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ABSTRACT

Many organizations have focused on developing digital video quality metrics which produce results that accurately emulate
subjective responses.  However, to be widely applicable a metric must also work over a wide range of quality, and be useful
for in-service quality monitoring.  The Institute for Telecommunication Sciences (ITS) has developed spatial-temporal
distortion metrics that meet all of these requirements.  These objective metrics are described in detail and have a number of
interesting properties, including utilization of 1) spatial activity filters which emphasize long edges on the order of 1/5 degree
while simultaneously performing large amounts of noise suppression, 2) the angular direction of the spatial gradient, 3)
spatial-temporal compression factors of at least 384:1 (spatial compression of at least 64:1 and temporal compression of at
least 6:1, and 4) simple perceptibility thresholds and spatial-temporal masking functions.  Results are presented that compare
the objective metric values with mean opinion scores from a wide range of subjective data bases spanning many different
scenes, systems, bit-rates, and applications.
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1. INTRODUCTION

To be widely applicable, a digital video quality metric must:

1.  Produce results that accurately emulate subjective responses.

2.  Work over the full range of quality, from very low bit rate video teleconferencing systems to very high bit rate studio and
broadcast systems.

3.  Be computationally efficient, so that it may be implemented on common PC platforms.

4.  Be bandwidth efficient, compressing quality information into the smallest possible bandwidth, thereby making the metric
useful for end-to-end in-service quality monitoring.

While many organizations have focused exclusively on (1) for a narrowly defined application or video compression
technology, we at the Institute for Telecommunication Sciences (ITS) have focused our research efforts on developing video
quality metrics with all of the above attributes.  We have recently obtained several new subjective data sets and the means to
process extensive amounts of digital video.  This has allowed us to examine a total of seven independent subjective data sets
that spanned an extremely wide range of digital video systems and test scenes.  In this paper, we present detailed descriptions
of computationally efficient spatial-temporal distortion metrics that have a high degree of correlation with subjective ratings
from these seven independent subjective experiments.

Item (4) above is often neglected in the development of objective digital video quality metrics.  This is unfortunate since the
video quality of a modern digital video system is variable and depends upon the dynamic characteristics of the input video
(e.g., spatial detail, motion) and the digital transmission system (e.g., bit-rate, error-rate).  Thus, out-of-service testing made at
different times or using different scenes than what is actually used in-service cannot quantify video quality as it is truly
perceived by the end-user.  This perceived video quality must be measured in-service using the actual video being sent by the
users of the digital video system.  We have shown that accurate perception-based in-service video quality measurements can
be made using the technique shown in Figure 1.1-10  Rather than relying on input and output pixel comparisons (which require
full bandwidth reference information for in-service measurements, or a priori knowledge of the test scenes for out-of-service



measurements), the technique shown in the figure uses reduced reference information in the form of features that are extracted
from processed spatial-temporal (S-T) regions of the input and output video streams.  A feature is defined here as a quantity
of information that is associated with a specific S-T region of the video sequence.  Examples of features are summary
statistics (e.g., mean, standard deviation) calculated using all the image pixels within a processed S-T region.  The reduced
reference information is compressed by many orders of magnitude versus the ITU-R Recommendation BT.60111 video stream
(referred to as Rec. 601 later in this paper) and thus can be continuously transmitted using a readily available low-bandwidth
ancillary data channel (e.g., modem, Internet, in-service data channel).  Being low bandwidth, these features can also be easily
archived and used as a historical record of video performance.

The focus of this paper is perceptual measurement of spatial distortions over time.  Hence, we have categorized the metrics as
spatial-temporal, since some temporal aspects have been included.  Similar techniques to the ones presented here have also
been applied with success to measuring “pure” temporal and chroma distortions.10  However, for reasons of brevity, we have
chosen to focus on perceptual measurement of spatial distortions over time since these types of distortions are the principal
contributors to video quality (this will become apparent in sections 4.2 and 4.3).

2. DESCRIPTION OF METRICS

The goal of this section is to describe the spatial-temporal distortion metrics in sufficient detail so that they may be
implemented by researchers.  An overview of the algorithm to extract the metrics is given in Figure 2.  The luminance
component of the Rec. 601 input and output video streams (i.e., the Y signal in Rec. 601) are processed using horizontal and
vertical edge enhancement filters.  Next, these processed video streams are divided into S-T regions from which features, or
summary statistics, are extracted that quantify the spatial activity as a function of angular orientation.  Then, these features are
clipped at the lower end to emulate perceptibility thresholds.  Next, distortions in video quality due to gains and losses in the
feature values are calculated for each S-T region by comparing their input and output values using functional relationships
that emulate visual masking.  These distortions are then pooled across space (spatial collapsing) and time (temporal
collapsing) to produce quality metric values for a video clip which is nominally 5 to 10 seconds in duration.

The edge enhancement filters and the size of the S-T regions can be optimized based on their correlation with perceptual
distortions.  At viewer distances from 4 to 6 picture heights, optimal S-T region sizes achieve compression factors of at least
384:1 (spatial compression of at least 64:1 and temporal compression of at least 6:1) versus the uncompressed Rec. 601 video
stream.
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Figure 1.  In-service video quality measurement system.



The sampled input and output video streams are assumed to have been calibrated before the processes described herein are
performed.  This calibration includes compensation for system gain and level offset, as well as spatial and temporal
registration of the images.  Fortunately, this calibration can also be performed using low bandwidth features extracted from
the input and output video streams.10

2.1 Edge Enhancement Filter Size

The input and output video frames are first processed with horizontal and vertical edge enhancement filters that enhance
edges while reducing noise.  Prior papers have shown that the Sobel filters shown in Figure 3 work well for this step.1-10

These two Sobel filters are applied separately, one to enhance horizontal pixel differences while smoothing vertically (left
filter), and the other to enhance vertical pixel differences while smoothing horizontally (right filter).  We once again examined
the Sobel filter pair but also examined a number of other filter pairs that perform more edge enhancement and noise
suppression.  Figure 4 shows the general form for one such family of filter pairs.  Only the horizontal bandpass/vertical
lowpass filter is shown in Figure 4 (the vertical bandpass/horizontal lowpass filter can be generated by taking the transpose).
These large edge enhancement filters were examined to see if higher amounts of edge enhancement and noise suppression
could produce better spatial distortion metrics than the Sobel filter.
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Figure 2.  Overview of algorithm to extract video quality metrics.
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The weights for the bandpass filters shown in Figure 4 are given by
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where x is the horizontal pixel displacement from the center of the filter (0, 1, 2, …, N), c is a constant that sets the width of
the bandpass filter (the bandpass filter shapes for c = 1, 1.5, 2, and 3 are plotted on the right hand side in Figure 4), and k is a
normalization constant.  For our tests, the filter was always square with an odd number of columns and rows so it could be
centered over the pixel of interest.  The normalization constant k was selected such that each filter would produce the same
gain on a vertical edge as the left hand Sobel filter shown in Figure 3.  Notice that the left hand Sobel filter shown in Figure 3
has a vertical amplitude taper (falling from 2 to 1 as one moves vertically off center) while the large edge enhancement filters
do not have a vertical taper.  We have found that non-tapered filters can be beneficial for quality assessment and they have the
added advantage of being computationally efficient (i.e., one merely has to sum the pixels in a column and multiply once by
the weight of that column).

2.2 S-T Region Size

The horizontal and vertical edge enhanced input and output video streams are each divided into localized S-T regions.  Figure
5 gives an illustration of a S-T region that includes 8 horizontal pixels x 8 vertical lines x 6 video frames.  Features are
extracted from each S-T region by calculating summary statistics over the S-T region.  As the number of pixels encompassed
by the S-T region increases, the compression factor increases and hence the required ancillary data channel bandwidth shown
in Figure 1 decreases.

The objective video quality metrics used in American National Standards Institute (ANSI) T1.801.03-19965 use extremely
low bandwidths for the reference information since the S-T region size includes all of the valid pixels of a single video frame.
For MPEG-2 video systems, we have found that a S-T region size of 8 horizontal pixels x 8 vertical lines x 1 video frame is
near optimal for making fine-grain spatial distortion measurements.10  However, as we will discuss in section 4.1, temporal
widths on the order of 6 video frames appear to be more optimal for general purpose spatial distortion metrics that work well
for any digital video system, from low bit-rate video teleconferencing systems to high bit-rate MPEG-2 systems.
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Figure 4.  Large edge enhancement filters.



We have performed preliminary experiments which demonstrate that the compression factors for the features can be further
increased by synchronized random sub-sampling in space and time.  In this case, a subset of randomly selected S-T regions
are selected for feature extraction.  The additional feature compression resulting from synchronized random sub-sampling can
be quite dramatic and is basically limited only by the desired repeatability of the quality measurement.  Even stringent
requirements on repeatability (such as 0.2%) make random sub-sampling a viable option for further increasing the
compression factors of the extracted features, and thereby lowering the required ancillary data channel bandwidth shown in
Figure 1.

2.3 Description of Features

This section describes the extraction of two spatial activity features from S-T regions of the edge enhanced input and output
video streams from section 2.1.  The filters shown in Figure 3 (left) or Figure 4 enhance spatial gradients in the horizontal (H)
direction while the transposes of these filters enhance spatial gradients in the vertical (V) direction.  The response at each
pixel from the H and V filters can be plotted on a two dimensional diagram such as the one shown in Figure 6 with the H filter
response forming the abscissa value and the V filter response forming the ordinate value.  For a given image pixel located at
row i, column j, and time t, the H and V filter responses will be denoted as H(i, j, t) and V(i, j, t), respectively.  These
responses can be converted into polar coordinates (R, θ) using the relationships

( ) ( ) ( )R i j t H i j t V i j t, , , , , ,= +2 2
, and

( ) ( )
( )θ i j t

V i j t

H i j t
, , tan

, ,

, ,
=









−1 .

The first feature, f1, is computed simply as standard deviation (stdev) over the S-T region of the R(i, j, t) samples, and then
clipped at the perceptibility threshold of P (i.e., if the results of the stdev calculation falls below P, f1 is set equal to P),
namely

( )[ ]{ }f stdev R i j t
P
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This feature is sensitive to changes in the overall amount of spatial activity within a given S-T region.  For instance, localized
blurring produces a reduction in the amount of spatial activity whereas noise produces an increase.  For the results presented
in section 4, the perceptibility threshold P for this feature was set equal to 12.
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Figure 5.  Illustration of a spatial-temporal (S-T) region for a video scene.



The second feature, f2, is sensitive to changes in the angular distribution, or orientation, of spatial activity.  Complementary
images are computed with the shaded spatial gradient distributions shown in Figure 6.  The image with horizontal and vertical
gradients, denoted as HV, contains the R(i, j, t) pixels that are horizontal or vertical edges (pixels that are diagonal edges are

zeroed).  The image with the diagonal gradients, denoted as HV , contains the R(i, j, t) pixels that are diagonal edges (pixels
that are horizontal or vertical edges are zeroed).  Gradient magnitudes R(i, j, t) less than rmin are zeroed in both images to

assure accurate θ computations.  Pixels in HV and HV can be represented mathematically as
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Following the recommendations of ANSI T1.801.03, we used rmin =  20 and ∆θ = 0.05236 radians for the computation of HV

and HV .5  Feature f2 for one S-T region is then given by the ratio of the mean of HV to the mean of HV , where these
resultant means are clipped at their perceptibility thresholds P, namely
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For the results presented in section 4, the perceptibility threshold P for the mean of HV and HV  was set equal to 3.  The f2
feature is sensitive to changes in the angular distribution of spatial activity within a given S-T region.  For example, if
horizontal and vertical edges suffer more blurring than diagonal edges, f2 of the output will be less than f2 of the input.  On the
other hand, if erroneous horizontal or vertical edges are introduced, say in the form of blocking or tiling distortions, then f2 of
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Figure 6.  Division of horizontal (H) and vertical (V) spatial activity into HV (left) and HV  (right) distributions.



the output will be greater than f2 of the input.  The f2 feature thus provides a simple means to include variations in the
sensitivity of the human visual system with respect to angular orientation.

2.4 Feature Comparison Functions (Quality Metrics)

The following provides a generic description of how distortions are calculated from the input and output feature streams given
in section 2.3.  For this discussion, an input feature stream will be denoted as fin(s, t) and the corresponding output feature
stream will be denoted as fout(s, t), where s and t are indices that denote the spatial and temporal positions, respectively, of the
S-T region within the calibrated input and output video streams.  First, the perceptual impairment at each S-T region is
calculated using a function that models visual masking.  Next, impairments from S-T regions with the same time index are
pooled using a spatial collapsing function.  Finally, the results from the spatial collapsing function are pooled using a
temporal collapsing function to produce an objective metric for the video clip, which is nominally 5 to 10 seconds in length.

2.4.1 Impairment Masking

Gain and loss must be examined separately, since they produce fundamentally different effects on quality perception (e.g.,
loss of spatial activity due to blurring and gain of spatial activity due to noise or blocking).  Of the many comparison
functions that we have evaluated, two have consistently produced the best correlation to subjective ratings.  These comparison
functions model the perceptibility of spatial or temporal impairments.   For a given S-T region, gain and loss distortions are
computed using:
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where pp is the positive part operator (i.e., negative values are replaced with zero), and np is the negative part operator (i.e.,
positive values are replaced with zero). These visual masking functions imply that impairment perception is inversely
proportional to the amount of localized spatial or temporal activity in the input scene.  In other words, spatial impairments
become less visible as the spatial activity in the input scene is increased (i.e., spatial masking), and temporal impairments
become less visible as the temporal activity in the input scene is increased (i.e., temporal masking).  While the logarithmic
and ratio comparison functions behave very similarly, we have found that the logarithmic function tends to be slightly more
advantageous for gains while the ratio function tends to be slightly more advantageous for losses.

2.4.2 Spatial Collapsing

Extensive investigation has revealed that optimal spatial collapsing functions normally involve some form of worst case
processing.  This is because localized impairments tend to draw the focus of the viewer, making the worst part of the picture
the predominant factor in the subjective quality decision.  The spatial collapsing function we used is computed for each
temporal index t as the average of the worst 5% of the measured distortions over the spatial index s.  This produces a time
history of the gain and loss samples, namely gain(t) and loss(t), which must then be temporally collapsed.

2.4.3 Temporal Collapsing

Viewers seem to use several temporal collapsing functions when subjectively rating video clips that are from 9 to 10 seconds
in length.  One of these functions is indicative of the average or best quality that is observed during the time period, while the
other function is indicative of the worst transient quality that is observed (e.g., digital transmission errors may cause a 1 to 2
second disturbance in the output video).  We have found that the long time mean (i.e., mean over 9 to 10 seconds) and the
short time mean (i.e., mean over 1 to 2 seconds) capture most of the perceptual impact.  We suspect that the short time mean
by itself would capture most of the perceptual impact for continuously sampled subjective data (e.g., viewers produce
continuously updated subjective scores by means of a slider that may be moved at will).  However, since all of our subjective
data  consisted of a single score for a 9 to 10 second clip of video, it was not possible to test this hypothesis.  For simplicity,
the temporal collapsing function we used is computed as the mean of the gain(t) and loss(t) time samples over the entire 9 to
10 second time period.  This temporal collapsing function may be sub-optimal for video clips with large variations in picture
quality during this time period.



3. DESCRIPTION OF SUBJECTIVE DATA SETS

The seven subjective experiments were performed from 1992 to 1998.  Data sets one to six were conducted in accordance
with the most recent version of ITU-R Recommendation BT.50012 that was available when the experiment was performed.
Data set seven, being a personal computer (PC) video teleconferencing application, was conducted in accordance with ITU-T
Recommendation P.910.13  All of the data sets used scenes from 9 to 10 seconds in duration.  For brevity, only a summary of
each subjective experiment is given.  The reader is directed to the accompanying references for more complete descriptions.

3.1 Data Set One:1, 2

A panel of 48 viewers rated a total of 132 video clips that were generated by random and deterministic pairing of 36 test
scenes with 27 video systems.  The 36 test scenes contained widely varying amounts of spatial and temporal information. The
27 video systems included digital video compression systems operating at bit-rates from 56 kbits/sec to 45 Mbits/sec with
controlled error rates, NTSC encode/decode cycles, VHS and S-VHS record/play cycles, and VHF transmission.  Viewers
were shown the original version first, then the degraded version, and asked to rate the difference in perceived quality using the
5-point impairment scale (imperceptible, perceptible but not annoying, slightly annoying, annoying, very annoying).

3.2 Data Set Two:14

Viewer panels comprising a total of 30 viewers from three different laboratories rated 600 video clips that were generated by
pairing 25 test scenes with 24 video systems.  The 25 test scenes were standardized by ANSI T1.801.01-199515 and included
scenes from 5 categories: (1) one person, mainly head and shoulders, (2) one person with graphics and/or more detail, (3)
more than one person, (4) graphics with pointing, and (5) high object and/or camera motion.  The 24 video systems included
proprietary and standardized video teleconferencing systems operating at bit rates from 56 kbits/sec to 1.5 Mbits/sec with
controlled error rates, one 45 Mbits/sec codec, and VHS record/play cycle.  The subjective test procedure was the same as
data set one.

3.3 Data Set Three:16

This data set was a subjective test evaluation of proponent MPEG-4 systems that utilized a panel of 15 expert viewers.  We
selected a subset of 164 video clips from the main data set.  The subset was selected to span the full range of quality and
included eight common intermediate format (CIF) resolution test scenes and 41 video systems from the basic compression
tests.  The eight video scenes included scenes from 2 categories: (1) low spatial detail and low amount of movement, and (2)
medium spatial detail and low amount of movement or vice versa.   The 41 video systems operated at bit rates from 10
kbits/sec to 112 kbits/sec.  Viewers were shown only the degraded version and asked to rate the quality on a 11-point
numerical scale, with 0 being the worst quality and 10 being the best.

3.4 Data Set Four:17

A panel of 32 viewers rated the difference in quality between input scenes with controlled amounts of added noise and the
resultant MPEG-2 compression-processed output.  The data set contains a total of 105 video clips that were generated by
pairing seven test scenes at three different noise levels with five MPEG-2 video systems.  The seven test scenes were chosen
to span a range of spatial detail, motion, brightness, and contrast.  The five MPEG-2 video systems operated at bit rates from
1.8 Mbits/sec to 13.9 Mbits/sec.  Viewers were shown the input and processed output in randomized A/B ordering and asked
to rate the quality of B using A as a reference.  The experiment utilized a seven-point comparison scale (B much worse than
A, B worse than A, B slightly worse than A, B the same as A, B slightly better than A, B better than A, B much better than A).

3.5 Data Set Five:10

A panel of 32 viewers rated a total of 112 video clips that were generated by pairing sub-groups of eight scenes each (total
number of scenes in the test was 16) with 14 different video systems.  The 16 test scenes spanned a wide range of spatial
detail, motion, brightness, and contrast and included scene material from movies, sports, nature, and classical Rec. 601 test
scenes.  The 14 video systems included MPEG-2 systems operated at bit rates from 2 Mbits/sec to 36 Mbits/sec with
controlled error rates, multi-generation MPEG-2, multi-generation ½ inch professional record/play cycles, VHS, and video
teleconferencing systems operating at bit rates from 768 kbits/sec to 1.5 Mbits/sec.  The subjective test procedure was the
same as data set four.



3.6 Data Set Six:10

A panel of 32 viewers rated a total of 42 video clips that were generated by pairing sub-groups of six scenes each (total
number of scenes in the test was 12) with seven different MPEG-2 systems.  The 12 test scenes included sports material and
classical Rec. 601 test scenes.  The nine MPEG-2 systems operated at bit rates from 2 Mbits/sec to 8 Mbits/sec.  The
subjective test procedure was the same as data set four.

3.7 Data Set Seven:9

A panel of 18 viewers rated 48 video clips in a desktop video teleconferencing application.  The 48 video clips were
generated by pairing six scenes with eight different video systems.  The six test scenes were selected from ANSI T1.801.0115

and were the scenes 5row1, filter, smity2, vtc1nw, washdc, and one scene that included portions of both vtc2zm and vtc2mp.
The eight video systems included seven desktop video teleconferencing systems operating at bit rates from 128 kbits/sec to
1.5 Mbits/sec and one NTSC encode/decode cycle.  Viewers were shown only the degraded version and asked to rate the
quality on the absolute category rating scale (excellent, good, fair, poor, bad).

4. RESULTS

The metrics presented in this paper were evaluated on a subset of data set two described in section 3.2.  The knowledge
gained by examining this subset was used to develop edge enhancement filters and S-T region sizes that were then tested on
all seven subjective data sets.  In this section, we present objective to subjective correlation results for the individual spatial-
temporal distortion metrics described in section 2 for one edge enhancement filter and one S-T region size.  A combined
spatial-temporal distortion metric is then proposed that is sensitive to both added and missing spatial activity.

4.1 Preliminary Training on a Subset of Data Set Two

A subset of 181 video clips from data set 2 was selected for preliminary training since it was felt that this data set contained
the widest variation in perceived quality.  These selected clips were chosen to produce the most challenging quality
assessment problem (i.e., the selected clips contained impairments that were not easily quantified by simpler metrics1-7).  The
results from this preliminary test were then used to limit the number of edge enhancement filters and S-T region sizes for the
other data sets.

4.1.1 Edge Enhancement Filter Size

The 181-clip training subset revealed that the large filters shown in Figure 4 outperformed the Sobel filters shown in Figure 3.
For the 181-clip subset, the optimal amount of vertical lowpass filtering (i.e., the vertical size, or number of rows in the Figure
4 filter) was found to be about 13 lines.  With this filter size (13 x 13), the optimal amount of horizontal bandpass filtering
(i.e., c = 1, 1.5, 2, or 3) for the 181-clip subset was found to be given by the c = 2 filter.  This bandpass filter has a peak
response at about 4.5 cycles/degree for Rec. 601 video viewed at 6 times picture height.

Comparing the Sobel filter (Figure 3) with the 13 x 13 filter specified by c = 2 (Figure 4), gain and loss metrics derived from
the f1 feature in section 2.3 had modestly better correlation results but metrics derived from the f2 feature produced substantial
improvements.  It appeared that the Sobel filter did not perform sufficient averaging to obtain robust estimates of the angular
orientation of the spatial gradient energy.  Therefore, we decided to use the 13 x 13 filter specified by c = 2 for preprocessing
prior to extracting both the f1 and f2 features described in section 2.3.

4.1.2 S-T Region Size

We discovered that since most lower bit-rate systems do not preserve frame integrity (i.e., many of these systems transmit
fewer than 30 frames per second and repeat prior frames to fill in for the missing frames), the optimal temporal-width of the
S-T region (see Figure 5) must be increased from the 1-frame temporal width previously obtained for MPEG-2 video
systems.10  Larger temporal extents were found to accommodate temporal misalignments for the lower bit-rate video
teleconferencing systems while still preserving the high correlation results for the MPEG-2 video systems.  The optimal S-T
region size that achieved the maximum correlation with subjective ratings for the 181-clip subset was on the order of 8
horizontal pixels x 8 vertical lines x 6 video frames as shown in Figure 5.  It should be noted, however, that the correlation
was found to worsen slowly as one moves away from the optimum point (i.e., either reducing the S-T granularity or increasing
the S-T granularity).  This result agreed with what was previously found for MPEG-2 systems.10  Horizontal and vertical



widths up to 32 pixels or lines, and temporal widths up to 30 frames, can be used with satisfactory results, giving the objective
measurement system designer considerable flexibility in adapting the techniques presented here to lower ancillary data
channel bandwidths (see Figure 1).  For the results in this paper, we decided to extract the f1 and f2 features from a S-T region
size of 8 horizontal pixels x 8 vertical lines x 6 video frames.

4.2 Testing on All Seven Data Sets

Figure 7 presents the Pearson linear correlation coefficients between the two spatial activity loss metrics described in section
2 and the seven subjective data sets described in section 3.  The plots include the preliminary training subset from data set two
that was used to develop the metrics.  As previously mentioned in sections 4.1.1 and 4.1.2, these results are for the large 13 x
13 edge enhancement filter specified by c = 2 (see Figure 4) and a S-T region size of 8 horizontal pixels x 8 vertical lines x 6
video frames (see Figure 5).  In Figure 7, the correlation results for the f1_loss parameter (i.e., the loss of the f1 feature
measured using the loss equation in section 2.4) is on the left while the correlation results for the f2_loss parameter (i.e., the
loss of the f2 feature measured using the loss equation in section 2.4) is on the right.  With the exception of data set three, both
loss parameters yield consistently high correlation results across all data sets, demonstrating that both the magnitude and
angular orientation of the spatial activity contains meaningful quality assessment information.  Data set three spans the lowest
range of quality and contains temporal and chroma impairments that are not well quantified by spatial gradient metrics
derived from the luminance signal.

Figure 8 presents the Pearson linear correlation coefficients between the f2_gain metric in section 2 (i.e., the gain of the f2
feature measured using the gain equation in section 2.4) and the subjective data sets in section 3.  The f1_gain metric is not
displayed since it did not produce consistent correlation results across all data sets (correlations ranged from 0.22 to 0.91 for
the f1_gain metric).  Spatial activity gain in digital video systems quite often takes the form of tiling or block distortion, which
is picked up by the f2_gain metric.  One would expect the gain metrics to complement the loss metrics since in general both
types of impairments can be present in the same digital video clip.  The complementary nature of the loss and gain parameters
will be investigated further in the next section.
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Figure 7.  Pearson linear correlation coefficients for the f1_loss and f2_loss parameters.



4.3 Combined Spatial-Temporal Distortion Metric

This section proposes a combined spatial-temporal
distortion metric that is sensitive to losses in the magnitude

of spatial activity (i.e., f1_loss), losses in the HV to HV
ratio of spatial activity (i.e., f2_loss), and gains in the HV to

HV  ratio of spatial activity (i.e., f2_gain).  This combined
parameter (join) was computed by determining the optimal
proportions of each parameter for each of the seven data
sets and then averaging these proportions across all seven
data sets to produce

join f loss f loss f gain= + −0 38 0 39 0 231 2 2. * _ . * _ . * _ .

This process assures that each data set is treated equally
regardless of the number of clips in the data set.  In the
above equation, f1_loss and f2_loss have positive weights
since these parameters range between zero and negative
one.  On the other hand, f2_gain has a negative weight since
it is always greater than or equal to zero.  Across the seven
data sets, the combined metric join ranged from zero (no
impairment) to approximately negative one (really poor
quality).  Testing the combined metric join on each of the
data sets produced the Pearson linear correlation

coefficients shown in Figure 9.  The combined metric join achieved an average correlation coefficient of 0.88 across the seven
data sets.  In view of the breath of the subjective data in these seven experiments, this result is quite significant.  The
combined metric join thus explained about 77% (0.882) of the variance in the subjective data sets.  Typically, 10% of the
subjective variance is random noise due to finite viewer populations.  This leaves only 13% of the subjective variance to be
explained by other measures (e.g., temporal transients, chroma distortion).

5. CONCLUSIONS

We have presented video quality metrics based on
features extracted from S-T regions that quantify both the
magnitude and direction of the spatial gradient.  These
metrics explain a large percentage of the variance in
seven subjective data sets that span an extremely wide
range of test scenes and digital video systems.  We
therefore feel that these metrics are indicative of the
perceived quality that results from any digital video
system, regardless of operating bit-rate.  The horizontal
and vertical edge enhancement filters that are utilized for
estimation of the spatial gradients emphasize long edges
(on the order of 1/5 degree) while simultaneously
performing large amounts of noise suppression.  Two
separate visual masking functions have been presented
that emulate human perception; one for gains in feature
values and another for losses.

In addition to being highly correlated to subjective
ratings, the metrics may also be used for continuous in-
service quality monitoring.  This is important since digital
video quality depends upon dynamic characteristics of the
input video (e.g., spatial detail, motion) and the digital

transmission system (e.g., bit-rate, error-rate) and thus accurate perception-based measurements must be made in-service.  The
S-T region size from which the reduced reference information features are extracted can be adjusted to match the bandwidth
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Figure 8.  Pearson linear correlation coefficient for the f2_gain
parameter.
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Figure 9.  Pearson linear correlation coefficient for the join
parameter.



of the in-service data channel used to communicate the features between the input and output ends.  While we have presented
results for a S-T region size of 8 horizontal pixels x 8 vertical lines x 6 video frames, for a feature compression factor of 384,
larger S-T region sizes may also be used with only a minor drop in the ability of the metrics to track perceptual video quality.
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