COMMITTEE T1
CONTRIBUTION

Document Number: T1A1.5/94-110

KErAEAAAIAAAIAAIAIAAIAIAAIAIAAIAEAAAIAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAArAAArAhkhrhhdrhhihiihiihkiiikk

STANDARDS PROJECT: VTC/VT Performance Standards Projects

KhhkhkAhkhkAhkhkrAhkhkrhkhkrhkhkrhhkrhhkhhhkhhhkhhhkhhhkhhhkhkkhhkhkkhhkhkhhkhihhkrhhkkihhrhhkkihhkkihhkhhikiihkiiikkx

TITLE: Corrections and Extensions to T1A1.5/93-152
*hkkhkkkkhkkhkkhkhkkhkhhkkhhkkhkhhkkhhhkkhhkhhhkhhhkkihkhhhkhikhkkihkhhhkkhikhihkhhhkiikhihkhhhkiikhihkhhhkiikhkihkiihkiixkkx
ISSUE ADDRESSED: Objective Video Performance Testing
*kkkkkhkkhkkhkkkhkkhkhkkikhkkhkkhkkkhkkhhkkikhkhkkhkkhkkhkhkkhkhkhkkhkkhkkhkhkkikhkhkhhkkhhhkkikhkhkhhkkhkhkkikkhkhhkkhkhkikkkhkhhkkihkkhkikkhkikkkikkkx
SOURCE: NTIA/ITS, Stephen Wolf, Margaret Pinson
B R R R R R R R R R R R R R R R R R R R S R S R R R R R R R R R R S R R R R R R R R R R R S S B R I R R R R S S S R R R S
DATE: January 17, 1994
AR AR R A R AR AR R AR AR R R AR AR AR R AR AR AR AR AR AR AR AR A AR AR AR A A A A A A A A A AR AAAAAAAAAAAAAAAAAAAAR K
DISTRIBUTION TO: T1A1.5
*hkkkkkhkkhkkhkkkhkkhkhkkhkhkhkkhkkkhkkhkhkkikhkhkhkkkhkkhkhkkhhkhkkhhkkhhkhkkikhkhkhhkkhhkhkkikhkhkhhkkhhkhkikhkkhkhhkkhhkhkihkkhkhhkkihkhkkikkhkikkiikkkx
KEYWORDS: Objective Video Performance Testing, Video Quality
Parameters

KhAkAAAAAAAAAAAAAAAAIAArErAhrErAhkrrhkrhhkhhhkhhhkhhhkhhhkhhhkhihhihhhhhihhhhhhhihhihhiikiiikk

DISCLAIMER:

B R R R R R R R S R R S R R R R R R R R R R R R R R R AR AR R R S R R R R R R R R R R R R R R R R R R T e e

1 Introduction

At the last TLA1.5 meeting (November, 1993 in San Jose, CA), contribution T1A1.5/93-152
was presented which summarized the methods of measurement for objective video quality
parameters based on the sobel-filtered image and the motion difference image. This contribution
presents:

1. One minor correction to the recommended value for the fraction above threshold in
contribution T1A1.5/93-152.

2. A method for estimating the video delay uncertainty of the automated time alignment
algorithm presented in section 3 of contribution T1A1.5/93-152. Non-zero video delay
uncertainty may result when (1) dynamic time warping, or variable video delay, is present
in the Hypothetical Reference Circuit (HRC), or (2) a substantial number of video frames are
dropped by the HRC.

3. A method for using this video delay uncertainty in the computation of the parameters
presented in TLA1.5/93-152.

4. An improved motion spike detector that could be used for computing parameters p;g and
P11 in TLA1.5/93-152.

The correction to contribution T1A1.5/93-152 given by item 1 above should be
implemented by all laboratories that are making the video quality measurements. The extensions
to contribution T1A1.5/93-152 given by items 2 through 4 above should be included in the
evaluation process that is being used by committee TLAL.5 to validate the objective video quality
measurements. Questions regarding the material in this contribution should be directed to:

Stephen Wolf

U.S. Department of Commerce
NTIAZITS.N3

325 Broadway

Boulder, CO 80303

Phone: (303) 497-3771
Fax: (303) 497-5323
E-mail: steve@its.bldrdoc.gov

2 Correction to T1A1.5/93-152

The recommended value for the fraction above threshold in contribution T1A1.5/93-152 was
miscomputed by a factor of approximately 0.6. Thus, the last sentence on page 9 of contribution
T1A1.5/93-152 should read

“[The recommended value for the fraction above threshold is 0.42]”
and the second to the last sentence in the last full paragraph on page 11 should read

“To assure this condition is met, the recommended value for the fraction above threshold is
0.42.”
3 Video Delay Uncertainty

For low bit rate HRCs, the video delay of the HRC may change dynamically depending
upon the information content of the source video. Typically, larger amounts of motion in the

source video produce longer coding and transmission delays, and hence longer video delays.
This effect is illustrated in Figure 1, where the time history of the Temporal Information of the
Source video (Tlg) is plotted against the time history of the Temporal Information of the
Destination video (Tlp). By examining the figure, one can see that the Tlg and Tl waveforms are
time aligned during the low motion portion of the scene (from time 50 to time 120). However, the
Tlg and Tl waveforms are not time aligned for the high motion portion of the scene (from time
10 to time 40). During the high motion part, Tlp lags Tlg by up to 10 more frames. Thus, the
video delay uncertainty for the 4 second piece of source video shown in Figure 1 is about 10
frames.

30 1
TIS

20

Temporal Information (TI)

0 20 40 60 80 100 120
Time (in frames)

Figure 1 Plot Demonstrating Variable Video Delay

Another cause of non-zero video delay uncertainty is when the HRC drops so many source
video frames that the temporal information is greatly reduced. This condition typically occurs
for very high motion scenes that have been transmitted through low bit-rate HRCs. One example
is plotted in Figure 2. By observing and comparing Tl to Tlg, one notes that the HRC is only
transmitting about one frame out of every 15 to 30 source video frames. Thus, the video delay
uncertainty for the 10 second piece of source video shown in Figure 2 is on the order of 30
frames.

50

40

(11D

30

“‘1“*1‘\‘1‘%‘\H\H\H‘H\HH\\

20

Temporal Information (T1)

Lt\:p:\iﬁl\i}i\iLi\i}i\ﬂ“\"?i\ﬂ‘-\‘-l“\"

(@]
1

@]
(@]
@]
N
o
(@]
W
(@]
o

Time (in frames)

Figure 2 Plot Demonstrating Low Frame Rate HRC

One could visually inspect the Tlg and Tl time histories such as those given in Figure 1
and Figure 2 to determine the video delay uncertainty. However, since video delay is a statistical
guantity that changes dynamically, it would be preferable to have an automated algorithm for
estimating this video delay uncertainty. This remainder of this section presents the current
research and methodology for automating the estimation of video delay uncertainty.

The minimum standard deviation alignment presented in section 3.3 of TLA1.5/93-152
calculates the video delay of one piece of destination video (this piece of destination video is
called a destination vector). The alignment algorithm of section 3.4 of TLA1.5/93-152 computes the
video delays of many different pieces of destination video and forms a histogram of the results.
This is performed in step two (or step three) of the alignment algorithm (see page 16 of TLA1.5/
93-152). This histogram tells how many votes each possible video delay received. In TLA1.5/93-
152 the best alignment (i.e., the best estimate of the video delay), is chosen as that video delay
which received the most votes. However, if one considers a range of video delays (R) that
includes every video delay (d,) in the histogram which received at least one vote, i.e.

R = |:dvmin’dvmax:I (1)

where dymin is the minimum video delay with at least one vote and d,mx IS the maximum video
delay with at least one vote. This range R provides an estimate of the video delay uncertainty.

4 Parameter Computation Using Video Delay Uncertainty

In addition to computing the video quality parameters for that time alignment which
received the most votes (i.e., the best alignment in TLA1.5/93-152), one could compute the video

guality parameters for every time alignment within the range R specified by equation (1) above.
If this is done for some selected piece of source video (for the TLAL.5 video teleconferencing
tests, the selected piece of source video is 9 seconds long), a quality parameter (p) could also be
assigned to a range of values. The question then becomes how to best compute a single number
from this range of values. One possibility would be to take the minimum over the range of
values. If p(d,) is the parameter value for a video delay of d,,, then we could define a p’, such that

p' =min[p(d,)]. (2)
d,OR

Since the parameters measure impairment, this criterion would select the minimum impairment
over the range of video delay uncertainty. Improvements have been observed in the
performance of the video quality parameters that are most sensitive to time alignment shifts. In
particular, this is true of parameters p4, p3, and p5 in contribution T1A1.5/93-152 since they
apply maximum and/or minimum time collapsing functions to the frame by frame parameter
samples.

5 Improved Spike Detector

Parameters p;g and pq4 in contribution T1A1.5/93-152 utilize a spike detector to detect
spikes of motion energy in the Tly and Tlg waveforms. These motion spikes occur during scene
cuts and when jerky motion is present in the HRC output video. The spike detector described in
T1A1.5/93-152 works well for detecting spikes that are one Tl sample wide. However, if a scene
cut or an HRC frame update occurs halfway through the NTSC video frame, or if an HRC takes
two frames to update the video, then a two T1 sample width spike detector is required to properly
detect these motion spikes. [Note: Scene cuts or HRC frame updating halfway through the NTSC
video frame will create two sample wide spikes in the TI metrics based on frame differences
presented in section 2.3 of TLA1.5/93-152. These same motion conditions will only create one
sample wide spikes in the Tl metrics based on field differences presented in section 2.4 of
T1A1.5/93-152.]

This section presents pseudo code for an improved spike detector that measures the spike
height of a motion spike that is one or two Tl samples wide. Parameters p;g and pqq in
contribution T1A1.5/93-152 could be modified to utilize this improved spike detector. These
modifications would involve not only the spike detection logic of parameters p;g and p;4 but
also the frame repeat detection and counting logic of parameter p;o. Function spike_height
returns the spike height of a TI sample point within the Tl array.

Function spike_height (array, frame)

array An array that contains the time history of the Tl samples. At
least two points prior to this frame and two points after this
frame must be present in the array.

frame An integer that specifies the frame within the Tl array where the
spike height is to be measured.

/* Check to see if this frame is a spike; if not, return a spike height of 0.0 */

IF ((array[frame] < array[frame+1]) OR (array[frame] < array[frame-1])) THEN
RETURN (spike_height = 0.0)

/* Left leg of spike (earlier in time) has less height than the right leg */

IF (array[frame-1] > array[frame+1]) THEN
BEGIN

/* Left leg slopes down into a 2 wide spike */

IF (array[frame-2] < array[frame-1]) THEN
BEGIN
IF (array[frame-2] > array[frame+1]) THEN
spike_height = array[frame] - array[frame-2]
ELSE
spike_height = array[frame] - array[frame+1]
END

/* Left leg shorter, 1 wide spike */

ELSE
spike_height = array[frame] - array[frame-1]
END

/* Right leg of spike (later in time) has less height than the left leg */
ELSE BEGIN
/* Right leg slopes down into a 2 wide spike */

IF (array[frame+2] < array[frame+1]) THEN
BEGIN
IF (array[frame+2] > array[frame-1]) THEN
spike_height = array[frame] - array[frame+2]
ELSE
spike_height = array[frame] - array[frame-1]
END

/* Right leg shorter, 1 wide spike */

ELSE
spike_height = array[frame] - array[frame+1]
END

RETURN (spike_height)

