20 objective measures.  The following describes the components:

1.  The first component, as in the two data sets separately, correlated highest with
measures from the 719 series, 721, and Negsob (added edges and added spatial
frequencies).  The first component accounted for 34% of the variance.

2.  The second component, again similar to the second component for the two data sets
separately, accounted for 26% of the variance and correlated most highly with
measures 717, 722, and Possob (lost edges and lost spatial frequencies).

3.  The third component accounted for 12% of the variance and correlated highest with
7110a (lost edge energy frequencies) and 714, 715 (lost motion).

4.  The fourth component, accounting for 7% of the variance, correlated highest with
measure 7110 (added edge energy frequencies; 7110 and 7110a were slightly
negatively correlated with each other).

5.2.2 Regression

Any one regression analysis, on any one data set is unlikely to produce a generalizable result.
However, multiple analyses on multiple data sets that produce similar answers form the basis for
credible and potentially generalizable results.  The following regression analyses were
performed:

1. MPEG 1+ data alone, using measures from principal components analysis.  We used
only a single variable from each of the four principal components that passed the
eigenvalue test as predictors in the regression analysis.

2.  MPEG 1+ data alone, using Sobel image measures.  The first two principal
components of both data sets correlate nearly maximally with the two complementary
Sobel image measures.  Because these measure are of a priori interest, we performed a
regression analyses using the Sobel measures as representatives of the first two
components.

3.  MPEG 1+ data alone, exploratory stepwise analysis.  Stepwise regression enters
variables sequentially, choosing the next variable that maximizes the square of the
correlation coefficient R2 given the preceding variables.  Typically, results of a
stepwise analysis are sensitive to noise in the data, and thus may not be reliable when
used in isolation.  However, when used in combination with other analyses, stepwise
analysis can be informative.

From the analyses of the MPEG 1+ data set, we hypothesized (a) that a variable from each of the
first three principal components of the objective data set is worth trying;     (b) the most likely
variable from the first principal component is Negsob; (c) an R2 above 0.7 is achievable.



4.  MPEG 2 data alone, using measures from principal components analysis.

5.  MPEG 2 alone using the best MPEG 1+ measures.  A set of candidate "best"
predictors from the MPEG 1+ analysis was Negsob, 713 (motion difference), and 717
(lost edges).  The adjusted R2 fit of this model to the MPEG 2 data was 0.815; this was
quite an improvement over the variables derived from the principal components, and
also an improvement over the T1A1.5 multilaboratory data set.

6.  MPEG 2 alone, exploratory stepwise analysis.

The three hypotheses from the MPEG 1+ data set were supported in the MPEG 2 data set.  Thus,
we considered these hypotheses in the analysis of the joint data set.

7.  MPEG 1+ and 2 using measures from principal components.  The measures that best
correlated with the first four principal components, respectively, of the combined data
set were Negsob (added edges), 722 (lost spatial frequencies), 714 (lost motion), and
7110 (added edge energy frequencies).  The adjusted R2 for this set of predictors was
0.704.  The variables 7110 and 722 were not significantly correlated, as was the case
in the analysis of the MPEG 1+ data set.  Again, Negsob had by far the largest effect.

8.  MPEG 1+ and 2 using variables from MPEG 2 analyses.  A slightly different set of
variables had been identified in the analysis of the MPEG 2 data namely, Negsob and
714, as above, as well as Possob and 711.  The adjusted R2 for this set of variables was
a more respectable 0.769, and all variables were significant (Possob marginally).

9.  MPEG 1+ and 2 using exploratory stepwise analysis.  The first three variables
selected, and the only three that appreciably improved the fit of the model, were
Negsob, 711, and 714, respectively.  These three parameters measure added edges,
added motion, and lost motion, respectively.  The adjusted R2 fit of the three-variable
model was 0.763 (correlation coefficient R = 0.87).  Figure 2 shows the predicted
ratings from this model plotted against the actual subjective ratings.  The
(standardized) parameters of this model are 0.555,       -0.347, and  -0.220 for the
variables Negsob, 711, and 714, respectively.  The unstandardized parameters of the
model are 0.224, -8.662, and -7.547, respectively, with an intercept constant of 4.327.
(Unstandardized parameters for a four-parameter model that included a parameter for
measuring lost edges; i.e., the variables Negsob, 711, 714, and 717 are 0.209, -9.374, -
6.127, and       -3.241, respectively, with an intercept of 4.380.)

10.  Peak signal to noise ratio (PSNR) has been used as a measure of video quality for
years.  We report its ability to predict subjective judgments in the present joint data
set:  R2 = 0.181 for average PSNR (parameter 733); and R2 = 0.095 for minimum peak
SNR (parameter 732).  By contrast, the R2 for Negsob for the joint data set was 0.657.



5.3 Interpretation of Results

5.3.1 Which Measures Work Best

For the current data sets, the best single predictor of subjective video quality is Negsob (the
mean of the negative portion of the differences in pairs of Sobel images).  Recall that Negsob
becomes large in absolute value when the coded video has false edges added to it, as in blocking.
This variable is both consistent across data sets and powerful in its ability to predict.

After Negsob, the ability to predict increases with the addition of another two or three variables.
Exactly which ones are chosen is not terribly crucial as long as representatives from the
following families of measures are included:

-  Possob or the family of measures of lost edge information (e.g., 717 for lost edge
energy, or 722 for lost spatial frequencies).

-  714 or the family of measures of lost motion (e.g., 715 for repeated frames).

-  711 or measures of added motion (e.g., 713 for average motion difference), or
measures of edge energy difference (e.g., the 719 family).

The inclusion of matrix versions of spatial information (SI) distortion (i.e., Negsob, Possob)
increased the amount of subjective variance that was explained by the objective metrics by about
5 - 8%.  Thus, for the current studies, the price paid for compressing the SI information into a set
of scalar quality features appears to be about a 5 - 8% reduction in prediction efficiency.

The particular package of measures that best predicts subjective judgments may depend
somewhat on the particular domain of HRC’s and scenes for which one wants to make
predictions.  For example, if one is interested in comparing only MPEG HRC’s running at
different bit rates, then one package of measures could be slightly better, while if one were
comparing MPEG systems to VHS video recorders and cable television, then another package
might predict slightly better.  If one were interested in determining acceptable bit rates for one
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kind of content (e.g., sports), then one package of measures might be slightly better, but if one
were interested in another kind of content (e.g., news and weather) then another package of
measures might be slightly better.

5.3.2 How Good Is the Statistical Fit?

In the combined data set, the objective measures were able to account for 0.763 - 0.769 of the
variance, depending on whether three or four predictor variables were used.  By way of
comparison, in the T1A1.5 multilaboratory study (Cermak and Fay 10, pg. 28), the fit was not
quite as good:  R2=0.706.

Another relevant comparison is with the maximum R2 that could have been achieved, given the
level of error in the data.  More than a quarter century ago the statistician Cochran 23 (pg. 22)
dealt with the problem of estimating R2 in the presence of error: “This paper deals mainly with
the relation between R2, the squared multiple correlation coefficient between y and the X's when
these are correctly measured, and R'2, the corresponding value when errors of measurement are
present.”  We use Cochran's equation 3.6 (pg. 24):

R'2 = R2 * (reliability of y, subjective data) * (weighted average of reliabilities of X's,  objective
data).

Suppose R2 were 1.00 in the case of no error of measurement, then R'2 = 1.00 * 0.890 * 0.949 =
0.845, where 0.949 is a weighted sum of the reliabilities of the best predictors, 711, 714, Negsob.
(The weights are the absolute values of the standardized regression coefficients for 711, 714, and
Negsob, scaled to sum to 1.00.)  See Cermak et al.18 for the reliabilities of the objective
measures.

R'2 = 0.845 is the upper bound for prediction of subjective ratings by objective measures when
error of measurement is present in the amounts we observed in this study.  Compared to 0.845,
the observed 0.763 is 90% of maximum.  As in the case of the T1A1.5 study, the ability of the
objective measures to predict subjective responses is good but shows some room for
improvement.

6. Conclusions

The current generation of objective video quality measures has achieved good prediction of
subjective ratings for entertainment-level HRCs.  The objective measures captured about 90% of
the subjective information that could be captured considering the level of measurement error
present in the subjective and objective data.  We have not attempted to tune this set of objective
measures for a specific testing situation.  Further work is required to evaluate the potential of
fine-tuning the measures for specific applications in testing equipment.  However, the current
objective measures can be considered as reasonable candidates for testing applications.

The kinds of objective variables that effectively predict subjective responses well for MPEG
video systems are

(a) measures of the addition of false edges, in particular the matrix measure Negsob,

(b) measures of lost sharpness of edges, and

(c) measures of change in motion (i.e., lost motion, and added motion).



A traditional objective variable that does not effectively predict subjective responses for MPEG
video systems is PSNR.  PSNR captured only about 21% of the subjective information that could
be captured considering the level of measurement error present in the subjective and objective
data.

In conclusion, by using a set of three or four objective measures as indicated above, a correlation
coefficient of 0.87 is achieved.  Since the covariance/variance analysis indicates that 0.92 is the
best possible for this study, this result is very good.

7. References

Note:  Copies of ANSI contributions referenced below can be obtained from the T1 Secretariat,
Alliance for Telecommunications Industry Solutions, 1200 G Street,  NW, Suite 500,
Washington, DC  20005.

                                                

1.  Wolf, S., “Features for automated quality assessment of digitally transmitted video,” NTIA
Report 90-264, June 1990.

2.  Ardito, M., and Visca, M., "Correlation between objective and subjective measurements for
video compressed systems," SMPTE Journal, V 105, n 12, pg. 768-773, December 1996.

3.  Lubin, J., "A visual discrimination model for imaging system design and evaluation," Report
from the David Sarnoff Research Center, February 1995.

4. Webster, J., Jones, C., Pinson, M., Voran, S., Wolf, S., “An objective video quality assessment
system based on human perception,” SPIE Human Vision, Visual Processing, and Digital
Display IV, vol. 1913, February 1993.

5.  Voran, S., “The development of objective video quality measures that emulate human
perception," IEEE Global Telecommunications Conference (GLOBECOM), December 1991.

6.  Cotton, B., “An objective model for video quality performance,” ANSI T1A1 contribution
number T1A1.5/96-105, March 1996.

7.  ITU-T Contribution to Question 22/12, COM 12-7 (Netherlands), “Objective measurement of
video quality,” February 1997.

8.  ANSI T1.801.03-1996, “American National Standard for Telecommunications - Digital
Transport of One-Way Video Telephony Signals - Parameters for Objective Performance
Assessment,” Alliance for Telecommunications Industry Solutions, 1200 G Street,  NW, Suite
500, Washington DC 20005.

9.  ITU-T Contribution to Question 22/12, COM 12-66-E (USA), “Selections from the Draft
American National Standard: Digital Transport of One-Way Video Signals - Parameters for
Objective Performance Assessment,” January 1996.

10.  Cermak, G. W., and Fay, D. A., “T1A1.5 video quality project: GTE Labs analysis,” ANSI
T1A1 contribution number T1A1.5/94-148, September 1994.

11.  Cermak, G. W., Tweedy, E.P., Ottens, D. W., and Teare, S.K., “Consumer acceptance of
MPEG1 video at 1.5 to 8.3 Mb/s.”  ANSI T1A1 contribution number T1A1.5/96-108, May
1996.

12.  Cermak, G. W., Teare, S. K., Tweedy, E. P., and Stoddard, J.C., “Consumer acceptance of
MPEG2 video at 3.0 to 8.3 Mb/s,” Broadband Access System, W.S. Lai, S.T. Jewell, C.A.



                                                                                                                                                            
Siller, I. Widjaja, & D. Karvelas (eds.) Proc. SPIE 2917, pg. 53-62, 1996.

13.  ITU-T Recommendation P.910, “Subjective video quality assessment methods for
multimedia applications,” Recommendations of the ITU, Telecommunication Standardization
Sector.

14.  CCIR Recommendation 500-5, “Method for the subjective assessment of the quality of
television pictures,” Recommendations and Reports of the CCIR, 1992.

15.  ITU-R Recommendation BT.802-1, “Test pictures and sequences for subjective assessments
of digital codecs conveying signals produced according to Recommendation ITU-R BT.601,”
Recommendations of the ITU, Radiocommunication Sector.

16.  ANSI T1.801.01-1995, “American National Standard for Telecommunications - Digital
Transport of Video Teleconferencing/Video Telephony Signals - Video Test Scenes for
Subjective and Objective Performance Assessment,” Alliance for Telecommunications
Industry Solutions, 1200 G Street, NW, Suite 500, Washington DC 20005.

17.  ITU-R Recommendation BT.601-4, “Encoding Parameters of Digital Television for
Studios,” Recommendations of the ITU, Radiocommunication Sector.

18.  Cermak, G., Tweedy, P., Wolf, S., Webster, A., Pinson, M., “Objective and subjective
measures of MPEG video quality,” ANSI T1A1 contribution number T1A1.5/96-121,
October 1996.

19.  ANSI T1.801.04-1997, “American National Standard for Telecommunications - Multimedia
Communications Delay, Synchronization, and Frame Rate Measurement,” Alliance for
Telecommunications Industry Solutions, 1200 G Street, NW, Suite 500, Washington DC
20005.

20.  Wolf, S., Webster, A., “Objective and subjective video performance testing of DS3 rate
transmission channels,” ANSI T1A1 contribution number T1A1.5/93-60, April 1993.

21.  ANSI T1.801.02-1996, “American National Standard for Telecommunications - Digital
Transport of Video Teleconferencing/Video Telephony Signals - Performance Terms,
Definitions, and Examples,” Alliance for Telecommunications Industry Solutions, 1200 G
Street,  NW, Suite 500, Washington DC 20005.

22.  Bollen, K.A., Structural Equations With Latent Variables, New York, Wiley, 1989.

23.  Cochran, W.G., “Some effects of errors of measurement on multiple correlation,” Journal of
the American Statistical Association, No. 65, pg. 22-34, 1970.


